帳號:guest(18.117.100.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):古 硯
作者(外文):Ku, Yen
論文名稱(中文):使用沉浸邊界法模擬翅膀運動方式對飛行表現之影響
論文名稱(外文):Simulations of wing kinematics on aerodynamic performance using immersed boundary method
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):牛仰堯
陳明志
廖川傑
口試委員(外文):Niu, Yang-Yao
Chern, Ming-Jyh
Liao, Chuan-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033509
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:41
中文關鍵詞:沉浸邊界法微型飛行機械昆蟲飛行
外文關鍵詞:immersed boundary methodmicro air vehicleinsect-like flapping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:363
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以沉浸邊界法模擬果蠅翅膀在不同運動方式下的飛行表現。欲進行比較的運動方式有:真實的果蠅飛行運動,以及自果蠅運動簡化而來的旋轉對稱運動(Symmetric rotating motion, SYR)。其中,果蠅翅膀抬升(elevation)或下沉的偏軌行為對飛行表現的效益為何也是探討的重點。我們以翅膀因運動而產生之升力及阻力來評斷此運動的表現。初步結果顯示:真實的果蠅運動能產生比簡化後的版本更大的升力,同時會承受比較小的阻力。此外,翅膀的抬升與下沉能借由改變瞬時攻角(instantaneous angle of attack)有效地為果蠅在飛行過程中維持良好的升力。我們會以翅膀周圍的渦流狀況來解釋不同時間下的比較結果;此外,我們也會介紹之前文獻曾提出的機制,並也以這些機制解釋比較結果。近年來,微型飛行機械(Micro air vehicle, MAV)受到許多關注,因此以模擬的方式快速並正確地預測拍動翅膀之飛行表現是本研究的目的,也期許對MAV的設計有參考之價值。
The immersed boundary method (IBM) is adopted to explore the flying performance of an insect-like wing with different kinematic profiles. Realistic wing motions based on fruit flies are compared with symmetric rotating motion, which is a simplified motion that mimics the fruit fly motion. Whether the elevating of the fruit-fly wing is beneficial is also considered. Aerodynamic performance is determined according to lift and drag generations. The results show that the realistic fruit-fly motion can generate a stronger lift with a lower drag than symmetric rotating motion. The elevating motion can also prevent the drop of the lift by affecting the instantaneous angle of attack. The results are explained by illustrating the vortex contours, and the mechanisms related to flying performance are also introduced. The purpose of this simulation is to rapidly predict the aerodynamic performance of an insect-like wing since micro air vehicles (MAVs) have gained considerable interests in recent years. Thus, a valid prediction at MAVs’ design stage is important.
Abstract
Contents
Introduction..............................6
Numerical Methods........................11
Numerical results and discussion.........28
Conclusion...............................37
Bibliography.............................38
[1]A. P. Willmott and C. P. Ellington, The mechanics of flight in the hawk-moth Manduca sexta. I. Kinematics of hovering and forward flight. Journal of Experimental Biology 200: 2705-2722(1997).
[2]S. N. Fry, R. Sayaman, M. H. Dickinson, The Aerodynamics of Free-Flight Maneuvers in Drosophila, Science 18 Apr: Vol. 300, Issue 5618, pp. 495-498(2003).
[3]P. Sane and M. H. Dickinson, The Control of flight force by a flapping wing: lift and drag production, The Journal of Experimental Biology 204, 2607-2626(2001).
[4]M. Sun and J. Tang, Lift and power requirements of hovering flight in Drosophila virilis, The Journal of Experimental Biology 205, 2413-2427(2002).
[5]M. Sun and J. Tang, Unsteady aerodynamic force generation by a model fruit fly wing in flapping Motion, The Journal of Experimental Biology 205,
55- 70(2002).
[6]Z. A. Khan and S. J. Agrawal, Optimal Hovering Kinematics of Flapping Wings for Micro Air Vehicles, AIAA Journal Vol. 49, No. 2, February 2011.
[7]K. B. Lua, Y. J. Lee, T. T. Lim, K. S. Yeo, Wing-Wake Interaction of Three-Dimensional Flapping Wings, AIAA Journal Vol. 55, No. 3, March 2017.
[8]Y. J. Lee and K. B. Lua, Optimization of Simple and Complex Pitching Motions for Flapping Wings in Hover, AIAA Journal, DOI: 10.2514/1.J056590(2018).
[9]T. Nakata, H. Liu, Y. Tanaka, N, Nishihashi, X. Wang, A. Sato, Aerodynamics of a bio-inspired flexible flapping wing micro air vehicle, Bioinsp. Biomim. 6(2011)045002(11pp).
[10]S. Deng, B. Oudheusden, Wake structure visualization of a flapping-wing Micro-Air-Vehicle in forward flight, Aerospace Science and Technology 50(2016)204-211.
[11]C. C. Liao, Y. W. Chang, C. A. Lin and J. M. McDonough, Simulating flows with moving rigid boundary using immersed-boundary method. Computers & Fluids, Vol 39, pp.152-167(2010).
[12]C. S. Peskin, Flow patterns around heart valves: a numerical method. J. Comp. Phys. 10:252(1972).
[13]C. S. Peskin, The fluid dynamics of heart valves: Experimental, theritiacal and computational methods. Annual Review of Fluid Mechanics 14:235(1982).
[14]J. Mohd-Yusof, Combined immersed boundary/B-Spline method for simulations of flows in complex geometries in complex geometries CTR annual research briefs. NASA Ames/Stanford University; 1997.
[15]E. Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Computer and Fluids; 33:375-404(2004).
[16]D. Kim, H. Choi, Immersed boundary method for flow around an arbitrarily moving body. J. Comp. Phys. 212:662-680(2006).
[17]P. H. Chang, C. C. Liao , H. W. Hsu , S. H. Liu and C. A. Lin, Simulations of laminar and turbulent flows over periodic hills with immersed boundary method, Computers and Fluids, Vol 92, pp. 233-243(2014).
[18]S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and M. G. Knepley and L. C. Mclnnes, PETSc Web page, (2010).
[19]H. W. Hsu, F. N. Hwang, Z. H. Wei, S. H. Lai, C. A. Lin, A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Computers and Fluids,45, 138-146(2011).
[20]M. N Chang, A parallel multilevel presondidioned iterative pressure Pois-son solver for 3D lid-driven cavity. Master thesis, Department of Mechanical Engineering, National Tsing Hua University (2013).
[21]T. J. Mueller, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Prog. Astronaut. Aeronaut., vol. 95, AIAA, New York, 2001.
[22]K. Matthew, K. Karl, and W. Henry, Development of the nano humming-bird: a tailless fapping wing micro air vehicle. Proc. AIAA aerospace sciences meeting: 124(2012).
[23]T. Van Truong, M. Debiasi, U. Kureemun, H. P. Lee, Structural Optimization of a Flapping Wing Micro Air Vehicle, 2016 7th International Conference on Mechanical and Aerospace Engineering (2016).
[24]T. Jitsukawa, H. Adachi, T. Abe, H. Yamakawa, S. Umezu, Bio inspired wing folding mechanism of micro air vehicle (MAV), Artif Life Robotics 22:203208(2017).
[25]W. Shyy, Y. Lian, J. Tang, D. Viieru, H. Liu, Aerodynamics of Low Reynolds Number Flyers, Cambridge: Cambridge University Press (2007).
[26]L. Zheng, T. Hedrick, R. Mittal, A comparative study of the hovering efficiency of flapping and revolving wings, Bioinspir. Biomim. 8(2013)036001.
[27]E. W. Hawkes and D. Lentink, Fruit fly scale robots can hover longer with flapping wings than with spinning wings, J. R. Soc. Interface 13: 20160730(2016).
[28]C. P. Ellington, C. van den Berg, A. P. Willmott, A. L. R. Thomas, Leading-edge vortices in insect flight. Nature 384 626-30(1996).
[29]M. H. Dickinson, F. LehmannS, P. Sane, Wing Rotation and the Aerodynamic Basis of Insect Flight. Science 18 Jun :Vol. 284, Issue 5422, pp. 1954-1960(1999).
[30]H. Liu, H Aono, Size effects on insect hovering aerodynamics: an integrated computational study. Bioinsp. Biomim. 4 (2009) 015002 (13pp).
[31]K. B. Lua, K. C. Lai, T. T. Lim, K. S. Yeo, On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Exp Fluids 49:1263-1291(2010).
[32]F. M. Bos, D. Lentink, B. W. van Oudheusden, H. Bijl, Influence of wing kinematics on aerodynamic performance in hovering insect flight, J. Fluid Mech. vol. 594, pp. 341-368(2008).
[33]K. B. Lua, Y. J. Lee, T. T. Lim, K. S. Yeo, Aerodynamic Effects of Elevating Motion on Hovering Rigid Hawkmothlike Wings, AIAA Journal DOI: 10.2514/1.J054326(2016).
[34]S. A. Ansari, R. Zbikowski, K. Knowles, Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog. Areosp. Sci. 42(2006)129-172.
[35]Y. J. Lee, K. B. Lua, T. T. Lim, K. S. Yeo, A quasi-steady aerodynamic model for flapping flight with improved adaptability. Bioinsp. Biomim. 11 (2016) 036005.
[36]K. B. Lua, T. T. Lim, K. S. Yeo, Scaling of aerodynamic forces of three-dimensional flapping wing. AIAA Journal Vol.52, NO.5, May (2014).
[37]W. B. Dickson, M. H. Dickinson, The effect of advance ratio on the aerodynamics of revolving wings. J. Expl Biol. 207, 4269-4281(2004).
[38]K. Taira, T. Colonius, Three dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187-207(2009).
[39]G. J. Li, X. Y. Lu, Force and power of flapping plates in a fluid. J. Fluid Mech. vol. 712, pp. 598-613(2012).
[40]J. Jeong and F. Hussain, On the Identification of a Vortex, Journal of Fluid Mechanics, Vol. 285, Feb. pp. 6994. DOI: 10.1017/S0022112095000462(1995).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *