|
[1] C. Eunpyo, and P. Jungyul, "High-throughput microparticle separation using gradient traveling wave dielectrophoresis," Journal of Micromechanics and Microengineering, vol. 19, p. 125014, 2009. [2] B. E. Debs, I. V. Balyasnikova, A. D. Griffiths, and C. A. Merten, "Functional single-cell hybridoma screening using droplet-based microfluidics," Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 11570-11575, 2012. [3] M. Najah, and M. Ryckelynck, "Teaching Single-Cell Digital Analysis Using Droplet-Based Microfluidics," Analytical Chemistry, vol. 84, pp. 1202-1209, 2012. [4] L. Mazutis, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, "Single-cell analysis and sorting using droplet-based microfluidics," Nature Protocols, vol. 8, pp. 870-891, 2013. [5] 賴昀立, "介電泳生醫微流道應用於體外授精," 國立清華大學, 2016. [6] D. H. Yoon, T. Sekiguchi, and S. Shoji, "Active and Precise Control of Microdroplet Division Using Horizontal Pneumatic Valves in Bifurcating Microchannel," Micromachines, vol. 4, pp. 197-205, 2013. [7] D. H. Yoon, T. Sekiguchi, and S. Shoji, "Selective droplet sampling flow system using minimum number of horizontal pneumatic valves formed by single step PDMS molding," International Conference on Miniaturized Systems for Chemistry and Life Sciences vol. 2, pp. 1085-1087, 2010. [8] J. C. Baret, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M. L. Samuels, J. B. Hutchison, J. J. Agresti, D. R. Link, D. A. Weitz, A. D. Griffiths, "Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity," Lab on a Chip, vol. 9, pp. 1850-1858, 2009. [9] L. Mazutis, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, "Single-cell analysis and sorting using droplet-based microfluidics," Nature Protocols, vol. 8, pp. 870–891, 2013. [10] S. C. Lin, C. C. Peng, and Y. C. Tung, "Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing," Lab on a Chip, vol. 12, pp. 3135-3141, 2012. [11] A. M. Gañán-Calvo, "Perfectly Monodisperse Microbubbling by Capillary Flow Focusing," Physical Review Letters, vol. 87, p. 274501, 2001. [12] Y. C. Tan, and A. P. Lee, "Monodispersed microfluidic droplet generation by shear focusing microfluidic device," Sensors and Actuators B: Chemical, vol. 114, pp. 350-356, 2006. [13] V. Van Steijn, M. T. Kreutzer, "Predictive model for the size of bubbles and droplets created in microfluidic T-junctions," Lab on a Chip, vol. 10, pp. 2513-2518, 2010. [14] F. P. Garstecki, H. A. Stone, and G. M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up," Lab on a Chip, vol. 6, pp. 437-446, 2006. [15] A. S. Utada, H. A. Stone, D. A. Weitz, "Dripping to jetting transitions in coflowing liquid streams," Physical Review Letters, vol. 99, p. 094502, 2007. [16] M. L. Cordero, and C. N. Baroud, "Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets," Physics of Fluids, vol. 23, p. 094111, 2011. [17] T. Ward, M. Abkarian, and H. A. Stone Dr, "Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping," Electrophoresis, vol. 26, pp. 3716–3724, 2005. [18] D. Conchouso, S. A. Khan, I. G. Foulds, "Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions," Lab on a Chip, vol. 14, pp. 3011-3020, 2014. [19] H. L. Adrian J. T. Teo, N. T. Nguyen, W. Guo, N. Heere, H. D. Xi, C. W. Tsao, W. Li, and S. H. Tan, "Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device," Analytical Chemistry, vol. 89, pp. 4387–4391, 2017. [20] J. K. Nunes, J. Wan, and H. A. Stone, "Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis," Journal of Physics D: Applied Physics, vol. 46, p. 114002, 2013. [21] D. J. Collins, A. deMello, and A. Q. Liu, Y. Ai, "The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation," Lab on a Chip, vol. 15, pp. 3439-3459, 2015. [22] W. Shi, N. Ye, and B. Lin, "Droplet-based microfluidic system for individual Caenorhabditis elegans assay," Lab on a Chip, vol. 8, pp. 1409–1588, 2008. [23] A. Huebner, G. Whyte, M. Yang, A. J. Demello, C. Abell, and F. Hollfelder, "Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays," Lab on a Chip, vol. 9, pp. 692-698, 2009. [24] T. Fu, Y. Ma, H. Z. Li, "Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting," Chemical Engineering Science, vol. 84, pp. 207-217, 2012. [25] J. Berthier, P. Tiquet, N. David, D. Lauro, P. Y. Benhamou, F. Rivera, "Highly viscous fluids in pressure actuated flow focusing devices," Proc Natl Acad Sci U S A, vol. 158, pp. 140–148, 2010. [26] Z. Nie, S. Xu, P. C. Lewis, M. Mok, E. Kumacheva, G. M. Whitesides, P. Garstecki, and H. A. Stone, "Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids," Microfluidics and Nanofluidics, vol. 5, pp. 585–594, 2008. [27] P. Daniel J. Holt, W. Y. Chow, and C. Abell, "Fluorosurfactants for microdroplets: Interfacial tension analysis," Lab on a Chip, vol. 350, pp. 205–211, 2010. [28] R. X. Chen, "Experimental study on droplet generation in flow focusing devices considering a stratified flow with viscosity contrast," Chemical Engineering Science, vol. 163, pp. 1–10, 2017. [29] H. Gu, F. Mugele, "Droplets Formation and Merging in Two-Phase Flow Microfluidics," International Journal of Molecular Sciences," International Journal of Molecular Sciences, vol. 12, pp. 2572-2597, 2011. [30] C. A. Stan, and G. M. Whitesides, "Independent Control of Drop Size and Velocity in Microfluidic Flow-Focusing Generators Using Variable Temperature and Flow Rate," Analytical Chemistry, vol. 81, pp. 2399–2402, 2009. [31] K. Liu, Q. Zeng, Z. X. Guo, J. Liu, X. Z. Zhao, "Injection Angle Dependence in Flow Focusing Based Droplet Formation," IEEE Xplore, 2007. [32] A. R. Abate, R. A. Sperling, P. Mary, A. Rotem, J. J. Agresti, M. A. Weiner, and D. A. Weitz, "DNA sequence analysis with droplet-based microfluidics," Lab on a Chip, vol. 13, pp. 4864–4869, 2013. [33] A. R. Abate, P. Mary, J. J. Agresti, D. A. Weitz, "High-throughput injection with microfluidics using picoinjectors," Proc Natl Acad Sci U S A, vol. 107, pp. 19163-6, 2010. [34] T. Konry, C. Baecher-Allan, D. A. Hafler, M. L. Yarmush, "Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine," Biosensors and Bioelectronics, vol. 26, pp. 2707-2710, 2011. [35] C. H. Schmitz, S. Köster, and D. A. Weitz, "Dropspots: a picoliter array in a microfluidic device," Lab on a Chip, vol. 9, pp. 44-49, 2009. [36] S. Köster, H. Duan, J. J. Agresti, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffithsc, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab on a Chip, vol. 8, pp. 1110-1115, 2008. [37] C. W. Wu, "Fabrication of PDMS-Based Nitrite Sensors Using Teflon AF Coating Microchannels," IEEE Sensors Journal, vol. 8, pp. 465-469, 2008. [38] J. W. Park, M. Kang, S. J. Sim, N. L. Jeon, "PDMS microchannel surface modification with teflon for algal lipid research," BioChip Journal, vol. 11, pp. 180-186, 2017. [39] N. M. Rodriguez, B. Trappmann, B. M. Baker, and C. S. Chen, "Micropatterned Multicolor Dynamically Adhesive Substrates to Control Cell Adhesion and Multicellular Organization," Langmuir, vol. 30, pp. 1327–1335, 2014. [40] K. Boxshall, Z. Cui, Z. Cui, J. F. Watts, M. A. Baker, "Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor," Surface and Interface Analysis, vol. 38, pp. 198–201, 2006. [41] H. Y. Huang, C. H. Tien, C. J. Li, S. K. Fan, C. H. Liu, W. S. Hsu, and D. J. Yao, "Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip," PLOS ONE, vol. 10, 2015. [42] J. H. Koschwanez, and D. R. Meldrum, "Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent," PLoS one, vol. 4, p. 4572, 2009. [43] B. E. Slentz, F. E. Regnier, "Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization," Journal of Chromatography A, vol. 948, pp. 225-233, 2002. |