帳號:guest(3.144.254.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳政穎
作者(外文):Wu, Jheng-Ying
論文名稱(中文):結合分子拓印高分子辨識層之壓電聲波生醫感測器以及應用於食品安全快速檢測碟片系統
論文名稱(外文):Molecularly-Imprinted-Polymer-Based Piezoelectric Acoustic Biosensors and Their Applications in Food Drug Residual Rapid Sensing Disk Systems
指導教授(中文):洪健中
指導教授(外文):Hong, Chien-Chong
口試委員(中文):林志勳
黃國柱
劉通敏
口試委員(外文):Lin, Jyh-Shiun
Hwang, Kuo-Chu
Liou, Tong-Miin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033537
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:160
中文關鍵詞:食品安全食用肉品動物用藥殘留壓電式聲波微收發器生醫感測器分子拓印高分子
外文關鍵詞:food safetyanimal drugs residuepiezoelectric acoustic microtransceiverbiosensormolecularly imprinted polymers
相關次數:
  • 推薦推薦:0
  • 點閱點閱:324
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
傳統食品安全檢測採用HPLC/MS等技術,此類儀器設備與耗材皆昂貴,而且需要專業訓練操作員,目前大多將肉品送到特定實驗中心進行檢驗,無法快速現場檢測。過去本實驗室已發展出可圖案化電沉積壓電高分子製程來製作聲波微收發器,然而良率隨著製程人員經驗而不同。本論文首先在此基礎上進一步改善製程,提升壓電薄膜與金電極接合力與製程良率;接著以為實現全整合生醫感測器之目標,將分子拓印高分子直接電沉積於聲波接收器上,使得聲波接收器提升專一性之吸附能力,實現以生醫感測器來完成食品肉汁殘留藥物快速檢測。
本研究為提升製程良率,以烯丙基硫醇(Allyl Mercaptan)在來壓電薄膜與金電極間形成金-硫(Au-S)共價鍵,加強材料間接合力,使得薄膜覆蓋面積達90 % 以上的製程良率,從原本的10 % 以下提升至大於90 %,且訊號調控前的壓電薄膜訊號也比原先提升37.5% (10 kHz),所配置之添加烯丙基硫醇的P(VDF-TrFE)的DMSO溶液,具有約五個月的時效性。本論文以Doxycycline作為檢測目標,微流體晶片設計上,分為單階段檢測晶片設計與兩階段檢測晶片設計,單階段設計僅有1次流體操作與1次專一辨識分離;而兩階段設計則有2次流體操作與2次專一辨識分離。單階段微流體直接對肉汁進行檢測下,檢測區間在0 ppb至300 ppb,靈敏度為0.5 mV/ppb,附錄G所補充的實驗中在0.0008 ppb 下仍然有53.9 dB的高訊雜比(SNR);FAPAS豬肉肉汁檢測方面,以兩階段檢測晶片設計來測試,結果為163.6 ppb,與最終答案166.6 ppb 相差1.4 %,全球63間參與檢驗測試實驗室中準確度排行第三。
本研究所提出之高靈敏聲波壓電生醫感測器,全整合專一性辨識於微感測器,具備有簡易操作、高準確性與低檢測極限以及快速檢測系統整合的特點。
Traditional food safety testing uses technologies such as HPLC/MS. These instruments and consumables are expensive, and professional training operators are required. At present, most of the meat is sent to a specific experimental center for inspection, and it is not possible to quickly detect it on site. In the previous work, the laboratory has developed a patterned electrodeposition piezoelectric polymer process to make acoustic micro-transceivers, but the yield varies with the experience of the process personnel. On the basis of previous works of laboratory, this paper further improves the process by to create strong bonding force of the piezoelectric film and the gold electrode. Then, in order to achieve the goal of fully integrated biomedical sensor, the molecularly imprinted polymer is directly electro polymerized on the acoustic biosensor receiver. On the device, the molecularly imprinted polymer enhances the sensitivity and specificity, and realizes the rapid detection of the residual drug of the food.
In order to improve the yield of the process, Allyl Mercaptan is used to form a gold-sulfur (Au-S) covalent bond between the piezoelectric film and the gold electrode to strengthen the bonding force between the materials, so that the film coverage area is up to More than 90 % of the process yield increased from less than 10 % to more than 90 %, and the piezoelectric film signal before signal conditioning was also increased by 37.5% (10 kHz), with the addition of Allyl Mercaptan. A solution of P(VDF-TrFE) in DMSO has period of validity of about five months. In this paper, Doxycycline is used as the detection target. The microfluidic chip design is divided into single-stage detection chip design and two-stage detection chip design. The single-stage design has only one fluid operation and one specific identification separation. The two-stage design has Two fluid operations were separated from two specific identifications. The single-stage microfluid directly measures the meat sample fluid with a detection range of 0 ppb to 300 ppb and a sensitivity of 0.5 mV/ppb. The experiment supplemented by Appendix G still has a high signal-to-noise ratio (SNR) of 53.9 dB at 0.0008 ppb. The FAPAS meat sample test was tested with a two-stage test wafer design with a result of 163.6 ppb, a difference of 1.4% from the final answer of 166.6 ppb, and the third highest accuracy among 63 participating test laboratories worldwide.
The high-sensitivity acoustic piezoelectric biosensor proposed by the research institute is fully integrated and uniquely recognized in the micro-sensor, and has the characteristics of simple operation, high accuracy, low detection limit and rapid detection system integration.
目錄
摘要 1
Abstract 2
誌謝 4
目錄 5
圖目錄 8
表目錄 13
第一章 緒論 14
1.1 食品安全檢測 14
1.2傳統檢測方式 16
1.2.1 質譜儀 17
1.2.2 液相層析技術 18
1.2.3 酵素免疫分析法 23
1.3 低濃度生醫感測器 25
1.3.1 電化學感測器 26
1.3.2 光學感測器 28
1.3.3 螢光感測器 30
1.3.4 壓電石英感測器 34
1.3.5 表面聲波感測器 38
1.3.6 壓電式聲波微傳感器 39
1.4 分子辨識 40
1.5 研究動機 42
1.6 研究目的 43
1.7 論文研究架構 44
第二章 聲波感測器之結構原理與製程改善 46
2.1 壓電聲波感測器結構 46
2.2 壓電感測薄膜特性與感測原理 48
2.3壓電高分子材料與製程 52
2.3.1 壓電高分子材料 52
2.3.2 壓電高分子製程 54
2.3.3 電沉積薄膜均勻性 59
2.5 壓電薄膜製程改善 61
2.5.1 薄膜覆蓋率計算 61
2.5.2 電壓與製程良率關係探討 62
2.5.3 電極表面清潔與良率關係探討 65
2.5.4添加硫醇基提升薄膜製程良率 66
2.5.5 壓電薄膜電沉積藥物時效性 70
2.5.6 基材表面改質微液滴成型 73
2.6 硫醇基壓電薄膜製程性能量測 74
2.6.1 訊號強度 74
2.6.2 預振調控響應準位試驗 76
2.6.3 輸入電壓調整裝置輸出訊號 78
第三章 分子拓印導電高分子壓電聲波感測器開發 80
3.1 分子拓印導電高分子技術 80
3.1.1 分子拓印高分子技術 80
3.1.2 導電高分子技術 84
3.1.3 導電高分子結合分子拓印 85
3.2 壓電高分子薄膜結合分子拓印技術開發規劃 88
3.3 壓電高分子薄膜混和拓印分子技術開發 90
3.3.1 壓電高分子溶液混和待測藥物電沉積實驗 91
3.3.2 電聚合拓印分子定電壓動態實驗 93
3.3.3 電聚合拓印分子定電流動態實驗 95
3.3.4 分子拓印高分子甲醇沖洗耐受實驗 96
3.3.5 傅立葉轉換紅外光譜(FTIR)拓印分子檢測實驗 97
3.3.6 壓電薄膜表面電子顯微鏡(SEM)觀測 101
3.4 壓電聲波生醫感測器性能量測 103
3.4.1 分子拓印高分子修飾對於訊號靈敏度提升試驗 103
3.4.2 壓電聲波生醫感測器專一性量測 104
3.4.3 壓電聲波生醫感測器反覆沖洗動態量測 105
3.4.4 準位調整後肉汁試驗 106
3.4.5 壓電聲波生醫感測器穩定所需時間量測 107
第四章 壓電聲波生醫感測器應用於食品快篩檢測 108
4.1 生醫感測器於食品安全之應用 108
4.2 動物用藥殘留檢測項目 110
4.3 應用於食安藥物殘留快速檢測碟片 113
4.4 壓電聲波感測器肉汁量測 118
4.5 結論 121
第五章 總結與研究成果 122
5.1 總結 122
5.2 研究成果 123
5.3 研究創新 125
5.4 學術貢獻 129
5.5 未來研究建議 134
附錄 135
附錄A:聲波量測儀器規格 135
附錄B:Labview訊號處理 138
附錄C:化學藥品名稱 140
附錄D:製程詳細步驟 141
附錄E:電沉積製程治具 142
附錄F:檢測用肉汁處理及取得方式 143
附錄G:最低濃度檢測 144
附錄H:英國分析實驗室能力驗證 ( FAPAS, Food Analysis Performance Assessment Scheme ) 145
附錄F : 頻率響應補充實驗 149
參考資料 150
作者簡介 158
著作發表 160

[1] U. G. Assembly, "Transforming our world : the 2030 Agenda for Sustainable Development," http://www.refworld.org/docid/57b6e3e44.html, 2015.
[2] 自由時報, http://news.ltn.com.tw/news/life/breakingnews/2206523, 2017.
[3] 自由時報, "皮蛋動物用藥超標," http://news.ltn.com.tw/news/life/breakingnews/1936281, 2017.
[4] 行政院農業委員會, "104年我國糧食供需統計結果," https://www.coa.gov.tw/ws.php?id=2505860&RWD_mode=, 2016.
[5] A. Rachkov and N. Minoura, "Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach," Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2001, 1544, 255-266.
[6] A. Bossi, F. Bonini, A. Turner and S. Piletsky, "Molecularly imprinted polymers for the recognition of proteins: the state of the art," Biosensors and Bioelectronics, 2007, 22, 1131-1137.
[7] OECD, "Meat consumption," https://data.oecd.org/agroutput/meat-consumption.htm, 2018, doi: 10.1787/fa290fd0-en (Accessed on 08 October 2018).
[8] 行政院農業委員會, "105年我國糧食供需統計結果," https://www.coa.gov.tw/ws.php?id=2508010, 2017.
[9] FDA, https://www.fda.gov/drugs/drugsafety/ucm500143.htm, 2016.
[10] R. S. (Ed.), "Australian Medicines Handbook 2004," Adelaide: Australian Medicines Handbook, 2004.
[11] 行政院農業委員會, "萊克多巴胺資訊專區," https://www.coa.gov.tw/ws.php?id=2445117&print=Y, 2012.
[12] 亞東醫院藥學部, "四環類抗生素," https://www.e-pharm.info/safety/medication-guide/handout/item/139, 2012.
[13] 台美檢驗科技有限公司, "動物用藥氯黴素、氟甲磺氯黴素、甲磺氯黴素檢驗," https://www.superlab.com.tw/s177/, 2017.
[14] Z. Zhang, M. J. Yang and J. Pawliszyn, "Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation," Analytical Chemistry, 1994, 66, 853.
[15] W. E. Bleidner, H. M. Baker, M. Levitsky and W. K. Lowen, "Determination of 3-(p-C hlorop henyl)-l,l -dimethylurea In Soils and Plant Tissue," Agricultural and Food Chemistry, 1954, 2, 479.
[16] F. R. v. d. Voort, "Fourier transform infrared spectroscopy applied to food analysis," Food Research International, 1992, 25, 403.
[17] 何國榮, 科學月刊, 2011, 498.
[18] R. S. Gohlke, "Time-of-Flight Mass Spectrometry and Gas-Liquid Partition Chromatography.," Analytical Chemistry, 1959, 31, 545.
[19] R. S. Gohlke and F. W. McLafferty, "Early gas chromatography/mass spectrometry.," Journal of the American Society for Mass Spectrometry, 1993, 4, 371.
[20] K. Hirayama, S. Akashi, M. Furuya and K. Fukuhara, "RAPID CONFIRMATION AND REVISION OF THE PRIMARY STRUCTURE OF BOVINE SERUM ALBUMIN BY ESIMS AND FRIT-FAB LC/MS," Biochemical and Biophysical Research Communications, 1990, 173, 646.
[21] M. J. Huddleston, M. F. Bean and S. A. Carr, "Collisional Fragmentation of Glycopeptides by Electrospray Ionization LCIMS and LCIMSIMS: Methods for Selective Detection of Glycopeptides in Protein Digests," Analytical Chemistry, 1993, 65, 884.
[22] F. A. Ayaz, S. Hayirlioglu-Ayaz, J. Gruz, O. Nova and M. Strnad, "Separation, Characterization, and Quantitation of Phenolic Acids in a Little-Known Blueberry (Vaccinium rctostaphylos L.) Fruit by HPLC-MS," Journal of Agricultural and Food Chemistry, 2005, 53, 8122.
[23] J. Peng, J. E. Elias, C. C. Thoreen, L. J. Licklider and S. P. Gygi, "Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC− MS/MS) for large-scale protein analysis: the yeast proteome," Journal of proteome research, 2003, 2, 43-50.
[24] W. R. Eberlein and A. M. Bongiovanni, "New Solvent Systems for the Resolution of Corticosteroids By Paper Chromatography," Archives of Biochemistry and Biophysics, 1955, 59, 96.
[25] K. Zhang, J. Qing, H. Gao, J. Ji and B. Liu, "Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis," Talanta, 2017, 162, 52-56.
[26] J. C. Touchstone, "Improved Separation of Phospholipids in Thin Layer Chromatography," Lipids, 1980, 15, 62.
[27] P. Dawan, T. Satarpai, P. Tuchinda, J. Shiowatana and A. Siripinyanond, "A simple analytical platform based on thin-layer chromatography coupled with paper-based analytical device for determination of total capsaicinoids in chilli samples," Talanta, 2017, 162, 460-465.
[28] M. Hase and C. Oelkers, "Rahmenbedingungen fuer DSR-Messungen an Bitumen. Optimierung der versuchstechnischen Rahmenbedingungen fuer die Durchfuehrung und Auswertung performance-orientierter Bitumenuntersuchungen mittels Dynamischem Scher-Rheometer," BERICHTE DER BUNDESANSTALT FUER STRASSENWESEN. UNTERREIHE STRASSENBAU, 2006.
[29] J. J. Kirkland, "High-performance ultraviolet photometric detector for use with efficient liquid chromatographic columns," Analytical Chemistry, 1968, 40, 396.
[30] H. S. http://www.waters.com/waters/zh_TW/How-Does-High-Performance-Liquid-Chromatography-Work%3F/nav.htm?cid=10049055&locale=zh_TW.
[31] 謝玉貞.蔣慕琰, "農藥免疫檢測技術開發與應用," 農政與農情, 2007, 186.
[32] I. Uto, T. Ishimatsu, H. Hirayama, S. Ueda, J. Tsuruta and T. Kambara, "Determination of urinary Tamm-Horsfall protein by ELISA using a maleimide method for enzyme-antibody conjugation," Journal of Immunological Methods, 1991, 138, 94.
[33] 林毓芬, 洪紹文, 陳柏叡, 鄒禮澤, 涂青宇, 張鎮璿, 何素鵬 and 王渭賢, "Ciprofloxacin 藥物酵素連結免疫吸附法殘留檢驗試劑之開發," 生物學報, 2007, 42, 80.
[34] R. I. Inc., https://rockland-inc.com/ELISA-Kits.aspx, 2017.
[35] L. C. Clark Jr and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of sciences, 1962, 102, 29-45.
[36] T. S. M.Aizawa, K.Fueki, J.Shiokawa, and S.Suzuki, "Proceedings of the international meeting of chemical sensors," Fukuoka, Elsevier, Amsterdam, 1983, 683.
[37] A.J.Cunningham, " Introduction to bioanalytical sensors," 1st ed., New York, John Wiley & Sons, 1998, 10-11.
[38] H. Jiang, D. Jiang, P. Zhu, F. Pi, J. Ji, C. Sun, J. Sun and X. Sun, "A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen," Biosens Bioelectron, 2016, 83, 126-33.
[39] N. Hudson, A. Baker and D. Reynolds, "Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review," River Research and Applications, 2007, 23, 631-649.
[40] 衛生福利部疾病管制署, http://www.cdc.gov.tw/professional/diseaseinfo.aspx?treeid=8d54c504e820735b&nowtreeid=dec84a2f0c6fac5b&tid=D03CCE3DF521E46A, 2015.
[41] G. Kim, J.-H. Moon, C.-Y. Moh and J.-g. Lim, "A microfluidic nano-biosensor for the detection of pathogenic Salmonella," Biosensors and Bioelectronics, 2015, 67, 243-247.
[42] P. Zuo, X. Li, D. C. Dominguez and B. C. Ye, "A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection," Lab Chip, 2013, 13, 3921-8.
[43] J. Curie and P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces," Bull. soc. min. de France, 1880, 3, 90.
[44] D. Stevens, H. Tiersten and B. Sinha, "Temperature dependence of the resonant frequency of electroded contoured AT‐cut quartz crystal resonators," Journal of Applied Physics, 1983, 54, 1704-1716.
[45] A. Smagin, "Frequency-temperature characteristics of quartz crystal units of different cuts operating over a wide temperature range including helium temperatures," Frequency Control Symposium, 1995. 49th., Proceedings of the 1995 IEEE International, 1995, 843-847.
[46] C. O’sullivan and G. Guilbault, "Commercial quartz crystal microbalances–theory and applications," Biosensors and bioelectronics, 1999, 14, 663-670.
[47] "Quartz data from TXC Corporation, please refer to : (http://txccrystal.com/term.html)," 2010.
[48] F. Höök, M. Rodahl, P. Brzezinsk and B. Kasemo, "Energy Dissipation Kinetics for Protein and Antibody-Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance," Langmuir, 1998, 14, 734.
[49] Q. Zhang, H. Cui, X. Xiong, J. Chen, Y. Wang, J. Shen, Y. Luo and L. Chen, "QCM-nanomagnetic beads biosensor for lead ion detection," Analyst, 2018, 143, 549-554.
[50] h. w. d. t. p.-d. z. t. S.-C.-M.-.-N. 石英晶體微天秤價格參考.
[51] S. Lee, K.-B. Kim and Y.-I. Kim, "Love wave SAW biosensors for detection of antigen-antibody binding and comparison with SPR biosensor," Food Science and Biotechnology, 2011, 20, 1413-1418.
[52] A. Tretjakov, V. Syritski, J. Reut, R. Boroznjak and A. Oepik, "Molecularly imprinted polymer film interfaced with surface acoustic wave technology as a sensing platform for label-free protein detection," Analytica chimica acta, 2016, 902, 182-188.
[53] K.-W. Chen, G.-L. Chen and C.-C. Hong, "Electrodeposition of Piezoelectric Polymer Ultrasonic Transceivers for On-Chip Antibiotic Biosensors," Journal of The Electrochemical Society, 2016, 163, B200-B205.
[54] G. Sauerbrey, "Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung," Zeitschrift für physik, 1959, 155, 206-222.
[55] P. Curie and J. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces," Bull. Soc. Fr. Mineral., 1880, 3, 102.
[56] E. Kabir, M. Khatun, L. Nasrin, M. J. Raihan and M. Rahman, "Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites," Journal of Physics D: Applied Physics, 2017, 50, 163002.
[57] H. Ohigashi, "Piezoelectric polymers—Materials and manufacture," Japanese Journal of Applied Physics, 1985, 24, 27.
[58] A. Pecora, L. Maiolo, F. Maita and A. Minotti, "Flexible PVDF-TrFE pyroelectric sensor driven by polysilicon thin film transistor fabricated on ultra-thin polyimide substrate " Sensors and Actuators A: Physical, 2012, 185, 43.
[59] A. Schroth, R. Maeda, J. Akedo and M. Ichiki, "Application of Gas Jet Deposition Method to Piezoelectric Thick Film Miniature Actuator," Japanese Journal of Applied Physics, 1998, 37, 5344.
[60] R. A. Dorey, S. B. Stringfellow and R. W. Whatmore, "Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a PZT composite thick film," Journal of the European Ceramic Society, 2002, 22, 2926.
[61] V. Ferrari, D. Marioli and A. Taroni, "Thick-film resonant piezo-layers as new gravimetric sensors," Measurement Science and Technology, 1997, 8, 48.
[62] N. Fujitsuka, J. Sakata, Y. Miyachi, K. Mizuno, K. Ohtsuka, Y. Taga and O. Tabata, "Monolithic pyroelectric infrared image sensor using PVDF thin film," Sensors and Actuators A: Physical, 1998, 66, 243.
[63] S. J. Kang, Y. J. Park, J. Sung, P. S. Jo, C. Park and K. J. K. B. O. Cho, "Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing.," Applied Physics Letters, 2008, 92, 012921.
[64] P. Gao, K. Yao, X. Tang, X. He, S. Shannigrahi, Y. Lou, J. Zhang and K. Okada, " A piezoelectric micro-actuator with three dimensional structure and its micro-fabrication," Sensors and Actuators A: Physical, 2006, 130-131, 496.
[65] B. Xu, F. Arias and G. M. Whitesides, "Making honeycomb microcomposites by soft lithography.," Advanced Materials, 1999, 11, 495.
[66] O. Pabst, J. Perelaer, E. Beckert, U. S. Schubert, R. Eberhardt and A. Tünnermann, "All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems. ," Organic Electronics, 2013, 14, 3429.
[67] S. N. Heavens, "Electrophoretic deposition as a processing route for ceramics.," Advanced Ceramic Processing and Technology, 1990, 1, 283.
[68] L. Besra and M. Liub, "A review on fundamentals and applications of electrophoretic deposition (EPD)," Progress in Materials Science, 2007, 52, 64.
[69] J. D. Foster and R. M. White, "Electrophoretic Deposition of the Piezoelectric Polymer P(VDF-TrFE)," 201st Meeting of The Electrochemical Society (Microfabricated Systems and MEMS VI), 2002: Philadelphia, PA, USA.
[70] M. M. Costa and J. A. Giacometti, "Electric‐field‐induced phase changes in polyvinylidene fluoride Effects from corona polarity and moisture.," Applied Physics Letters, 1993, 62, 1093.
[71] D. R. S. e. al, " Deposition, Processing and Characterization of P(VDF-TrFE) Thin Films for Sensing Applications in Sensors," 2008 IEEE, 2008, 490-493.
[72] R. S. Dahiya, M. Valle, G. Metta, L. Lorenzelli and S. Pedrotti, " Deposition, Processing and Characterization of P(VDF-TrFE) Thin Films for Sensing Applications," 2008 IEEE, 2008, 493.
[73] F. Guan, J. Pan, J. Wang, Q. Wang and L. Zhu, "Crystal Orientation Effect on Electric Energy Storage in Poly(vinylidene fluoride-co-hexafluoropropylene) Copolymers," Macromolecules, 2010, 43, 392.
[74] S. J. Kang, Y. J. Park, J. Y. Hwang, H. J. Jeong, J. S. Lee, K. J. Kim, H. C. Kim, J. Huh and C. Park, "Localized Pressure-Induced Ferroelectric Pattern Arrays of Semicrystalline Poly(vinylidene fluoride) by Microimprinting.," Advanced Materials, 2007, 19, 586.
[75] S. H. Bae, O. Kahya, B. K. Sharma, J. Kwon, H. J. Cho, B. Özyilmaz and J. H. Ahn, "Graphene-P(VDF-TrFE) Multilayer Film for Flexible Applications," ACS Nano, 2013, 7, 3138.
[76] S. J. Kang, Y. J. Park, I. Bae, K. J. Kim, H. C. Kim, S. Bauer, E. L. Thomas and C. Park, "Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Non-Volatile Polymer Memory.," Advanced Functional Materials, 2009, 19, 2818.
[77] A. Chen, "Fabrication of Piezoelecric Polymer Thin Films Based on Non-Electrical Polarization Process and Its Applications to Flexible Nanostructured Tactile Sensor Array," 2012, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[78] A. Sussman and T. J. Ward, "Electrophoretic deposition of coatings from glass-isopropanol slurries," RCA Review, 1981, 42, 178-97.
[79] E. Pensa, E. Cortes, G. Corthey, P. Carro, C. Vericat, M. H. Fonticelli, G. Benitez, A. A. Rubert and R. C. Salvarezza, "The chemistry of the sulfur–gold interface: in search of a unified model," Accounts of chemical research, 2012, 45, 1183-1192.
[80] G.-L. Chen, "Piezoelectric Polymer Micromachined AcousticTransducers and Their Applications to Rapid Screening of Drug Residue in Foods," Master thesis, National Tsing Hua University, Hsinchu, Taiwan, 2017.
[81] C.-C. Hong, P.-H. Chang, C.-C. Lin and C.-L. Hong, "A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol," Biosensors and Bioelectronics, 2010, 25, 2058-2064.
[82] 李世惠、董瑞安, "分子拓印高分子感測器的製作與應用," 科儀新知, 1996, 27, 12-21.
[83] C. K. Chiang, C. Fincher Jr, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, "Electrical conductivity in doped polyacetylene," Physical review letters, 1977, 39, 1098.
[84] M. Bougrini, A. Florea, C. Cristea, R. Sandulescu, F. Vocanson, A. Errachid, B. Bouchikhi, N. El Bari and N. Jaffrezic-Renault, "Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey," Food Control, 2016, 59, 424-429.
[85] H. Essousi and H. Barhoumi, "Electroanalytical application of molecular imprinted polyaniline matrix for dapsone determination in real pharmaceutical samples," Journal of Electroanalytical Chemistry, 2018, 818, 131-139.
[86] B. V. Silva, B. A. Rodríguez, G. F. Sales, T. S. Maria Del Pilar and R. F. Dutra, "An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer," Biosensors and Bioelectronics, 2016, 77, 978-985.
[87] Z. Iskierko, P. S. Sharma, D. Prochowicz, K. Fronc, F. D’Souza, D. Toczydłowska, F. Stefaniak and K. Noworyta, "Molecularly imprinted polymer (MIP) film with improved surface area developed by using metal–organic framework (MOF) for sensitive lipocalin (NGAL) determination," ACS Applied Materials & Interfaces, 2016, 8, 19860-19865.
[88] X. H. Lin, S. X. L. Aik, J. Angkasa, Q. Le, K. S. Chooi and S. F. Y. Li, "Selective and sensitive sensors based on molecularly imprinted poly (vinylidene fluoride) for determination of pesticides and chemical threat agent simulants," Sensors and Actuators B: Chemical, 2018, 258, 228-237.
[89] 行政院衛生福利部食品藥物管理, "動物用藥殘留標準," 全國法規資料庫, 2018.
[90] 食品藥物管理暑, "105 年度市售禽畜水產品中動物用藥殘留監測," 2017,
[91] I. Casalinuovo, D. Di Pierro, E. Bruno, P. Di Francesco and M. Coletta, "Experimental use of a new surface acoustic wave sensor for the rapid identification of bacteria and yeasts," Letters in applied microbiology, 2006, 42, 24-29.
[92] S. Song, Y. Lu, X. Li, S. Cao, Y. Pei, T. Aastrup and Z. Pei, "Optimization of 3D Surfaces of Dextran with Different Molecule Weights for Real-Time Detection of Biomolecular Interactions by a QCM Biosensor," Polymers, 2017, 9, 409.
[93] Z.-M. Dong, X. Jin and G.-C. Zhao, "Amplified QCM biosensor for type IV collagenase based on collagenase-cleavage of gold nanoparticles functionalized peptide," Biosensors and Bioelectronics, 2018, 106, 111-116.
[94] L. Rana, R. Gupta, M. Tomar and V. Gupta, "Highly sensitive Love wave acoustic biosensor for uric acid," Sensors and Actuators B: Chemical, 2018, 261, 169-177.
[95] Sheng-Yuan Huang, "Nanoimprint of Piezoelectric Polymer Films and Investigation of Their Morphology and Piezoelectricity," 2011.
[96] Alan Chen, "Fabrication of Piezoelecric Polymer Thin Films Based on Non-Electrical Polarization Process and Its Applications to Flexible Nanostructured Tactile Sensor Array," 2012.
[97] Kai-Lun Lin, "Development and Investigation of Hybrid Piezoelectric /Conducting Polymers and Their Applications in Power Nanogenerators," 2013.
[98] K. W. Chen, "Development and Investigation of Micropatterning Piezoelectric Polymer Thin Films and Their Applications to Ultrasonic Transceivers " 2014, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[99] K. L. Lin, "Development and Investigation of Hybrid Piezoelectric/Conducting Polymers and Their Applications in Power Nanogenerators," 2013, Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
[100] C. Zhou, T. Wang, J. Liu, C. Guo, Y. Peng, J. Bai, M. Liu, J. Dong, N. Gao, B. Ning and Z. Gao, "Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol," Analyst, 2012, 137, 4477.
[101] X. Lin, Y. Ni and S. Kokot, "A novel electrochemical sensor for the analysis of β-agonists: The poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode," Journal of Hazardous Materials, 2013, 260, 517.
[102] S. Chen, D. Pan, N. Gan, D. Wang, Y. Zhu, T. Li, Y. Cao, F. Hu and S. Jiang, "A QCM immunosensor to rapidly detect ractopamine using bio-polymer conjugate and magnetic β-cyclodextrins " Sensors and Actuators B: Chemical, 2015, 211, 530.
[103] F. J. Gruhl and K. Länge, "Surface Acoustic Wave (SAW) Biosensor for Rapid and Label-Free Detection of Penicillin G in Milk," Food Analytical Methods, 2014, 437.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *