帳號:guest(18.191.215.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林柏鋐
作者(外文):Lin, Po-Hung
論文名稱(中文):開發具有溫室效果之示溫儲熱容器
論文名稱(外文):Development of a Container Using Heat Storage Materials to Display Temperature and Realize Greenhouse Effect
指導教授(中文):陳玉彬
指導教授(外文):Chen, Yu-Bin
口試委員(中文):洪哲文
林詩淳
口試委員(外文):Hong, Che-Wun
Lin, Albert
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033514
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:95
中文關鍵詞:溫室效應儲熱材料示溫適飲熱模擬分析田口方法
外文關鍵詞:greenhouse effectoptimum drinking temperature zoneTaguchi methodtemperature indicationthermal simulation and analysisthermal storage materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:826
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
一般保溫瓶的設計是透過降低傳導、對流及輻射三種熱傳方式,成功延長保溫時間,讓使用者能喝到風味正佳又暖人心脾的熱飲。本研究使用商業套裝軟體COMSOL進行熱模擬分析並搭配田口方法設計最佳化之參數組合,成功開發具有溫室效果之示溫儲熱容器,不僅降低前述三種熱傳,還增加不同於以往保溫瓶的保溫方式與其他新穎性功能。首先,為了使熱能有效利用、得知飲品的最佳飲用時機及避免喝到溫度過高的飲品,本研究成功開發出合適的示溫儲熱材料,並將它利用在儲熱容器上,使其具有將高溫液體快速降溫至合適飲用溫度區間的功能;其次,本研究利用不同顏色組合的示溫方式,讓使用者能輕易知道儲熱容器內飲品之溫度,以掌握最佳飲用時機;最後,本研究使用具有波長選擇性之高分子聚合物製作儲熱容器外殼,可擷取太陽熱能並封鎖熱飲放射出之輻射熱於容器內,使該儲熱容器內部產生溫室效應,以延長保溫時間。上述研究成果均透過有限元素數值方法與實驗結果相互對照,驗證其合理性及正確性,確認所開發具有溫室效果之示溫儲熱容器能調節溫度、提示溫度及利用溫室效果維持飲品溫度。
Conventional thermoses often realize heat preservation by lowering heat transfer through conduction, convection, and radiation all. However, since there is no perfect thermal insulation and heat leaks out till thermal equilibrium is reached, retaining heat for a very long time Is quite challenging. In this study, we proposed a container and optimized its performance using Taguchi methods and COMSOL Multiphysics®. We then fabricated the optimized container using heat storage materials to display temperature and realize greenhouse effect.
This container actually holds three novel features. First, it adjusts temperature of beverage to fit in optimum drinking temperature zone using thermal storage materials. Second, it indicates current temperature of beverage inside by the displayed color. This way, the color of a thermochromic materials can notify users the best drinking time while beverage temperature changes. Third, it extends the heat preservation time of the beverage by greenhouse effect. It even gains heat to compromise the loss under solar light.
摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 xi
符號表 xii
第一章 緒論 1
1.1 背景介紹 1
1.2 研究動機 2
1.3 研究目標 4
第二章 理論基礎 8
2.1 儲熱容器內溫室效應 8
2.2 有限元素法 14
2.3 最佳化設計 - 田口法 16
第三章 數值模型建置 22
3.1 軟體選用及驗證 22
3.1.1 分析軟體選用 22
3.1.2 對流熱分析 23
3.2 第一代儲熱容器模型建置 26
3.2.1 具波長選擇性之輻射熱分析 26
3.2.2 第一代儲熱容器簡化模擬 29
3.2.3 最佳化設計儲熱容器 35
第四章 組成儲熱容器各部件之性質量測 38
4.1 樣品製備 38
4.1.1 示溫材料片 38
4.1.2 示溫儲熱材料片 41
4.1.3 儲熱容器製作 43
4.2 量測儀器 47
4.2.1 可見光顯微光譜儀 47
4.2.2 示差掃描熱分析儀 51
4.2.3 半球輻射性質量測系統 54
4.2.4 傅立葉轉換紅外光光譜儀 56
第五章 結果與討論 59
5.1 儲熱容器之各部件性質量測結果 59
5.1.1 示溫材料升溫前後反射率頻譜 59
5.1.2 示溫儲熱材料熱分析結果 61
5.1.3 示溫儲熱材料吸收率頻譜 62
5.1.4 高分子聚合物穿透率頻譜 63
5.2 實驗建置與結果 64
5.2.1 無太陽輻射實驗 64
5.2.2 包含太陽輻射實驗 66
5.3 數值模擬結果 76
5.3.1 計算模型之簡化 76
5.3.2 模型修正 79
5.3.3 儲熱容器內水溫變化及流場分布 84
第六章 結論與未來工作 88
6.1 結論 88
6.2 未來工作 89
參考文獻 90
[1]M. W. Morse, "Insulated cup," ed: Google Patents, 1951.
[2]J. B. Watkins and G. N. Black, "Laminated insulated hot drink cup," ed: Google Patents, 1981.
[3]保溫瓶(杯)的保溫真相(有圖有真相). Available: http://blog.xuite.net/londachen/twblog/307590905
[4]D. L. Neale and R. J. Pasin, "Syntactic foam insulated container," ed: Google Patents, 1999.
[5]J. R. Howell, M. P. Menguc, and R. Siegel, Thermal radiation heat transfer. CRC press, 2010.
[6]F. Islami et al., "Tea drinking habits and oesophageal cancer in a high risk area in northern Iran: population based case-control study," Bmj, vol. 338, p. b929, 2009.
[7]F. Islami, P. Boffetta, J. S. Ren, L. Pedoeim, D. Khatib, and F. Kamangar, "High‐temperature beverages and foods and esophageal cancer risk—A systematic review," International journal of cancer, vol. 125, no. 3, pp. 491-524, 2009.
[8]C. L. Huang, Y. B. Chen, Y. L. Lo, and Y. H. Lin, "Development of chitosan/beta-glycerophosphate/glycerol hydrogel as a thermosensitive coupling agent," Carbohydr Polym, vol. 147, pp. 409-14, Aug 20 2016.
[9]Z. Chen, Q. Chen, H. Xia, and J. Lin, "Green tea drinking habits and esophageal cancer in southern China: a case-control study," Asian Pac J Cancer Prev, vol. 12, no. 1, pp. 229-33, 2011.
[10]F. Brown and K. R. Diller, "Calculating the optimum temperature for serving hot beverages," Burns, vol. 34, no. 5, pp. 648-654, 2008.
[11]A. Raval and V. Ramanathan, "Observational determination of the greenhouse effect," Nature, vol. 342, no. 6251, p. 758, 1989.
[12]B. Zalba, J. M. Marı́n, L. F. Cabeza, and H. Mehling, "Review on thermal energy storage with phase change: materials, heat transfer analysis and applications," Applied thermal engineering, vol. 23, no. 3, pp. 251-283, 2003.
[13]A. M. Khudhair and M. M. Farid, "A review on energy conservation in building applications with thermal storage by latent heat using phase change materials," Energy conversion and management, vol. 45, no. 2, pp. 263-275, 2004.
[14]A. Athienitis, C. Liu, D. Hawes, D. Banu, and D. Feldman, "Investigation of the thermal performance of a passive solar test-room with wall latent heat storage," Building and environment, vol. 32, no. 5, pp. 405-410, 1997.
[15]G. Alva, L. Liu, X. Huang, and G. Fang, "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, vol. 68, pp. 693-706, 2017.
[16]M. Amin, N. Putra, E. A. Kosasih, E. Prawiro, R. A. Luanto, and T. Mahlia, "Thermal properties of beeswax/graphene phase change material as energy storage for building applications," Applied Thermal Engineering, vol. 112, pp. 273-280, 2017.
[17]J. Dieckmann, "Latent heat storage in concrete. University of Kaiserslautern, Germany," ed, 2006.
[18]K. Pielichowska and K. Pielichowski, "Phase change materials for thermal energy storage," Progress in materials science, vol. 65, pp. 67-123, 2014.
[19]R. Kulčar, M. Friškovec, N. Hauptman, A. Vesel, and M. K. Gunde, "Colorimetric properties of reversible thermochromic printing inks," Dyes and pigments, vol. 86, no. 3, pp. 271-277, 2010.
[20]M. Hajzeri, K. Bašnec, M. Bele, and M. K. Gunde, "Influence of developer on structural, optical and thermal properties of a benzofluoran-based thermochromic composite," Dyes and Pigments, vol. 113, pp. 754-762, 2015.
[21]O. Panák, M. Držková, M. Kaplanová, U. Novak, and M. K. Gunde, "The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol," Dyes and Pigments, vol. 136, pp. 382-389, 2017.
[22]Y. Matsuno and A. Sakurai, "Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings," Optics Communications, vol. 385, pp. 118-123, 2017.
[23]C.-C. Ho, Y.-B. Chen, and F.-Y. Shih, "Tailoring broadband radiative properties of glass with silver nano-pillars for saving energy," International Journal of Thermal Sciences, vol. 102, pp. 17-25, 2016.
[24]F. Berroug, E. Lakhal, M. El Omari, M. Faraji, and H. El Qarnia, "Thermal performance of a greenhouse with a phase change material north wall," Energy and Buildings, vol. 43, no. 11, pp. 3027-3035, 2011.
[25]K. Sun, Y. Kou, H. Zheng, X. Liu, Z. Tan, and Q. Shi, "Using silicagel industrial wastes to synthesize polyethylene glycol/silica-hydroxyl form-stable phase change materials for thermal energy storage applications," Solar Energy Materials and Solar Cells, vol. 178, pp. 139-145, 2018.
[26]F. Wang et al., "Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage," Polymer Testing, vol. 63, pp. 494-504, 2017.
[27]C. Riordan and R. Hulstron, "What is an air mass 1.5 spectrum? [solar cell performance calculations]," in Photovoltaic Specialists Conference, 1990., Conference Record of the Twenty First IEEE, 1990, pp. 1085-1088 vol.2.
[28]PVEDUCATION.ORG. Standard Solar Spectra. Available: http://pveducation.org/pvcdrom/appendices/standard-solar-spectra
[29]Y. A. Cengel and A. Ghajar, "Heat and mass transfer (a practical approach, SI version)," ed: McGraw-Hill Education, 2011.
[30]D. V. Hutton, Fundamentals of finite element analysis. McGraw-hill, 2017.
[31]W. Fan, F. Liu, X. Jiang, and I. Turner, "A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain," Fractional Calculus and Applied Analysis, vol. 20, no. 2, pp. 352-383, 2017.
[32]G.-R. Liu and N. T. Trung, Smoothed finite element methods. CRC press, 2016.
[33]M. Hatami, D. Ganji, M. Jafaryar, and F. Farkhadnia, "Transient combustion analysis for iron micro-particles in a gaseous media by weighted residual methods (WRMs)," Case Studies in Thermal Engineering, vol. 4, pp. 24-31, 2014.
[34]Y. Yokoyama, Taguchi methods: design of experiments. Amer Supplier Inst, 1993.
[35]I. Asiltürk and H. Akkuş, "Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method," Measurement, vol. 44, no. 9, pp. 1697-1704, 2011.
[36]X. Bie, J. Lu, Y. Wang, L. Gong, Q. Ma, and Z. Ye, "Optimization of parameters for deposition of Ga-doped ZnO films by DC reactive magnetron sputtering using Taguchi method," Applied Surface Science, vol. 257, no. 14, pp. 6125-6128, 2011.
[37]T. J. Hughes, The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.
[38]D. Groulx and W. Ogoh, "Solid-liquid phase change simulation applied to a cylindrical latent heat energy storage system," in COMSOL Conference 2009, 2009.
[39]Y.-C. Liu and L.-S. Chao, "Modified effective specific heat method of solidification problems," Materials transactions, vol. 47, no. 11, pp. 2737-2744, 2006.
[40]J. Wang, H. Xie, Z. Xin, Y. Li, and L. Chen, "Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers," Solar Energy, vol. 84, no. 2, pp. 339-344, 2010.
[41]S. Teoh, Z. Tang, and G. W. Hastings, "Thermoplastic polymers in biomedical applications: structures, properties and processing," in Handbook of biomaterial properties: Springer, 2016, pp. 261-290.
[42]A. Sarı, "Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications," Energy Conversion and Management, vol. 44, no. 14, pp. 2277-2287, 2003.
[43]A. Sari and K. Kaygusuz, "Thermal performance of palmitic acid as a phase change energy storage material," Energy Conversion and Management, vol. 43, no. 6, pp. 863-876, 2002.
[44]D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)," Analytical chemistry, vol. 70, no. 23, pp. 4974-4984, 1998.
[45]N. I. Ibrahim, F. A. Al-Sulaiman, S. Rahman, B. S. Yilbas, and A. Z. Sahin, "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, vol. 74, pp. 26-50, 2017.
[46]施富元, "最佳化設計節能玻璃並以壓印方式製作," 成功大學機械工程學系學位論文, pp. 1-80, 2016.
[47]G. W. H. Höhne, W. Hemminger, and H.-J. Flammersheim, "Theoretical fundamentals of differential scanning calorimeters," in Differential Scanning Calorimetry: Springer, 1996, pp. 21-40.
[48]A. Sarı and A. Karaipekli, "Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage," Solar Energy Materials and Solar Cells, vol. 93, no. 5, pp. 571-576, 2009.
[49]D. H. Li, S. Lou, and J. C. Lam, "An analysis of global, direct and diffuse solar radiation," Energy Procedia, vol. 75, pp. 388-393, 2015.
[50]J. C. Lam and D. H. Li, "Correlation between global solar radiation and its direct and diffuse components," Building and environment, vol. 31, no. 6, pp. 527-535, 1996.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *