帳號:guest(18.218.8.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李肇軒
作者(外文):Lee, Chao-Hsuan
論文名稱(中文):雙槽式連續流動生物燃料電池之三維數值模擬
論文名稱(外文):A 3-D numerical simulation of a two-chamber microbial fuel cell with continuous flow
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):陳炎洲
王金燦
口試委員(外文):Chen, Yen-Cho
Wang, Chin-Tsan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033521
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:49
中文關鍵詞:生物燃料電池流場數值模擬三維
外文關鍵詞:Microbial fuel cellSimulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:236
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生物燃料電池是近年來較為新興的科技,大部分的研究仍著墨於實驗,因此本研究提出一個三維的數值模擬模型,希望能藉此對生物燃料電池有更多的了解,並能藉由簡單地改變操作參數或設計來提升性能。首先藉由比對實驗數據,我們的模型能夠準確預測實驗的電壓電流極化曲線結果,最大誤差不超過3 %。在此同時,我們的模型可以呈現整個電池的流場、反應物濃度分佈和生物活性的分佈。整體來說,電池中的反應物濃度在達到穩態時仍非常的高,但在接近生物膜反應區有顯著的下降,表示在同樣的流入下,電池還有很多進步的空間。除此之外,電池的角落都不利於生物活性,對於整個電流的生產貢獻趨近於零,原因包括較低的流量和邊界層阻礙反應物擴散。大部分的生物活性都集中在入口處,隨著前段生物消耗反應物再加上邊界層發展,生物活性往出口處持續地下降,但在接近出口處電極結束處有些微的回升。為了降低邊界層的影響,在增加流量50 %的情況下,可以提升最大功率7 %;降低深寬比的情況,則可以提升最大功率達9.6 %,這樣的結果顯現改變電池的物理操作參數,就有可能來提升電池的表現。另外,為了平均反應物濃度分佈,我們更改了不同的流進流出設計,藉此也能提升最大功率達11%,這樣的提升主要來自於整個電池的生物活性較為的平均分佈,說明生物燃料電池仍有許多的進步空間。
Microbial fuel cell is a relatively new technology that start to gain some tracktion over the past deacade, however, most of the studies focus on experiment. In this study, we constructed a 3D Microbial fuel cell (MFC) model that successfully predicts the voltage and current density polarization cure from the experiment with less than 3 % differences. Our model allowed us to take a look at the flow field, concentration distribution and active biomass distribution of the cell. From our observation, corners of the anode compartment are low to none in active biomass, meaning it does not contributes to current production due to poor substrate accessibility. In addition, the boundary layer develop from the leading edge of electrode also siginificantly affects the substrate diffusion to the biofilm and thus become a critical factor for power output. Generally, active biomass concetrates at around inlet but also experiences a slight increase when approaching outlet. When the flowrate is lower and the aspect ratio is larger, the boundary layer is thicker but can already result in a lower power output up to 14%. On the contrary, when the increase flowrate and aspect ratio, the maximu power output increase bt 7 % and 9.6 %, respectively, showing room for enhancement through physical parameters. Moreover, by merely changing the inlet design, aiming to break the boundary layer and enhance substrate distribution, we are able to achieve a 11% increase in power output. The improvement is derived from overall higher active biomass suggesting that we are not taking full advantage of the cell.
Chapter 1 Introduction 2
1.1 Background 2
1.2 Literature Review 3
1.3 Purpose 8
Chapter 2 Theory 10
2-1 General Background 10
2-2 Nernst-Monod Equation 10
2-3 Butler-Volmer Equation 12
2-4 Voltage Equation 13
Chapter 3 Materials and Model 16
3-1 Fudmental Assumptions 16
3-2 Governing Equation 19
3-3 Boundary and Initial Conditions 20
3-4 Method 21
Chapter 4 Result and Discussion 23
4-1 Grid Test 23
4-2 Validation of Proposed Model 23
4-3 Flowrate 32
4-4 Inlet 35
4-5 Aspect ratio 39
Chapter 5 Conclusion 42
Reference and Parameters 44
[1] V. M.Ortiz-Martínez, M. J.Salar-García, A. P.delos Ríos, F. J.Hernández-Fernández, J. A.Egea, andL. J.Lozano, “Developments in microbial fuel cell modeling,” Chem. Eng. J., vol. 271, pp. 50–60, 2015.
[2] C.Xia, D.Zhang, W.Pedrycz, Y.Zhu, andY.Guo, “Models for Microbial Fuel Cells: A critical review,” J. Power Sources, vol. 373, no. November 2017, pp. 119–131, 2018.
[3] J.Hu, Q.Zhang, D. J.Lee, andH. H.Ngo, “Feasible use of microbial fuel cells for pollution treatment,” Renew. Energy, vol. 129, pp. 824–829, 2018.
[4] T.Krieg, J. A.Wood, K. M.Mangold, andD.Holtmann, “Mass transport limitations in microbial fuel cells: Impact of flow configurations,” Biochem. Eng. J., vol. 138, pp. 172–178, 2018.
[5] D. R.Bond andD. R.Lovley, “Electricity Production by Geobacter sulfurreducens Attached to Electrodes,” Microbiology, vol. 69, no. 3, pp. 1548–1555, 2003.
[6] L. T.Angenent, K.Karim, M. H.Al-Dahhan, B. A.Wrenn, andR.Domíguez-Espinosa, “Production of bioenergy and biochemicals from industrial and agricultural wastewater,” Trends Biotechnol., vol. 22, no. 9, pp. 477–485, 2004.
[7] S.Cheng, H.Liu, andB. E.Logan, “Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing,” Environ. Sci. Technol., vol. 40, no. 7, pp. 2426–2432, 2006.
[8] H.Yi et al., “Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells,” Biosens. Bioelectron., vol. 24, no. 12, pp. 3498–3503, 2009.
[9] N.Fazli, N. S. A.Mutamim, N. M. A.Jafri, andN. A. M.Ramli, “Microbial Fuel Cell (MFC) in treating spent caustic wastewater: Varies in Hydraulic Retention Time (HRT) and Mixed Liquor Suspended Solid (MLSS),” J. Environ. Chem. Eng., vol. 6, no. 4, pp. 4339–4346, 2018.
[10] X.Zhang, D.Pant, F.Zhang, J.Liu, W.He, andB. E.Logan, “Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells,” ChemElectroChem, vol. 1, no. 11, pp. 1859–1866, 2014.
[11] C.-T.Wang, R.-Y.Huang, Y.-C.Lee, andC.-D.Zhang, “Electrode Material of Carbon Nanotube/Polyaniline Carbon Paper Applied in Microbial Fuel Cells,” J. Clean Energy Technol., 2013.
[12] J. L.Han et al., “Exploring power generation of single-chamber microbial fuel cell using mixed and pure cultures,” J. Taiwan Inst. Chem. Eng., 2010.
[13] C. T.Wang, F. Y.Liao, andK. S.Liu, “Electrical analysis of compost solid phase microbial fuel cell,” Int. J. Hydrogen Energy, 2013.
[14] C. T.Wang, C. M. J.Yang, andZ. S.Chen, “Rumen microbial volatile fatty acids in relation to oxidation reduction potential and electricity generation from straw in microbial fuel cells,” Biomass and Bioenergy, 2012.
[15] Y.Zeng, Y. F.Choo, B. H.Kim, andP.Wu, “Modelling and simulation of two-chamber microbial fuel cell,” J. Power Sources, vol. 195, no. 1, pp. 79–89, 2010.
[16] M.Esfandyari, M. A.Fanaei, R.Gheshlaghi, andM.Akhavan Mahdavi, “Mathematical modeling of two-chamber batch microbial fuel cell with pure culture of Shewanella,” Chem. Eng. Res. Des., vol. 117, pp. 34–42, 2017.
[17] B.V.Merkey andD. L.Chopp, “The Performance of a Microbial Fuel Cell Depends Strongly on Anode Geometry: A Multidimensional Modeling Study,” Bull. Math. Biol., vol. 74, no. 4, pp. 834–857, 2012.
[18] Z. Z.Ismail andA. A.Habeeb, “Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers,” Renew. Energy, vol. 101, pp. 1256–1265, 2017.
[19] W. F.Cai et al., “Investigation of a two-dimensional model on microbial fuel cell with different biofilm porosities and external resistances,” Chem. Eng. J., vol. 333, no. September 2017, pp. 572–582, 2018.
[20] C. I.Torres, A. K.Marcus, H. S.Lee, P.Parameswaran, R.Krajmalnik-Brown, andB. E.Rittmann, “A kinetic perspective on extracellular electron transfer by anode-respiring bacteria,” FEMS Microbiol. Rev., vol. 34, no. 1, pp. 3–17, 2010.
[21] W.Bae andB. E.Rittmann, “A structured model of dual-limitation kinetics,” Biotechnol. Bioeng., vol. 49, no. 6, pp. 683–689, 1996.
[22] A. K.Marcus, C. I.Torres, andB. E.Rittmann, “Conduction-based modeling of the biofilm anode of a microbial fuel cell,” Biotechnol. Bioeng., vol. 98, no. 6, pp. 1171–1182, 2007.
[23] B. E.Logan et al., “Microbial fuel cells: Methodology and technology,” Environ. Sci. Technol., vol. 40, no. 17, pp. 5181–5192, 2006.
[24] R. P.Pinto, B.Srinivasan, M. F.Manuel, andB.Tartakovsky, “A two-population bio-electrochemical model of a microbial fuel cell,” Bioresour. Technol., vol. 101, no. 14, pp. 5256–5265, 2010.
[25] D.Basu andS.Basu, “Mathematical modeling of overpotentials of direct glucose alkaline fuel cell and experimental validation,” J. Solid State Electrochem., vol. 17, no. 11, pp. 2927–2938, 2013.
[26] B. E.Logan, Microbial Fuel Cell. John Wiley & Sons, 2008.
[27] Bird R.Byron, Warren E.Stewart, andLightfoot Edwin N., Transport Phenomena. Wiley & Sons, 2002.
[28] D. F.Juang, P. C.Yang, andT. H.Kuo, “Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells,” Int. J. Environ. Sci. Technol., vol. 9, no. 2, pp. 267–280, 2012.
[29] T. P.Chiang, T. W. H.Sheu, andS. K.Wang, “Side wall effects on the structure of laminar flow over a plane-symmetric sudden expansion,” Comput. Fluids, vol. 29, no. 5, pp. 467–492, 2000.
[30] N.Tylli, L.Kaiktsis, andB.Ineichen, “Sidewall effects in flow over a backward-facing step: Experiments and numerical simulations,” Phys. Fluids, vol. 14, no. 11, pp. 3835–3845, 2002.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *