帳號:guest(3.145.179.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張育誠
作者(外文):Chang, Yu-Cheng
論文名稱(中文):以微流體技術開發微流道壓力感測裝置
論文名稱(外文):The Development of Microchannel Pressure Sensing Devices with Microfluidic Technology
指導教授(中文):黃智永
指導教授(外文):Huang, Chih-Yung
口試委員(中文):張禎元
陳紹文
口試委員(外文):Chang, Jen-Yuan
Chen, Shao-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033520
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:94
中文關鍵詞:微流體裝置表面改質處理電容式施力量測人工指尖精密機械手臂
外文關鍵詞:Microfluidic DevicesSurface ModificationsCapacitive Force MeasurementArtificial FingertipsPrecise Robotics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:69
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本研究之目的在於開發具便利性與新量測概念之施力感測裝置,並且對研究中各實驗之參數如PDMS層厚度、微流道寬度、流體段落長度等進行探討,作為後續進行研究之基礎。此裝置將結合微流道技術,並透過內部液體段落受力產生位移作為量測原理。
首先使用ANSYS static structural進行初步模擬。模擬結果顯示,PDMS層厚度增加,最大形變量呈現非線性遞減,且遞減的幅度會逐漸減少;施力逐漸增加,最大形變量呈現非線性遞增,且最大形變量遞增的幅度會逐漸增加。結束模擬後的初步實驗中發現兩個問題,一是油段會沾黏於PDMS微流道壁面,導致油段不易形成,二是產生後的油段長度會隨時間衰減。透過表面改質來解決壁面沾黏的問題,並選用碳基的PFPE來避免油段長度隨時間衰減的現象發生,皆以實驗確認結果。之後進行光學量測。光學量測實驗分別為油段與流體柱實驗兩個部分。
透過油段實驗建立施力換算出位移的校正曲線,並探討PDMS層厚度、微流道寬度與油段長度對於油段位移量之影響。三項參數中,以校正曲線趨勢線斜率進行探討,PDMS層厚度自4 mm厚度增加1 mm帶來的斜率變化率約等於自400 m減少50 m微流道寬度之斜率變化率的1.3倍。自400 m減少50 m微流道寬度的斜率變化率,約等於油段長度自1971 m降低至1008 m之斜率變化率的1.07倍。油段實驗中之位移量變化趨勢,也與上述模擬中更改厚度與施力後PDMS層的形變變化趨勢相吻合。
流體柱實驗分成PFPE油柱與空氣柱實驗,分別探討微流道道寬度與流體柱長度此兩項參數對油柱前端位移量受力之影響。微流道寬度而言,油柱或空氣柱實驗的實驗結果顯示400 m之寬度於同樣施力條件下皆有較大的位移量。流體柱長度參數實驗結果顯示,可壓縮流體柱之位移量相較於不可壓縮流體柱來說,隨長度增長,位移縮減量較明顯。比較PFPE油柱與PFPE油段實驗,在同樣施力情況下,油柱實驗的位移量會隨長度增長而縮減,油段實驗的位移量則相反,會隨長度增長而增加。
在釐清前述各項參數如微流道尺寸與工作流體長度的影響後,經由實驗驗證並成功開發了兩種非光學式的施力大小量測裝置,一種為電阻式,另一種為電容式。本研究之電阻式施力量測裝置可在0 N - 9 N的施力量測範圍內量測0.6 的電阻值變化,受限於儀器解析度0.1 ,施力解析度為1.5 N。電容式施力量測裝置,其電容變化程度與佈線層以及裝填EGaIn的受力端儲存槽之相對方向有關。效果較好者,可在0 N - 2 N 的量測範圍內達到1.8 nF的電容改變量,在儀器解析度為0.01 nF的條件下,可測得之最小施力改變量為0.011 N。

This research presents novel pressure sensors with a new measurement principle. The effect of different parameters such as PDMS thickness, microchannel width and length of working fluid segment are studied through experiments. These studies could be helpful for the characterization for microfluidic devices that use fluid to detect the force.
The research uses ANSYS to simulate the deformation of the PDMS structure. The simulation shows the non-linear increment of deformation as the applied force increases or the PDMS thickness decreases. Two problems are then discovered through preliminary experiments. One is that some types of oil tended to be adhesive with PDMS microchannel surfaces, the other is that length of oil segment shrinks during experiment. Therefore, surface treatments are adopted to avoid oil from adhering to the PDMS microchannel walls. Also, PFPE, a carbon based fluid, is chosen to avoid shrinkage inside silicon-based PDMS microchannels.
With the adhesion and shrinkage problems solved, PFPE segment experiments are put into examination. Several parameters such as PDMS thickness, microchannel width and PFPE segment length are tested. In segment experiments, PFPE segment displacements are recorded with corresponding forces to build calibration curves. The force to be measured can then be calculated by the calibration curve. To discuss the effect of parameters above, the linear equations are applied to fit the experimental data and the slopes are used for further discussion. The effect of increasing 1 mm PDMS thickness from 4 mm is 1.3 times as the effect of decreasing 50 m of microchannel width from 400 m. Also, the effect of decreasing 50 m of microchannel width from 400 m is 1.06 times as decreasing 963 m of segment length from 1971 m (original length). The non-linear effect, not only the thickness effect but also the force increment effect show the same trend as the simulation results.
In order to measure the force by detecting the electronic signal, the fluid column design are used to replace the fluid segment with more covering area during the measurement. The fluid column experiments are executed to clarify the effects of microchannel width and fluid column length. The results of column experiment shows the 400 m microchannel width has the highest slope for PFPE and air column conditions. After comparing results between PFPE segment and PFPE column experiments, it is found that the displacement of a working fluid will increase as segment length increases, while the column experiments show opposite results.
After the aforementioned parameters are discussed, this research presents two different pressure sensing devices with measuring electronic signal, one measures resistance and the other measures capacitance. The device measuring resistance has 1.5 N force resolution in the measurement range between 1 N and 9 N, however, the results are restricted by the resolution of 0.1  from the instrumentation. On the other hand, the performance of capacitance devices will be influenced by arrangement of position of electro layer. The better one demonstrates 0.011 N force resolution and varies 1.8 nF within 0 – 2 N measurement.
摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 3
1.2.1 各類型壓力感測裝置相關的研究與比較 3
1.2.2 智慧流體與其應用 14
1.2.3 表面改質與液段產生 19
1.3研究目的 26
1.4研究架構 27
第二章 實驗原理 29
2.1表面改質原理、流程與改質結果 29
2.2 PDMS層受力與形變模擬 30
2.2.1 模型建立 31
2.2.2 網格獨立性測試 33
2.2.3 改變施力與改變厚度之模擬結果 34
2.3 使用液段位移進行壓力感測之基本概念 36
第三章 實驗方法 38
3.1 微流道製作 38
3.2 金屬佈線層製作 42
3.3 實驗架設 45
第四章 流體段落製造與油品穩定性 47
4.1流體段與流體柱之製造流程 47
4.2 油品穩定性觀察實驗 49
4.3 接觸角量測 54
第五章 光學方法量測-油段實驗 58
5.1 油段量測實驗架設與進行流程 58
5.2 不同PDMS層厚度對於施力與油段位移的影響 59
5.3 不同微流道寬度對於位移量的影響 61
5.4 不同油段長度對於位移量的影響 63
第六章 光學方法量測-油柱與空氣柱實驗結果與討論 66
6.1 流體柱量測概念實驗架設與進行流程 66
6.2 油柱位移量受不同微流道寬度之影響 67
6.3 油柱長度對位移量之影響 69
6.4 空氣柱位移量受不同微流道寬度之影響 70
6.5 空氣柱長度對位移量之影響 72
第七章 非光學方法量測實驗結果與討論 75
7.1 非光學方法量測-特點、實驗架設與進行流程 75
7.2 電阻式施力量測裝置 77
7.2.1 非光學式量測之工作流體導電度探討 78
7.2.2 電阻式施力量測裝置 79
7.3 電容式施力量測裝置 81
7.3.1 兩平行線設計之電容式施力量測裝置 I 83
7.3.2 兩平行線設計之電容式施力量測裝置 II 85
第八章 結論與未來工作 89
8.1結論 89
8.2未來建議工作 90
Appendix 92
A.1 油柱改質前後實驗結果 92
參考文獻 93

[1] H. R. Nicholls and M. H. Lee, "A survey of robot tactile sensing technology," The International Journal of Robotics Research, vol. 8, no. 3, pp. 3-30, 1989.
[2] H. Yousef, M. Boukallel, and K. Althoefer, "Tactile sensing for dexterous in-hand manipulation in robotics—A review," Sensors and Actuators A: physical, vol. 167, no. 2, pp. 171-187, 2011.
[3] K. Noda, E. Iwase, K. Matsumoto, and I. Shimoyama, "Stretchable liquid tactile sensor for robot-joints," in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 4212-4217: IEEE.
[4] W. Gu et al., "Detection of distributed static and dynamic loads with electrolyte-enabled distributed transducers in a polymer-based microfluidic device," Journal of Micromechanics and Microengineering, vol. 23, no. 3, p. 035015, 2013.
[5] R. D. P. Wong, J. D. Posner, and V. J. Santos, "Flexible microfluidic normal force sensor skin for tactile feedback," Sensors and Actuators A: Physical, vol. 179, pp. 62-69, 2012.
[6] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, "Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors," Journal of Microelectromechanical Systems, vol. 17, no. 4, pp. 934-942, 2008.
[7] W.-Y. Tseng, J. S. Fisher, J. Prieto, K. Rinaldi, G. Alapati, and A. Lee, "A slow-adapting microfluidic-based tactile sensor," Journal of Micromechanics and Microengineering, vol. 19, no. 8, p. 085002, 2009.
[8] J. Dargahi, M. Parameswaran, and S. Payandeh, "A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments," Journal of microelectromechanical systems, vol. 9, no. 3, pp. 329-335, 2000.
[9] K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, "A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material," Sensors and Actuators A: physical, vol. 127, no. 2, pp. 295-301, 2006.
[10] A. Alfadhel and J. Kosel, "Magnetic nanocomposite cilia tactile sensor," Advanced Materials, vol. 27, no. 47, pp. 7888-7892, 2015.
[11] M. C. Yip, S. G. Yuen, and R. D. Howe, "A robust uniaxial force sensor for minimally invasive surgery," IEEE transactions on biomedical engineering, vol. 57, no. 5, pp. 1008-1011, 2010.
[12] D. Lampe, A. Thess, and C. Dotzauer, "MRF-clutch-design considerations and performance," Transition, vol. 3, p. 10, 1998.
[13] F. Gordaninejad, A. Ray, and H. Wang, "Control of forced vibration using multi-electrode electro-rheological fluid dampers," Journal of vibration and acoustics, vol. 119, no. 4, pp. 527-531, 1997.
[14] A. Olszak, K. Osowski, A. Kęsy, and Z. Kęsy, "Experimental researches of hydraulic clutches with smart fluids," Int. Rev. Mech. Eng, vol. 10, pp. 364-72, 2016.
[15] M. A. Fernández and J.-Y. Chang, "Development of magnetorheological fluid clutch for robotic arm applications," in Advanced Motion Control (AMC), 2016 IEEE 14th International Workshop on, 2016, pp. 510-515: IEEE.
[16] H. Makamba, J. H. Kim, K. Lim, N. Park, and J. H. Hahn, "Surface modification of poly (dimethylsiloxane) microchannels," Electrophoresis, vol. 24, no. 21, pp. 3607-3619, 2003.
[17] D. Bodas and C. Khan-Malek, "Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments," Microelectronic engineering, vol. 83, no. 4, pp. 1277-1279, 2006.
[18] M. Ebara, J. M. Hoffman, A. S. Hoffman, and P. S. Stayton, "Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels," Lab on a Chip, vol. 6, no. 7, pp. 843-848, 2006.
[19] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, "Droplet microfluidics," Lab on a Chip, vol. 8, no. 2, pp. 198-220, 2008.
[20] W.-A. C. Bauer, M. Fischlechner, C. Abell, and W. T. Huck, "Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions," Lab on a Chip, vol. 10, no. 14, pp. 1814-1819, 2010.
[21] Y. Zhang, "Motion and Mobilization of Oil Slugs in a Capillary Model Under Stationary Conditions," Faculty of Graduate Studies and Research, University of Regina, 2012.
[22] I. Johnston, D. McCluskey, C. Tan, and M. Tracey, "Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering," Journal of Micromechanics and Microengineering, vol. 24, no. 3, p. 035017, 2014.
[23] MicroChem, "SU-8 2000 Permanent Epoxy Negative Phtoresist,"
(http://www.microchem.com)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *