|
References 1. M.C.S. Wong, J.Y. Jiang, B.W. Goggins, F.D.H. Fung, H.H.X. Wang, and H.L.Y. Chan, Worldwide incidence and mortality trends of liver cancer: A global analysis. Journal of Gastroenterology and Hepatology, 31, pp. 412-412, 2016. 2. L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, Global Cancer Statistics, 2012. Ca-a Cancer Journal for Clinicians, 65(2), pp. 87-108, 2015. 3. D. Hanahan, and R.A. Weinberg, Hallmarks of Cancer: The Next Generation. Cell, 144(5), pp. 646-674, 2011. 4. S. Nascimento, T.D. Costa, V. Santos, L. Azevedo, and J.S. Pereira, Ovarian Cancer - Five Year Study (2010-2014). International Journal of Gynecological Cancer, 26, pp. 670-670, 2016. 5. R. Yancik, Ovarian-Cancer - Age Contrasts in Incidence, Histology, Disease Stage at Diagnosis, and Mortality. Cancer, 71(2), pp. 517-523, 1993. 6. R.L. Coleman, B.J. Monk, A.K. Sood, and T.J. Herzog, Latest research and treatment of advanced-stage epithelial ovarian cancer. Nature Reviews Clinical Oncology, 10(4), pp. 211-224, 2013. 7. X.N. Zhou, G.L. Qiao, X.L. Wang, Q.K. Song, M.A. Morse, A. Hobeika, W.R. Gwin, J. Ren, and H.K. Lyerly, CYP1A1 genetic polymorphism is a promising predictor to improve chemotherapy effects in patients with metastatic breast cancer treated with docetaxel plus thiotepa vs. docetaxel plus capecitabine. Cancer Chemotherapy and Pharmacology, 81(2), pp. 365-372, 2018. 8. H. Mumtaz, M.A. HallCraggs, A. Wotherspoon, M. Paley, G. Buonaccorsi, Z. Amin, I. Wilkinson, M.W. Kissin, I. Davidson, I. Taylor, and S.G. Bown, Laser therapy for breast cancer: MR imaging and histopathologic correlation. Radiology, 200(3), pp. 651-658, 1996. 9. E.S. Marmur, C.D. Schmults, and D.J. Goldberg, A review of laser and photodynamic therapy for the treatment of nonmelanoma skin cancer. Dermatologic Surgery, 30(2), pp. 264-271, 2004. 10. A. Dahlman, A.G. Wile, R.G. Burns, G.R. Mason, F.M. Johnson, and M.W. Berns, Laser Photoradiation Therapy of Cancer. Cancer Research, 43(1), pp. 430-434, 1983. 11. K. Palucka, and J. Banchereau, Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 12(4), pp. 265-277, 2012. 12. M. Siddiqui, and S.V. Rajkumar, The High Cost of Cancer Drugs and What We Can Do About It. Mayo Clinic Proceedings, 87(10), pp. 935-943, 2012. 13. V. Srinivasan, V.K. Pamula, and R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab on a Chip, 4(4), pp. 310-315, 2004. 14. A.A. Yussuf, , I. Sbarski, M. Solomon, N. Tran, and J.P. Hayes, Sealing of polymeric-microfluidic devices by using high frequency electromagnetic field and screen printing technique. Journal of Materials Processing Technology, 189(1-3), pp. 401-408, 2007. 15. G.F. Christopher, and S.L. Anna, Microfluidic methods for generating continuous droplet streams. Journal of Physics D-Applied Physics, 40(19), pp. R319-R336, 2007. 16. H. Avari, K.A. Rogers, and E. Savory, Wall Shear Stress Determination in a Small-Scale Parallel Plate Flow Chamber Using Laser Doppler Velocimetry Under Laminar, Pulsatile and Low-Reynolds Number Turbulent Flows. Journal of Fluids Engineering-Transactions of the Asme, 140(6), pp. 061404, 2018. 17. J.J. Hong, S. Liu, Y.Y. Yan, and P. Glover, Experimental measurement of dynamic concentration of nanofluid in laminar flow. Experimental Thermal and Fluid Science, 88, pp. 483-489, 2017. 18. A.E. Kamholz, and P. Yager, Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophysical Journal, 80(1), pp. 155-160, 2001. 19. W. Lee, D. Kwon, W. Choi, G.Y. Jung, A.K. Au, A. Folch, and S. Jeon, 3D-Printed Microfluidic Device for the Detection of Pathogenic Bacteria Using Size-based Separation in Helical Channel with Trapezoid Cross-Section. Scientific Reports, 5, pp. 7717, 2015. 20. N. Sundararajan, D.S. Kim, and A.A. Berlin, Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Lab on a Chip, 5(3), pp. 350-354, 2005 21. F. Qian, Z. He, M.P. Thelen, and Y. Li, A microfluidic microbial fuel cell fabricated by soft lithography. Bioresource Technology, 102(10), pp. 5836-5840, 2011. 22. R. Walczak, K. Adamski, and D. Lizanets, Inkjet 3D printed check microvalve. Journal of Micromechanics and Microengineering, 27(4), pp. 047002, 2017. 23. M.R. Hossan, D. Dutta, N. Islam, and P. Dutta, Review: Electric field driven pumping in microfluidic device. Electrophoresis, 39(5-6), pp. 702-731, 2018. 24. C.Y. Lee, W.T. Wang, C.C. Liu, and L.M. Fu, Passive mixers in microfluidic systems: A review. Chemical Engineering Journal, 288, pp. 146-160, 2016. 25. Y.C. Tan, J.S. Fisher, A.I. Lee, V. Cristini, and A.P. Lee, Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab on a Chip, 4(4), pp. 292-298, 2004. 26. I. Kleps, A. Angelescu, R. Vasilco, and D. Dascalu, New Micro- and Nanoelectrode Arrays for Biomedical Applications. Biomedical Microdevices, 3(1), pp. 29-33, 2001. 27. A.Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G.A. Urban, Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab on a Chip, 14(1), pp. 138-146, 2014. 28. L.Y. Hung, C.Y. Fu, C.H. Wang, Y.J. Chuang, Y.C. Tsai, Y.L. Lo, W.B. Lee, S.C. Shiesh, H.Y. Chang, and K.F. Hsu. Microfluidic platform capable of performing automatic tissue slide-based selex and phage display for rapid screening of affinity reagents specific to ovarian cancer. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 568-571, 2017 29. H.C. von Budingen, S. Kunzle, M. Meier, M. Harrer, and N. Goebels, Antibodies produced by clonally expanded plasma cells in the cerebrospinal fluid of MS patients display CNS autoreactivity. Neurology, 66(5), pp. A372-A373, 2006. 30. A.D.G. Lawson, Antibody-enabled small-molecule drug discovery. Nature Reviews Drug Discovery, 11(7), pp. 519-525, 2012. 31. B.B. Haab, Methods and applications of antibody microarrays in cancer research. Proteomics, 3(11), pp. 2116-2122, 2003 32. R. Stoltenburg, C. Reinemann, and B. Strehlitz, SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular Engineering, 24(4), pp. 381-403, 2007. 33. V. Srivithya, H. Roun, M.S. Babu, P.J. Hyung, and P.S. Ha, Aptamer-conjugated DNA nano-ring as the carrier of drug molecules. Nanotechnology, 29(9). 2018. 34. K.M. Song, S. Lee, and C. Ban, Aptamers and Their Biological Applications. Sensors, 12(1), pp. 612-631, 2012. 35. A.B. Iliuk, L.pH. Hu, and W.A. Tao, Aptamer in Bioanalytical Applications. Analytical Chemistry, 83(12), pp. 4440-4452, 2011 36. W.H. Tan, H. Wang, Y. Chen, X.B. Zhang, H.Z. Zhu, C.Y. Yang, R.H. Yang, and C. Liu, Molecular aptamers for drug delivery. Trends in Biotechnology, 29(12), pp. 634-640, 2011. 37. A.D. Ellington, and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), pp. 818-822. 1990. 38. L.Y. Hung, C.H. Wang, K.F. Hsu, C.Y. Chou, and G.B. Lee, An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells. Lab on a Chip, 14(20), pp. 4017-4028, 2014. 39. K. Sefah, L. Meng, D. Lopez-Colon, E. Jimenez, C. Liu, and W.H. Tan, DNA Aptamers as Molecular Probes for Colorectal Cancer Study. Plos One, 5(12). pp. e14269, 2010. 40. Y.Y. Wang, Y. Luo, T. Bing, Z. Chen, M.H. Lu, N. Zhang, D.H. Shangguan, and X. Gao, DNA Aptamer Evolved by Cell-SELEX for Recognition of Prostate Cancer. Plos One, 9(6), pp. e100243, 2014. 41. L.Y. Hung, C.H. Wang, C.Y. Fu, P. Gopinathan, and G.B. Lee, Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics. Lab on a Chip, 16(15), pp. 2759-2774, 2016. 42. H.M. Meng, T. Fu, X.B. Zhang, and W.H. Tan, Cell-SELEX-based aptamer-conjugated nanomaterials for cancer diagnosis and therapy. National Science Review, 2(1), pp. 71-84, 2015. 43. Y. Rong, H. Chen, X.F. Zhou, C.Q. Yin, B.C. Wang, C.W. Peng, S.P. Liu, and F.B. Wang, Identification of an aptamer through whole cell-SELEX for targeting high metastatic liver cancers. Oncotarget, 7(7), pp. 8282-8294, 2016. 44. J.Q. Zhang, S.H. Li, F. Liu, L.P. Zhou, N.S. Shao, and X.H. Zhao, SELEX Aptamer Used as a Probe to Detect Circulating Tumor Cells in Peripheral Blood of Pancreatic Cancer Patients. Plos One, 10(3), pp. e0121920, 2015. 45. B.L. Zhu, and S.K. Murthy, Stem cell separation technologies. Current Opinion in Chemical Engineering, 2(1), pp. 3-7, 2013. 46. C.J. Huang, H.I. Lin, S.C. Shiesh, and G.B. Lee, An integrated microfluidic system for rapid screening of alpha-fetoprotein-specific aptamers. Biosensors & Bioelectronics, 35(1), pp. 50-55, 2012. 47. Y.F. Huang, D. Shangguan, H. Liu, J.A. Phillips, X. Zhang, Y. Chen, and W. Tan, Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. ChemBioChem, 10(5), pp. 862-868, 2009. 48. L.Y. Hung, J.C. Chang, Y.C. Tsai, C.C. Huang, C.P. Chang, C.S. Yeh, and G.B. Lee, Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), pp. 819-829, 2014. 49. P.S. Walsh, H.A. Erlich, and R. Higuchi, Preferential PCR amplification of alleles: mechanisms and solutions. Genome Research, 1(4), pp. 241-250, 1992. 50. F. Tolle, J. Wilke, J. Wengel, and G. Mayer, By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX. Plos One, 9(12), pp. e114693, 2014.
|