帳號:guest(3.141.27.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱怡龍
作者(外文):Chiu, Yi-Lung
論文名稱(中文):在微流體晶片中產生液珠及鼠胚培養上的應用
論文名稱(外文):Producing Droplets in a Microfluidic Chip and its applications on Mouse Embryos Culturing
指導教授(中文):饒達仁
指導教授(外文):Yao, Da-Jeng
口試委員(中文):徐文祥
劉承賢
口試委員(外文):Hsu, Wen-Hsiang
Liu, Cheng-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033524
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:150
中文關鍵詞:微流體晶片受精卵微液珠
外文關鍵詞:Microfluidic chipembryomicro-droplet
相關次數:
  • 推薦推薦:0
  • 點閱點閱:195
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本研究為一生醫微流體晶片,使用聚二甲基矽(PDMS)製作簡單、不耗時和生物相容性優等特性,作為製作流道的主要材質,製作出一個多功能液珠產生器,期望能進行任何生物上或物理上的實驗。此晶片藉由水和油為兩互不相溶液體的特性,以微流體聚焦(Flow Focusing)為流道結構,在油浴中形成乳化液珠(Water-in-oil droplet)。在晶片中的生成區,生成體積大小約0.5 μl ~ 2.2 μl左右的液珠。欲保留的液珠,在篩選區經由人為的操控去到擴充區,擴充區可視使用者的需求,藉由T型結構(T-junction)注入的方式,將原液珠的體積擴大至最多10 μl,大小有別於其他研究。被擴充後的液珠可再流向置換區,將液珠內的液體提取出流道。
在培養老鼠胚胎(embryo)的應用上,吾人以聚苯乙烯微球(PS beads)作為測試,每個PS beads會在液珠生成的過程中,被不同的液珠所封裝,藉由液珠具有動態的特性,達到日後仿母體輸卵管環境動態培養的目的。流入培養液擴充區的液珠會被注入更多的培養液,讓體積增大到5 μl以上,以達到傳統培養胚胎,從二細胞(2-cell)發育至囊胚(Blastocyst)的培養液體積的需求。此外,目前已由實驗發現,在液珠內靜態培養組的成功率(87.5%)略低於傳統組(95%)。
In this study, we created a biomedical microfluidic chip using polydimethylsiloxane (PDMS) as our main material of multifunction droplet generator. By the feature that water and oil are immiscible, the generator uses flow focusing structure to generate droplets with the volume from 0.5 μl to 2.2 μl at Generating Area. The droplets we need would be manually manipulated toward Enlarging Area at Sorting Area. Depending on the request of the user, Enlarging Area could enlarge the volume of a droplet to at most 10 μl other than the past studies. The enlarged droplet could be manipulated to Replacing Area and the liquid of the droplet could be absorbed outside the chip.
We used PS beads as our tester on the application of culturing embryos, and let PS beads be encapsulated by different medium droplets to achieve our idea of mimicking the environment of oviduct of female body to culture embryos. The droplets flowed to Enlarging Area would be enlarged to 5μl by injecting more medium to satisfy the requirement of culturing. In addition, we found that the success rate of static droplet culture group (87.5%) is slightly lower than that of the conventional group (95%).
第一章 緒論 1
1.1前言與研究背景 1
1.2研究動機 5
1.2.1微升體積的液珠生成和液珠的篩選 5
1.2.2在生殖醫學上的動態培養 8
1.3液珠生成理論 12
1.4研究目標 15
1.5論文架構 18
第二章 文獻回顧 19
2.1各式的液珠生成微流道 20
2.1.1液珠生成類型——flow-focusing 20
2.1.2液珠生成類型——T-junction 21
2.1.3液珠生成類型——co-flowing 24
2.2以壓力為動力生成微液珠 27
2.3無因次參數和液珠生成型態的關係 31
2.4微液珠包覆微粒的機率探討 33
2.5微液珠固定在流道內的方式 35
2.6各期刊文章中的液珠體積大小 38
第三章 液珠體積的計算與擴大 40
3.1微液珠的形狀和體積估算 40
3.2微液珠的體積擴大和補充 45
第四章 實驗材料與設備 48
4.1實驗用流體 48
4.2實驗設備 51
第五章 實驗架構與方法 61
5.1晶片設計和模擬軟體的驗證 62
5.2母模和晶片的製程 69
5.2.1黃光微影 69
5.2.2 PDMS的翻模和旋塗 74
5.2.3潑水劑和界面活性劑的塗佈 78
5.3晶片的基本功能 79
5.3.1液珠生成 79
5.3.2液珠篩選 82
5.3.3液珠體積擴充 83
5.3.4液珠液體置換 85
5.4晶片功能與鼠胚培養的結合 86
第六章 微流體實驗的結果與討論 89
6.1表面改質的使用液體及結果 90
6.2流率控制液珠體積實驗結果 94
6.3液珠篩選 98
6.4液珠體積擴充 100
6.5液珠液體的置換 108
6.6半自動化操作微流體 114
6.6.1液珠生成和篩選(Step 1) 116
6.6.2移動篩選後的液珠(Step 2) 118
6.6.3 液珠間間隔擴大(Step 3) 119
6.6.4過渡階段(Step 4) 121
6.6.5培養液流入擴充區入口(Step 5) 122
6.6.6再次移動液珠到擴充區的T-junction處(Step 6) 123
6.6.7液珠體積擴充(Step 7) 124
6.6.8液珠緩慢移動的培養(Step 8) 126
6.6.9液珠液體置換(Step 9) 127
6.6.10將液珠退回擴充區(Step 10) 130
第七章 鼠胚靜態培養的結果與討論 131
7.1鼠胚的各發育階段 132
7.2傳統組的實驗方法 133
7.3晶片入口組的實驗方法 136
7.4靜態液珠組的實驗方法 139
7.5各培養組的實驗結果統整及討論 143
第八章 未來計畫 145
8.1進行動態的鼠胚培養實驗 145
8.2將半自動化操縱微流體之技術應用於動態培養 145
參考文獻 146
[1] C. Eunpyo, and P. Jungyul, "High-throughput microparticle separation using gradient traveling wave dielectrophoresis," Journal of Micromechanics and Microengineering, vol. 19, p. 125014, 2009.
[2] B. E. Debs, I. V. Balyasnikova, A. D. Griffiths, and C. A. Merten, "Functional single-cell hybridoma screening using droplet-based microfluidics," Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 11570-11575, 2012.
[3] M. Najah, and M. Ryckelynck, "Teaching Single-Cell Digital Analysis Using Droplet-Based Microfluidics," Analytical Chemistry, vol. 84, pp. 1202-1209, 2012.
[4] L. Mazutis, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, "Single-cell analysis and sorting using droplet-based microfluidics," Nature Protocols, vol. 8, pp. 870-891, 2013.
[5] 賴昀立, "介電泳生醫微流道應用於體外授精," 國立清華大學, 2016.
[6] D. H. Yoon, T. Sekiguchi, and S. Shoji, "Active and Precise Control of Microdroplet Division Using Horizontal Pneumatic Valves in Bifurcating Microchannel," Micromachines, vol. 4, pp. 197-205, 2013.
[7] D. H. Yoon, T. Sekiguchi, and S. Shoji, "Selective droplet sampling flow system using minimum number of horizontal pneumatic valves formed by single step PDMS molding," International Conference on Miniaturized Systems for Chemistry and Life Sciences vol. 2, pp. 1085-1087, 2010.
[8] J. C. Baret, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M. L. Samuels, J. B. Hutchison, J. J. Agresti, D. R. Link, D. A. Weitz, A. D. Griffiths, "Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity," Lab on a Chip, vol. 9, pp. 1850-1858, 2009.
[9] L. Mazutis, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, "Single-cell analysis and sorting using droplet-based microfluidics," Nature Protocols, vol. 8, pp. 870–891, 2013.
[10] S. C. Lin, C. C. Peng, and Y. C. Tung, "Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing," Lab on a Chip, vol. 12, pp. 3135-3141, 2012.
[11] A. M. Gañán-Calvo, "Perfectly Monodisperse Microbubbling by Capillary Flow Focusing," Physical Review Letters, vol. 87, p. 274501, 2001.
[12] Y. C. Tan, and A. P. Lee, "Monodispersed microfluidic droplet generation by shear focusing microfluidic device," Sensors and Actuators B: Chemical, vol. 114, pp. 350-356, 2006.
[13] V. Van Steijn, M. T. Kreutzer, "Predictive model for the size of bubbles and droplets created in microfluidic T-junctions," Lab on a Chip, vol. 10, pp. 2513-2518, 2010.
[14] F. P. Garstecki, H. A. Stone, and G. M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up," Lab on a Chip, vol. 6, pp. 437-446, 2006.
[15] A. S. Utada, H. A. Stone, D. A. Weitz, "Dripping to jetting transitions in coflowing liquid streams," Physical Review Letters, vol. 99, p. 094502, 2007.
[16] M. L. Cordero, and C. N. Baroud, "Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets," Physics of Fluids, vol. 23, p. 094111, 2011.
[17] T. Ward, M. Abkarian, and H. A. Stone Dr, "Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping," Electrophoresis, vol. 26, pp. 3716–3724, 2005.
[18] D. Conchouso, S. A. Khan, I. G. Foulds, "Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions," Lab on a Chip, vol. 14, pp. 3011-3020, 2014.
[19] H. L. Adrian J. T. Teo, N. T. Nguyen, W. Guo, N. Heere, H. D. Xi, C. W. Tsao, W. Li, and S. H. Tan, "Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device," Analytical Chemistry, vol. 89, pp. 4387–4391, 2017.
[20] J. K. Nunes, J. Wan, and H. A. Stone, "Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis," Journal of Physics D: Applied Physics, vol. 46, p. 114002, 2013.
[21] D. J. Collins, A. deMello, and A. Q. Liu, Y. Ai, "The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation," Lab on a Chip, vol. 15, pp. 3439-3459, 2015.
[22] W. Shi, N. Ye, and B. Lin, "Droplet-based microfluidic system for individual Caenorhabditis elegans assay," Lab on a Chip, vol. 8, pp. 1409–1588, 2008.
[23] A. Huebner, G. Whyte, M. Yang, A. J. Demello, C. Abell, and F. Hollfelder, "Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays," Lab on a Chip, vol. 9, pp. 692-698, 2009.
[24] T. Fu, Y. Ma, H. Z. Li, "Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting," Chemical Engineering Science, vol. 84, pp. 207-217, 2012.
[25] J. Berthier, P. Tiquet, N. David, D. Lauro, P. Y. Benhamou, F. Rivera, "Highly viscous fluids in pressure actuated flow focusing devices," Proc Natl Acad Sci U S A, vol. 158, pp. 140–148, 2010.
[26] Z. Nie, S. Xu, P. C. Lewis, M. Mok, E. Kumacheva, G. M. Whitesides, P. Garstecki, and H. A. Stone, "Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids," Microfluidics and Nanofluidics, vol. 5, pp. 585–594, 2008.
[27] P. Daniel J. Holt, W. Y. Chow, and C. Abell, "Fluorosurfactants for microdroplets: Interfacial tension analysis," Lab on a Chip, vol. 350, pp. 205–211, 2010.
[28] R. X. Chen, "Experimental study on droplet generation in flow focusing devices considering a stratified flow with viscosity contrast," Chemical Engineering Science, vol. 163, pp. 1–10, 2017.
[29] H. Gu, F. Mugele, "Droplets Formation and Merging in Two-Phase Flow Microfluidics," International Journal of Molecular Sciences," International Journal of Molecular Sciences, vol. 12, pp. 2572-2597, 2011.
[30] C. A. Stan, and G. M. Whitesides, "Independent Control of Drop Size and Velocity in Microfluidic Flow-Focusing Generators Using Variable Temperature and Flow Rate," Analytical Chemistry, vol. 81, pp. 2399–2402, 2009.
[31] K. Liu, Q. Zeng, Z. X. Guo, J. Liu, X. Z. Zhao, "Injection Angle Dependence in Flow Focusing Based Droplet Formation," IEEE Xplore, 2007.
[32] A. R. Abate, R. A. Sperling, P. Mary, A. Rotem, J. J. Agresti, M. A. Weiner, and D. A. Weitz, "DNA sequence analysis with droplet-based microfluidics," Lab on a Chip, vol. 13, pp. 4864–4869, 2013.
[33] A. R. Abate, P. Mary, J. J. Agresti, D. A. Weitz, "High-throughput injection with microfluidics using picoinjectors," Proc Natl Acad Sci U S A, vol. 107, pp. 19163-6, 2010.
[34] T. Konry, C. Baecher-Allan, D. A. Hafler, M. L. Yarmush, "Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine," Biosensors and Bioelectronics, vol. 26, pp. 2707-2710, 2011.
[35] C. H. Schmitz, S. Köster, and D. A. Weitz, "Dropspots: a picoliter array in a microfluidic device," Lab on a Chip, vol. 9, pp. 44-49, 2009.
[36] S. Köster, H. Duan, J. J. Agresti, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffithsc, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab on a Chip, vol. 8, pp. 1110-1115, 2008.
[37] C. W. Wu, "Fabrication of PDMS-Based Nitrite Sensors Using Teflon AF Coating Microchannels," IEEE Sensors Journal, vol. 8, pp. 465-469, 2008.
[38] J. W. Park, M. Kang, S. J. Sim, N. L. Jeon, "PDMS microchannel surface modification with teflon for algal lipid research," BioChip Journal, vol. 11, pp. 180-186, 2017.
[39] N. M. Rodriguez, B. Trappmann, B. M. Baker, and C. S. Chen, "Micropatterned Multicolor Dynamically Adhesive Substrates to Control Cell Adhesion and Multicellular Organization," Langmuir, vol. 30, pp. 1327–1335, 2014.
[40] K. Boxshall, Z. Cui, Z. Cui, J. F. Watts, M. A. Baker, "Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor," Surface and Interface Analysis, vol. 38, pp. 198–201, 2006.
[41] H. Y. Huang, C. H. Tien, C. J. Li, S. K. Fan, C. H. Liu, W. S. Hsu, and D. J. Yao, "Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip," PLOS ONE, vol. 10, 2015.
[42] J. H. Koschwanez, and D. R. Meldrum, "Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent," PLoS one, vol. 4, p. 4572, 2009.
[43] B. E. Slentz, F. E. Regnier, "Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization," Journal of Chromatography A, vol. 948, pp. 225-233, 2002.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *