帳號:guest(18.119.164.58)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃竹愉
作者(外文):Huang, Chu-Yu
論文名稱(中文):管狀乙醇蒸氣重組器性能之數值分析
論文名稱(外文):Numerical analysis on performance of tubular ethanol-steam reformer
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):陳炎洲
李隆正
口試委員(外文):Chen, Yen-Cho
Li, Lung-Jeng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033510
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:50
中文關鍵詞:乙醇蒸氣重組管狀反應器乙醇轉化率
外文關鍵詞:ethanol-steam reformingtubular reactorthe conversion of ethanol
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文以數值模擬方法探討管狀乙醇蒸氣重組反應器的產氫性能。在使用Ni/Al2O3為觸媒的反應器中,分析在等溫過程中,溫度、流量及入口蒸氣乙醇比等操作參數對反應器性能的影響,模擬結果顯示出在適當的操作條件下,反應器內的乙醇轉化率可以接近100%,而水蒸氣的轉化率則可達到30%。模擬結果顯示對一固定的入口成份及觸媒量,則存在一入口流量使得乙醇轉化率及水蒸氣轉化性達到最高值,溫度高低對反應器的產氫性能有很大的影響,溫度高產氫的效能會較好,而在成份變化過程中,蒸氣乙醇莫耳比越高,出口氫氣的濃度也會較高,但因水蒸氣的量也隨之占得越多,整體的產氫的量並沒有增加太多,而氫氣的來源則在低溫673K時,蒸氣乙醇莫耳比低時,水蒸氣的占比較高,高溫時873K時,水蒸氣和乙醇則各為50%。
探討在反應器外管壁有熱損失情況下的影響,當對流熱傳係數(h)為2 W/〖(m〗^2∙K) 時,因乙醇蒸氣重組反應為吸熱反應,會使反應管溫度下降幅度很大,而不利於乙醇蒸氣重組的反應,所以一般建議反應管能在放置在像是加熱爐內,讓反應管內的溫度變化較小。
The performances for the tubular reactor of ethanol-steam reforming for hydrogen production are investigated numerically in this study. For ethanol steam reforming using Ni/ Al2O3 as catalyst, the effect of temperature, flow rate, and inlet steam-ethanol composition in isothermal process are studied. The numerical result show that the conversion of ethanol can reach 100% and the conversion of water can reach 30% under optimum operating condition. For fixed inlet composition and catalyst loading, the result show from the variation of flow rate shows that there exists a peak value of . the conversion of ethanol and water. The temperature plays an important effect in the reactor performance of hydrogen production, and high temperature have better performances. Moreover, the higher molar steam-ethanol ratio is, the better outlet hydrogen concentration is. But the high molar steam-ethanol ratio means high amount of water, the overall amount of hydrogen production doesn’t increase too much. The source of hydrogen from water is relatively high proportion at 673K, but at 873K, the source of hydrogen from water is the same proportion as it from ethanol.
The effect the heat loss from the outside wall on the reactor performance are studied. At the convective heat transfer coefficient(h) is 2 W/〖(m〗^2∙K), the temperature of reactor from inlet to outlet drops sharply. Because steam reforming of ethanol is an endothermic reaction, it’s not conductine to reaction of steam reforming of ethanol. It’s commended that the reaction tube is placed inside a heating furnace to make the temperature inside the tubular reactor vary slightly.
摘要 3
Abstract 4
第一章 緒論 5
1.1前言 5
1.2文獻回顧 6
1.3研究目的 13
第二章 乙醇重組的反應機制及反應器 14
2.1 乙醇重組反應機制 14
2.2 乙醇蒸氣重組反應器 15
第三章 數學模式與數值方法 17
3.1 物理說明與基本假設 17
3.2 統御方程式 18
3.2.1 質量守恆方程式 18
3.2.2 動量方程式 18
3.2.3 能量方程式 19
3.2.4 物質方程式 20
3.3化學反應 20
3.3.1 乙醇蒸氣重組反應模式 20
3.4邊界條件 22
3.5數值方法 23
第四章 結果與討論 25
4.1乙醇重組反應器 28
4.1.1乙醇水蒸氣流量對反應器性能及各成份濃度的效應 28
4.1.2溫度對反應器性能及各成份濃度的效應 33
4.1.3入口蒸氣乙醇比變化對反應器性能及各成份濃度的效應 38
第五章 結論與未來發展 45
5.1結論 45
5.2未來發展 46
參考文獻 47
[1]能源統計年報 - 綜合類 - 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs, R.O.C.)全球資訊網
[2]G. Rabenstein, V. Hacker. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis, Journal of Power Sources 185 (2008) 1293-1304.
[3]S. Freni, S. Cavallaro, N. Mondello, L. Spadaro, F. Frusteri. Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts, Catalysis Communications 4 (2003) 259-268.
[4]J. Comas, F. Mariño, M. Laborde, N. Amadeo. Bio-ethanol steam reforming on Ni/Al_2 O_3 catalyst, Chemical Engineering Journal 98 (2004) -61-68.
[5]J. Sun, X.P. Qiu, F. Wu, W.T. Zhu, H_2 from steam reforming of ethanol at low temperature over Ni⁄(Y_2 O_3,) Ni⁄(La_2 O_3 and ( Ni)⁄(Al_2 O_3 )) catalysts for fuel-cell application, International Journal of Hydrogen Energy 30 (2005) 437 -445.
[6]A. Akande, A. Aboudheir, R. Idem, A. Dalai. Kinetic modeling of hydrogen production by the catalytic reforming of crude ethanol over a co-precipitated Ni/Al_2 O_3 catalyst in a packed bed tubular reactor, International Journal of Hydrogen Energy 31 (2006) 1707-1715.
[7]P.V. Mathure, S. Ganguly, A.V. Patwardhan, R.K. Saha. Steam reforming of ethanol using a commercial nickel-based catalyst, Industrial & Engineering Chemistry Research 46 (2007) 8471-8479.
[8]E. Akpan, A. Akande, A. Aboudheir, H. Ibrahim, R. Idem. Experimental, Kinetic and 2-D reactor modeling for simulation of the production of hydrogen by the catalytic reforming of concentrated crude ethanol (CRCCE) over a Ni-based commercial catalyst in a packed-bed tubular reactor, Chemical Engineering Science 62 (2007) 3112-3126.
[9]V. Mas, M.L. Bergamini, G. Baronetti, N. Amadeo, M. Laborde. A kinetic study of ethanol steam reforming using a nickel based catalyst, Topics in Catalysis 51 (2008) 39-48.
[10]I. Llera, V. Mas, M.L. Bergamini, M. Laborde, N. Amadeo. Bio-ethanol steam reforming on Ni based catalyst. Kinetic study, Chemical Engineering Science 71 (2012) 356–366.
[11]A.F. Cunha, Y.J. Wu, F. A. D´ıaz Alvarado, J.C. Santos, P. D. Vaidya, A.E. Rodrigues. Steam reforming of ethanol on a Ni/Al_2 O_3 catalyst coupled with a hydrotalcite-like Sorbent on a multilayer pattern for CO_2 uptake, The Canadian Journal of Chemical Engineering 90 (2011) 1514 -1526.
[12]Y.J. Wu, J.C. Santos, P. Li, J.G. Yu, A.F. Cunha, A.E. Rodrigues. Simplified kinetic model for steam reforming of ethanol on a Ni/Al_2 O_3 catalyst, Canadian Journal of Chemical Engineering 92 (2014) 116-130.
[13]D.R. Sahoo, S. Vajpai, S. Patel, K.K. Pant. Kinetic modeling of steam reforming of ethanol for the production of hydrogen over Co/Al_2 O_3 catalyst, Chemical Engineering Journal 125 (2007) 139-147.
[14]V. Klouz, V. Fierro, P. Denton, H. Katz, J.P. Lisse, S. Bouvot-Mauduit, C. Mirodatos. Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimization, Journal of Power Sources 105 (2002) 26-34.
[15]A.J. Vizcaíno, A. Carrero, J.A. Calles. Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts, International Journal of Hydrogen Energy 32 (2007) 1450-1461.
[16]P. Ciambelli, V. Palma, A. Ruggiero. Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt⁄(CeO_2 ) catalysts, Applied Catalysis B: Environmental 96 (2010) 190-197.
[17]A. Casanovas, M. Roig, C. Leitenburg, A. Trovarelli, J. Llorca. Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na, International Journal of Hydrogen Energy 35 (2010) 7690-7698.
[18]A. Kumar, A.S. Mukasyan, E.E. Wolf. Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming, Applied Catalysis A: General 401 (2011) 20-28.
[19]B.S. Kwak, J.S. Lee, J.S. Lee, B.H. Choi, M.J. Ji, M. Kang. Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature, Applied Energy 88 (2011) 4366-4375.
[20]C. Zhang, S. Li, G. Wu, Z. Huang, Z. Han, T. Wang, J. Gong. Steam reforming of ethanol over skeletal Ni‐based catalysts: A temperature programmed desorption and kinetic study, AIChE Journal 60 (2013) 635-644.
[21]T. Mondal, K.K. Pant, A.K. Dalai. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni⁄(CeO_2 ) 〖-ZrO〗_2 catalyst, International Journal of Hydrogen Energy 40 (2015) 2529-2544.
[22]V. Palma, C. Ruocco, E. Meloni, A. Ricca. Highly active and stable Pt-Ni/CeO2-SiO2 catalysts for ethanol reforming, Journal of Cleaner Production 166 (2017) 263-272.
[23]M.S. Phanikumar, R.L. Mahajan. Non-Darcy natural convection in high porosity metal Foams, Int. J. Heat Mass Transfer 45 (2002) 3781-3793.
[24]J.A. Francesconi, M.C. Mussati, P.A. Aguirre. Analysis of design variables for water-gas-shift reactors by model-based optimization, J Power Sources 173 (2007) 467-477.
[25]B.E. Poling, J.M. Prausnitz, J.P. O’Connell. The Properties of Gases and Liquids,
McGraw-Hill, New York, 2001.
[26]R.B. Bird, W.E. Stewart, E.N. Lightfoot. Transport Phenomena, 2nd ed., New York: John Wiley & Sons, 2002.
[27]J. Xu, G.F. Froment. Methane steam reforming, methanation and water-gas shift: 1. Intrinsic kinetics, AIChE Journal 35 (1989) 88-96.
[28]R. Ma, B. Castro-Dominguez, A.G. Dixon. CFD study of heat and mass transfer in ethanol steam reforming in a catalytic membrane reactor, International Journal of Hydrogen Energy 43 (2018) 7662-7674.





 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *