帳號:guest(3.137.198.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂仲翔
作者(外文):Lu, Chung-Hsiang
論文名稱(中文):指壓式幫浦微流體晶片用於凝集反應之分析與研究
論文名稱(外文):A Finger-Powered Microfluidic Device For Agglutination Study
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):邵耀華
盧向成
口試委員(外文):Shau, Yio-Wha
Lu, Shiang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033545
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:87
中文關鍵詞:微流道指壓幫浦凝集反應無透鏡成像
外文關鍵詞:microfluidicfinger pumpagglutinationlens free imaging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:300
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在血庫以及醫學中心中,準確並且快速的辨識血型是非常重要的,特別是在輸血過程中,能否對於受血者(recipient)以及供血者(donor)的人在安全的血下作業,錯誤的輸血會造成嚴重的溶血反應。而在醫院,需要依靠醫檢師利用玻片法或試管法並且用肉眼及顯微鏡辨識結果,不僅消耗人力,而且還會增加人為的錯誤,目前市面上的自動血型判讀儀器,雖然可以解決上述大部分的問題,節省人力,利用電腦管理解決人為填寫資料時的疏失,並且增加產能,但是比較大的缺點是儀器本身體積龐大,不是可攜帶移動,也難做到遠端家護應用遠的市場。
在此研究中,我們致力於製作出快速檢測ABO和Rh血型系統並且減少樣本消耗的診斷凝血晶片,利用微機電技術製作出來的微流體晶片,因為其微小的結構達到減少樣本的消耗。在結構上利用指壓式幫浦,達到節省外部大型儀器的需求,並達到可攜帶、簡單操作以及快速反應的目的,並且致力於利用影像技術、電腦化的管理藉此達到精準的判斷並且減少人為的失誤。
本研究整體分為微流體晶片系統及無透鏡投影成像系統,微流體晶片中包含了指壓式幫浦、控制流量模組、微型混和器,將抗體預先放進晶片中,再一起藉由指壓式幫浦推送樣品至主要流道區域混和,並將觀測區投影在CMOS影像感測器上,把得到的影像送入微處理器(Raspberry Pi)進行影像處理,分辨各區域是否有凝集現象,以進行判讀鑑別血型及其他凝集反應應用。
In the blood bank and medicine center, precise and fast blood type identification is very important, especially for the recipient and the donor in the blood transfusion process which needs to be done in a safety environment. Improper blood transfusion could cause severe hemolytic reactions. In the hospital, patients need to rely on the medical staff to use either the slide method or the test tube method to identify the results with the naked eyes and microscope. This not only requires additional manpower, but also increases the possibility of human error. Although the presently existing automatic blood group testing instruments could resolve some of the above problems by using computers to fill out the information and increase production capacity, but the instrument itself is bulky and expensive for portable and point-of-care applications.
In this research, a rapid blood testing chip and system for ABO blood grouping and Rh grouping system was developed. MEMS techniques were used to develop and fabricate the chip. The required sample consumption is minimized in this developed chip system. The device consists of finger-powered micro-pumps which help the size and cost saving as compared to large external equipment. In addition, it is a portable device with simple operation giving rapid response, and can be integrated with computerized management to achieve accurate testing and reduce human error.
In this research, the integrated system, which comprises of lens-free projective system and an agglutination chip including micro-pump, a valve module, and micro-mixer, was developed. The agglutination chip preloaded with the antibody in the chip took advantage of finger-powered micro-pump and the valve module to control the sample with the antibody through the embedded micromixer. The image was then projected to the CMOS image sensor. The microprocessor (Raspberry Pi) was integrated and used for image processing, to distinguish whether the detection region had agglutination or not.
Abstract 1
摘要 2
致謝 3
圖目錄 6
第一章 緒論 9
1.1前言 9
1.2研究動機與目的 11
1.3 研究背景 13
1.3.1 生醫微機電與實驗室晶片 13
1.3.2 凝集反應 14
1.3.3 目前的血庫檢測方法 17
1.3.4 無透鏡成像系統 21
1.3.5電腦視覺 22
1.4 文獻回顧 22
1.4.1微型閥 22
1.4.2 微型混合器: 30
1.4.3 無透鏡成像投影系統 39
1.4.4 微型幫浦 41
第二章 系統理論與晶片設計 43
2.1 系統理論 43
2.1.1 微流體晶片設計理論 43
2.1.2 微型混合理論: 48
2.1.3 微流體晶片設計 50
第三章 微流道晶片製程 55
3.1 製作流程 55
3.1.1 黃光微影製程 55
3.1.2微流道晶片製程 57
3.2製程結果 60
第四章 實驗結果與討論 62
4.1 晶片實驗結果與測試 62
4.1.1主動式微幫浦定量測試: 62
4.1.2主動式微幫浦在多組流道中測試: 64
4.1.3 抽取式微幫浦測試 66
4.1.4 整體晶片測試 70
4.2系統設計 72
4.2.1 系統硬體架設 73
4.2.2 光源設計 75
4.2.3 影像軟體設計 77
第五章 結論與未來展望 81
5.1結論 81
5.2未來展望 82
參考文獻 83
[1] 黃淑美,陳明宏. 輸血錯誤-輸血錯誤之文獻回顧及錯誤類型之探討 .Available :http://www.labmed.org.tw/bjournal04.asp?IsAno=7&IsBno=18&IsCno=61&IsDno=151 , 2003.
[2] NARLabs. 數位微流體式實驗室晶片, 2016.
[3] 何敏夫, 血庫學, 第二版, 藝軒圖書出版社, 2004.
[4] Penn Vet. Research Shows Success for New Testing Methods for Blood Compatibility, Typing, 2016.
[5] Bio-Red. Available : http://www.bio-rad.com/zh-cn/product/diamed-mp-test-b-ab-dvi-dvi-ctl-a1-b?ID=LO3G6B49T, 2017.
[6] 葉力嘉. 自動血庫檢驗分析儀. Available : http://www.skh.org.tw/blood/455-1.html
[7] SMC. Reagent Red Blood Cells. Available : http;//www.smcni.com/
Transfusion-medicine/, 2016.
[8] A. Ozcan and U. Demirci, "Ultra wide-field lens-free monitoring of cells on-chip," Lab on a Chip, vol. 8, no. 1, pp. 98-106, 2008.
[9] S. Seo et al., "High-Throughput Lens-Free Blood Analysis on a Chip," Analytical Chemistry, vol. 82, no. 11, pp. 4621-4627, Jun 2010.
[10] D. J. Laser and J. G. Santiago, "A review of micropumps," Journal of Micromechanics and Microengineering, vol. 14, no. 6, pp. R35-R64, Jun 2004.
[11] K. G. T. A, Micromachined Transducers Sourcebook. New York: McGraw-Hill, 1998
[12] S. C. Terry, J. H. Jerman, and J. B. Angell, "GAS-CHROMATOGRAPHIC AIR ANALYZER FABRICATED ON A SILICON-WAFER," Ieee Transactions on Electron Devices, vol. 26, no. 12, pp. 1880-1886, 1979.
[13] K. Sato and M. Shikida, "AN ELECTROSTATICALLY ACTUATED GAS VALVE WITH AN S-SHAPED FILM ELEMENT," Journal of Micromechanics and Microengineering, vol. 4, no. 4, pp. 205-209, Dec 1994.
[14] H. Q. Li et al., "Fabrication of a high frequency piezoelectric microvalve," Sensors and Actuators a-Physical, vol. 111, no. 1, pp. 51-56, Mar 2004.
[15] H. Jerman, "ELECTRICALLY-ACTIVATED, NORMALLY-CLOSED DIAPHRAGM VALVES," Journal of Micromechanics and Microengineering, vol. 4, no. 4, pp. 210-216, Dec 1994.
[16] L. Klintberg, M. Karlsson, L. Stenmark, J. A. Schweitz, and G. Thornell, "A large stroke, high force paraffin phase transition actuator," Sensors and Actuators a-Physical, vol. 96, no. 2-3, pp. 189-195, Feb 2002
[17] R. Pal, M. Yang, B. N. Johnson, D. T. Burke, and M. A. Burns, "Phase change microvalve for integrated devices," Analytical Chemistry, vol. 76, no. 13, pp. 3740-3748, Jul 2004.
[18] R. H. Liu, J. Bonanno, J. N. Yang, R. Lenigk, and P. Grodzinski, "Single-use, thermally actuated paraffin valves for microfluidic applications," Sensors and Actuators B-Chemical, vol. 98, no. 2-3, pp. 328-336, Mar 2004.
[19] R. H. Liu, J. N. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, "Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection," Analytical Chemistry, vol. 76, no. 7, pp. 1824-1831, Apr 2004.
[20] D. J. Beebe et al., "Functional hydrogel structures for autonomous flow control inside microfluidic channels," Nature, vol. 404, no. 6778, pp. 588-+, Apr 2000.
[21] A. Richter, D. Kuckling, S. Howitz, T. Gehring, and K. F. Arndt, "Electronically controllable microvalves based on smart hydrogels: Magnitudes and potential applications," Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 748-753, Oct 2003.
[22] L. M. Low, S. Seetharaman, K. Q. He, and M. J. Madou, "Microactuators toward microwaves for responsive controlled drug delivery," Sensors and Actuators B-Chemical, vol. 67, no. 1-2, pp. 149-160, Aug 2000.
[23] A. Suzuki and T. Tanaka, "PHASE-TRANSITION IN POLYMER GELS INDUCED BY VISIBLE-LIGHT," Nature, vol. 346, no. 6282, pp. 345-347, Jul 1990.
[24] K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, and Y. Sakurai, "Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on-off regulation of insulin release," Journal of the American Chemical Society, vol. 120, no. 48, pp. 12694-12695, Dec 1998.
[25] D. T. Eddington and D. J. Beebe, "A valved responsive hydrogel microdispensing device with integrated pressure source," Journal of Microelectromechanical Systems, vol. 13, no. 4, pp. 586-593, Aug 2004.
[26] K. Yoshida, M. Kikuchi, J. H. Park, and S. Yokota, "Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments," Sensors and Actuators a-Physical, vol. 95, no. 2-3, pp. 227-233, Jan 2002.
[27] H. Hartshorne, Y. B. Ning, W. E. Lee, and C. Backhouse, Development of microfabricated valves for mu TAS (Micro Total Analysis Systems '98) , pp. 379-381, 2000.
[28] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science, vol. 288, no. 5463, pp. 113-116, Apr 2000.
[29] B. Mosadegh et al., "Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices," Nature Physics, vol. 6, no. 6, pp. 433-437, Jun 2010.
[30] A. Y. Nobakht, M. Shahsavan, and A. Paykani, "Numerical Study of Diodicity Mechanism in Different Tesla-Type Microvalves," Journal of Applied Research and Technology, vol. 11, pp. 876-885, Dec 2013.
[31] R. H. Liu, R. Lenigk, R. L. Druyor-Sanchez, J. N. Yang, and P. Grodzinski, "Hybridization enhancement using cavitation microstreaming," Analytical Chemistry, vol. 75, no. 8, pp. 1911-1917, Apr 2003.
[32] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, "Ultrasonic micromixer for microfluidic systems," Sensors and Actuators a-Physical, vol. 93, no. 3, pp. 266-272, Oct 2001.
[33] E. Choi, B. Kim, and J. Park, "High-throughput microparticle separation using gradient traveling wave dielectrophoresis," Journal of Micromechanics and Microengineering, vol. 19, no. 12, Dec 2009.
[34] X. Z. Niu and Y. K. Lee, "Efficient spatial-temporal chaotic mixing in microchannels," Journal of Micromechanics and Microengineering, vol. 13, no. 3, pp. 454-462, May 2003.
[35] J. H. Tsai and L. W. Lin, "Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump," Sensors and Actuators a-Physical, vol. 97-8, pp. 665-671, Apr 2002.
[36] B. Xu, T. N. Wong, N. T. Nguyen, Z. Z. Che, and J. C. K. Chai, "Thermal mixing of two miscible fluids in a T-shaped microchannel," Biomicrofluidics, vol. 4, no. 4, Dec 2010.
[37] H. H. Bau, J. H. Zhong, and M. Q. Yi, "A minute magneto hydro dynamic (MHD) mixer," Sensors and Actuators B-Chemical, vol. 79, no. 2-3, pp. 207-215, Oct 2001.
[38] Nave. R , "Laminar flow",HyperPhysics, 2010.
[39] B. He, B. J. Burke, X. Zhang, R. Zhang, and F. E. Regnier, "A picoliter-volume mixer for microfluidic analytical systems," Analytical Chemistry, vol. 73, no. 9, pp. 1942-1947, May 2001.
[40] V. Mengeaud, J. Josserand, and H. H. Girault, "Mixing processes in a zigzag microchannel: Finite element simulations and optical study," Analytical Chemistry, vol. 74, no. 16, pp. 4279-4286, Aug 2002.
[41] S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, "Lensfree holographic imaging for on-chip cytometry and diagnostics," Lab on a Chip, vol. 9, no. 6, pp. 777-787, 2009.
[42] G. Jin et al., "Lens-free shadow image based high-throughput continuous cell monitoring technique," Biosensors & Bioelectronics, vol. 38, no. 1, pp. 126-131, Oct-Dec 2012.
[43] M. Roy, D. Seo, C. H. Oh, M. H. Nam, Y. J. Kim, and S. Seo, "Low-cost telemedicine device performing cell and particle size measurement based on lens-free shadow imaging technology," Biosensors & Bioelectronics, vol. 67, pp. 715-723, May 2015.
[44] R. Dijkink and C. D. Ohl, "Laser-induced cavitation based micropump," Lab on a Chip, vol. 8, no. 10, pp. 1676-1681, Oct 2008.
[45] B. T. Chia, H. H. Liao, and Y. J. Yang, "A novel thermo-pneumatic peristaltic micropump with low temperature elevation on working fluid," Sensors and Actuators a-Physical, vol. 165, no. 1, pp. 86-93, Jan 2011.
[46] K. Iwai, K. C. Shih, X. Lin, T. A. Brubaker, R. D. Sochol, and L. W. Lin, "Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes," Lab on a Chip, vol. 14, no. 19, pp. 3790-3799, Oct 2014.
[47] Ting-Sheng Shih, "A Miniaturized Bubble-Actuated Cell Sorter",pp. 42-43,July 2017.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *