帳號:guest(18.226.87.170)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王健宇
作者(外文):Wang, Chien-Yu
論文名稱(中文):利用螢光壓力感測技術之影像處理與溫度修正量測機翼於低速風洞中之表面壓力分布
論文名稱(外文):Image Processing and Temperature Correction of Pressure-Sensitive Paint for Airofoil Surface Pressure Measurement in Low Speed Wind Tunnel
指導教授(中文):黃智永
指導教授(外文):Huang, Chih-Yung
口試委員(中文):鍾光民
劉耀先
口試委員(外文):Chung, Kuang-Min
Liu, Yao-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033546
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:96
中文關鍵詞:螢光壓力感測塗料低速風洞螢光壓力感測塗料溫度修正影像處理
外文關鍵詞:Pressure-Sensitive PaintLow Speed Wind TunnelImage ProcessingTemperature Correction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:72
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究為探討螢光壓力感測塗料應用於風洞測試、在低壓力差時應用影像校正與溫度修正之可能性,實驗以傳統壓力管(pressure taps)與螢光壓力感測塗料PSP(Pressure Sensitive Paints)進行比對分析,量測NACA 0012於雷諾數8×〖10〗^5時不同攻角時上表面全域壓力,並佐以螢光溫度感測塗料TSP(Temperature Sensitive Paints)修正因流場流速不同造成之溫度影響。實驗所使用之NACA 0012為全鋁製模型,其弦長(chord length;C)為20 cm,翼展(span;L)為60 cm,並在機翼中央y/L=0.5處埋置有壓力管。
因螢光塗料會對環境壓力/溫度變化發生反應(氧氣淬滅及熱淬滅),本研究針對Ru(bpy)、Ru(dpp)、PtTFPP、與市售的BF-200、UNT-400五種塗料求取其壓力與溫度校正曲線以及溫度、壓力之耦合效應。在30 kPa~120 kPa的壓力區間內,其壓力敏感度由高至低依序為:(1)PtTFPP、(2)BF-200、(3)Ru(dpp)、(4)Ru(bpy)、(5)UNT-400,其中UNT-400對環境壓力變化並無反應,故本研究採用PtTFPP與BF-200為PSP,兩者在90 kPa<P<101.3 kPa間壓力敏感度約為0.65 %/kPa與0.6 %/kPa。本研究同時嘗試將壓力敏感度較低的Ru(bpy)與Ru(dpp)添加水性亮光漆X-22使其隔絕氧氣,但實驗結果顯示雖添加X-22後壓力敏感度可降低50%~70%,但無法完全隔絕氧氣使其壓力敏感度降至0,故本研究採用UNT-400作為TSP,其溫度敏感度為1.7 %/°C。由壓力校正與溫度影響實驗可知,量測PSP螢光亮度變化時需在相同溫度下量測,若有溫度變化會使PSP相對螢光亮度變化失真,且溫度校正曲線為一次方程式,故以I=(1+α(∆T))I_ref 修正PSP螢光亮度至與參考壓力相同溫度後再求取相對螢光亮度變化。
本研究所採用之兩款PSP亮度差異極大,BF-200絕對亮度約為PtTFPP的3~5倍,兩者所產生隨機雜訊有差異,此隨機雜訊並不隨時序或空間序變化而增減,在絕對亮度10000以上其雜訊比為1%~1.25%,4000以下雜訊比會提升至1.5%~1.75%,表示壓力變化至少要大於3 kPa,才不致使BF-200與PtTFPP之相對螢光亮度變化埋沒在隨機雜訊中。 在巨觀尺度下,校正與實驗無法以即地方式(in-situ)進行,校正實驗之實驗架設與風洞實驗無法完全一致,故分別進行距離、光源強弱、光源角度與試片角度之重複性測試。其結果顯示光源、CCD相機與PSP/TSP相對位置改變的條件下,壓力校正曲線相對螢光亮度變化之誤差為±0.43%,溫度校正曲線相對螢光亮度變化之誤差為±0.64%,顯示以上變因對螢光分子之壓力/溫度校正曲線影響甚微。
在風洞實驗中,因風洞硬體設計影響,NACA 0012模型受風時所產生的阻力會使測試段位移約0.3 mm~0.7 mm(1 pix~3 pix),此現象會造成實驗與參考影像無法重合,使相對螢光亮度變化失真,本研究採用matlab影像處理工具箱中影像校準應用程式,並以仿射變換(affine)進行座標轉換,使實驗與參考影像重合後再求取相對螢光亮度變化。由TSP與PSP的結果可知,翼表面流場在不同攻角下產生不均勻溫度場,其產生之原因為在低壓區之流場速度較快,造成流場局部熱對流係數增大,使區域溫度下降。其結果顯示在攻角10°、15°時,低壓區位於0<x/C<0.03的區間內,其壓力值約為96 kPa、93kPa(壓差為6 kPa、9 kPa),溫度約會下降1°C、2°C。由PSP全域流場可知,在攻角0°、5°時,因流場還未發生分離,故其全域壓力為連續變化,但在攻角10°、15°時,因流場於x/C=0.03處發生分離,故x/C=0.03前後有著明顯壓升。
The objective of this study is to investigate the feasibility of applying pressure sensitive paint (PSP) and compare with pressure taps in wind tunnel test at Rec=8×〖10〗^5. This study will also apply temperature sensitive paint (TSP) to measure the global temperature difference to correct the PSP intensity shift caused by temperature.
Both surrounding pressure and temperature will influence the luminescence intensity of TSP/PSP, therefore, five PSP/TSP paints of Ru(bpy), Ru(dpp), PtTFPP, BF-200 and UNT-400, are seleted and examine the pressure and temperature dependence on the calibration curves. In the pressure region 30 kPa~120 kPa, the pressure sensitivity from best to worse is: (1)PtTFPP、(2)BF-200、(3)Ru(dpp)、(4)Ru(bpy)、(5)UNT-400. For the wind tunnel test, PtTFPP and BF-200 are selected as the PSP sensors and their pressure sensitivity are 0.65 %/kPa and 0.6 %/kPa at pressnre range from 90kPa to101.3 kPa, respectively. The varnish paint (X-22) was added into Ru(bpy)and Ru(dpp) in order to isolate oxygen and suppress the oxygen dependence on the TSP. Although X-22 can decrease the pressure dependency of Ru(bpy)and Ru(dpp) by 50%~70%, but it still can not isolate oxygen perfectly. The commercial available TSP paint UNT-400 is chosen as the TSP sensor to measure the global temperature field druing wind tunnel test. The temperature sensitivity of PtTFPP, BF-200 and UNT-400 are 0.7 %/°C, 0.6 %/°C and 1.7 %/°C respectively. Because temperature dependence of PSP sensor, the temperature has to be controlled during PSP measurements; otherwise, the luminescence intensity will change due to the temperature effect. The temperature correction of PSP can be corrected using linera equation.
In wind test using PSP instrumentation, the experiment set up in the wind tunnel and for a prior calibration setup will not be identical. This study examine the effects of relative location of CCD camera, PSP/TSP sensor, and light source. The effects on luminescence intensity change of temperature and pressure calibration curve are ±0.64% and ±0.43%. It shows that the change of experiment set up between wind tunnel test and calibration will not affect the accuracy of PSP and TSP measurements.
Because of the arrangement of wind tunnel structure, the airfoil model will move about 0.3 mm ~ 0.7 mm (1 pix~3pix) during the wind blowing, which introduces the misalignment between the wind off image (reference image) and wind on image. This study uses image registration with affine transform to align wind off image and wind on image. According to the results of TSP measurement, the temperature on the upper sufeace of airfoil will become lower as long as AoA increase. This is due to the acceleration of flow at low pressure region near leading edge and the local thermal convection enhancement. At AoA of 0°and 5°, the range of pressure is about 99 kPa~102 kPa, causing the temperature change less than 0.75°C. At AoA of 10°and 15°, in the region 0<x/C<0.03 the pressure drop to 96 kPa and 93kPa, the temperature will decrease about 1°C to 2°C, but other region only decrease less than 1°C.
摘要
Abstract
誌謝
目錄
圖目錄
表目錄
第一章、 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 壓力感測塗料(PSP) 2
1.2.2 PSP於巨觀、微觀尺度之應用 7
1.3 研究目的 22
第二章、 螢光壓力/溫度感測塗料實驗原理 23
2.1 螢光壓力/溫度感測塗料(Pressure Sensitive Pain; PSP / Temperature Sensitive Pain; TSP)之理論 23
2.1.1 光致發光 24
2.1.2 氧氣淬滅/熱淬滅 25
2.2 PSP量測原理 26
2.3 TSP量測原理 27
第三章、 實驗架設 30
3.1 PSP/TSP基本性質與配置 30
3.1.1 PSP/TSP基本性質 30
3.1.2 PSP製備 34
3.1.3 TSP製備 35
3.2 PSP/TSP校正曲線 35
3.3 風洞實驗 37
第四章、 溫度/壓力校正與敏感度分析 41
4.1 溫度/壓力校正曲線 41
4.2 敏感度分析 55
4.3 PSP溫度修正 60
第五章、 光降解與重複性分析 61
5.1 光降解 62
5.2 螢光影像重複性分析 64
第六章、 影像處理與雜訊分析 73
6.1 仿射變換(affine transform) 74
6.2 中位數濾波(median filter) 75
6.3 雜訊分析 76
第七章、 風洞實驗結果 79
7.1 溫度場分析 80
7.2 PSP溫度修正與比較 82
7.3 誤差分析 87
第八章、 結論與未來工作 90
8.1 結論 90
8.2 未來工作 91
參考文獻 92
附錄A 95
[1] C.-F. Lee, "The Application of Liquid Crystal and Pressure Sensitive Paint in Transonic Wind Tunnel Experiment," Master, Department of Aeronautics and Astronautics, National Cheng Kung University, 2003.
[2] M. E. Sellers, "Pressure Sensitive Paint Data on the Transonic Technology Wing Demonstrator(TST) in the AEDC Propulsion Wins Tunnel 16T," AEDC-TR-98-31998.
[3] E. T. Schairer, "Optimum thickness of pressure-sensitive paint for unsteady measurement," AIAA, vol. 40, pp. 2312-2318, 2002.
[4] J. W. Gregory, K. Asai, M. Kameda, T. Liu, and J. P. Sullivan, "A review of pressure-sensitive paint for high-speed and unsteady aerodynamics," Proceedings of the Institution of Mechanical Engineers, vol. 222, no. Part G: Journal of Aerospace Engineering, pp. 249-290, 2008.
[5] J. W. Gregory and J. P. Sullivan, "Effect of Quenching Kinetics on Unsteady Response of Pressure-Sensitive Paint," AIAA, vol. 44, pp. 634-645, 2006.
[6] A. E. Baron, J. D. S. Danielson, M. Gouterman, J. R. Wan, J. B. Callis, and B. McLachlan, "Submillisecond response time of oxygen-quenched luminescent coating," Rev. Sec. Instrum, vol. 64, pp. 3394-3402, 1993.
[7] Y. Sakamura, M. Matsumoto, and T. Suzuki, "High frame-rate imaging of surface pressure distribution using a porous pressure-sensitive paint," Meas. Sci. Technol., vol. 16, pp. 759-765, 2005.
[8] T. Hangai, M. Kameda, K. Nakakita, and K. Asai, "Time response characteristics of pyrene-based pressure-sensitive coatings on anodic porous alumina," presented at the 10th International Symposium on Flow Visualization, Kyoto, Japan, 2002.
[9] S. Ponomarev and M. Gouterman, "Fast responding pressure sensitive paints based on high concentration of hard particles in polymer," presented at the 6th Annual Pressure-Sensitive Paint Workshop,, Boeing Co., Seattle, WA, 1998.
[10] A. M. Scroggin, "Processing and optimization of doped polymer/ceramic composite films for luminescenceb-ased pressure and temperature measurement in aerodynamic applications," Master, School of MaterialsEngineering, Purdue University, 1999.
[11] T. J. Bencic and R. VanderWal, "Porous pressure-sensitive paint for measurement of unsteady pressures in turbomachinery," presented at the 42nd AIAA Aerospace Sciences Meeting, Reston, VA, 2005.
[12] T. Masuda, E. Isobe, and T. Higashimura, "Poly [1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability," J. Am. Chem. Soc., vol. 105, no. 7473-7474, 1983.
[13] K. Asai, Y. Amao, Y. Iijima, I. Okura, and H. Nishide, "Novel pressure-sensitive paint for cryogenic and unsteady wind tunnel testing," presented at the 21st AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Reston, VA, 2000.
[14] N. Teduka, M. Kameda, Y. Amao, and K. Asai, "Experimental investigation on the time response of pressure-sensitive paint " in 31st JSASS Annual Meeting, 2000, pp. 218-211.
[15] T. Masuda, E. Isobe, and T. Higashimura, "Poly [1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability.," J. Am. Chem. Soc., vol. 105(25), pp. 7473–7474, 1983.
[16] S. Fang, K. J. Disotell, S. R. Long, J. W. Gregory, F. C. Semmelmayer, and R. W. Guyton, "Application of fast-responding pressure-sensitive paint to a hemispherical dome in unsteady transonic flow," Experiments in Fluids, vol. 50, no. 6, pp. 1495-1505, 2010.
[17] T. Yamashita, H. Sugiura, H. Nagai, K. Asai, and I. K, "Pressure-Sensitive Paint Measurement of the Flow around a Simplified Car Model," 2008.
[18] M. Anyoji, D. Numata, H. Nagai, and K. Asai, "Pressure-sensitive paint technique for surface pressure measurements in a low-density wind tunnel," J Vis (Tokyo), vol. 18, no. 2, pp. 297-309, 2015.
[19] R. Gerakopulos, M. S. H. Boutilier, and S. Yarusevych, "Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers," in The 40th Fluid Dynamics Conference and Exhibit, Chicago, Illinois., 2010, vol. AIAA.
[20] T. Ota, "A separated and reattached flow on a blunt flat plate," J Fluids Eng, vol. 98(1), pp. 79-84, 1976.
[21] M. M. O’Meara and T. J. Mueller, "Laminar separation bubble characteristics on an airfoil at low reynolds numbers," AIAA, vol. 25(8), pp. 1033-1041, 1987.
[22] M. K. Quinn, N. Gongora-Orozco, K. Kontis, and P. Ireland, "Application of Pressure-Sensitive Paint to Low-Speed Flow Around a U-Bend of Strong Curvature," presented at the The 8th Pacific Symposium on Flow Visualization and Image Processing, Moscow, Russia, 2011.
[23] Y.-X. Huang, "An Experimental Study on a compressible Cylindrical cavity Flow," Master, Department of Aeronautics & Astronautics, National Cheng Kung University, 2018.
[24] A. Pandey and J. W. Gregory, "Step Response Characteristics of Polymer/Ceramic Pressure-Sensitive Paint," Sensors, vol. 15, 2015.
[25] K. Nakakita, M. Kurita, and K. Mitsuo, "Development of The Pressure-Sensitive Paint Measurement for Large Wind Tunnels at Japan Aerospace Exploration Agency," presented at the International Congress of The Aeronautical Sciences, 2004.
[26] K.-C. Chiang, "The Study of 90 Degree Elbow Microchannel Flow Using Pressure-Sensitive Paint," Master, Department of Power Mechanical Engineering, National Tsing Hua University, 2014.
[27] J.-S. Li, "The Application od Pressure Sensitive Paints for Investigation of Rarefield and Compressible Flows in Microchannel," Master, Power Mechanical Engineering, National Tsing Hua University, 2004.
[28] J. Heine and M. Buschbaum, "Engineering metal-based luminescence in coordination polymers and metal–organic frameworks," Chemical Society Reviews, vol. 42, pp. 9232-9242, 2013.
[29] T. Lui and J. P. Sullivan, Pressure and Temperature Sensitive Paints. Germany: Springer, 2015.
[30] K. J. Disotell, P. Nikoueeyan, J. W. Naughton, and J. W. Gregory, "Global Surface Pressure Measurements of Static and Dynamic Stall on a Wind Turbine Airfoil at Low Reynolds Number," Experiments in Fluids, vol. 57, no. 5, 2016.
[31] Innovative Scientific Solutions Incorporated. Available: https://psp-tsp.com/
[32] M. K. Quinn, L. Y.ang, and K. Kontis, "Pressure-Sensitive Paint: Effect of Substrate," Sensors, vol. 11, pp. 11649-11663, 2011.
[33] 成大航空太空中心-低速風洞實驗室. Available: http://www.iaalab.ncku.edu.tw/lw/index.htm
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *