帳號:guest(18.118.93.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳河孟
作者(外文):Wu, Ho-Meng
論文名稱(中文):脈衝式熱管與水冷系統對雙熱源散熱性能之比較
論文名稱(外文):Performance Tests on Pulsating Heat Pipes (PHPs) and Water-Cooling System under Two Heat Sources
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
口試委員(中文):許文震
楊愷祥
口試委員(外文):Sheu, Wen-Jenn
Yang, Kai-Shing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033508
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:71
中文關鍵詞:脈衝式熱管水冷系統雙熱源
外文關鍵詞:PHPswater-coolingtwo-heat-sources
相關次數:
  • 推薦推薦:0
  • 點閱點閱:69
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用與熱交換器直接結合之立體型脈衝式熱管,以雙熱源輸入相同功率,針對三種模組:不插管、實心管、空心管模組,分別量測在充填率為60%、工作流體為甲醇在垂直和水平擺放下的性能和特性,並與市售水冷系統比較;以及充填率60%、工作流體改為HFE-7000,和工作流體為甲醇、充填率改以50%,對於空心管和不插管模組在垂直擺放下的性能量測。實驗結果顯示三種模組皆能操作至1000W,但性能表現未能超越市售水冷系統,在不考慮焊接處影響下,以不插管模組優於空心管和實心管模組,特性方面,推測提升瓦數過程中,內部流場產生改變,造成溫度分佈和振盪變化;此外,在水平擺放下,僅以不插管模組能操作至900W,其他兩種模組於400W時發生乾化。此差異可歸因於熱交換器段分割通道後,整體流阻上升和工作流體堵塞其中。改變工作流體為HFE-7000,不插管模組於低瓦數表現提升7.2~18.8%,並且有特定流動方向,但於高瓦數受限流體性質容易乾化。改變充填率為50%,不插管模組因所需推動的液柱量降低,表現提升,於輸入瓦數1000W時,為全脈衝式熱管實驗最佳,系統熱阻為0.0564℃/W;相對地,空心管模組則因工作流體不足,表現下降發生乾化。將本研究之最佳表現與現有文獻進行比較,顯示本研究之脈衝式熱管設計,提升熱管涵蓋加熱段面積至66.67%,而在相同散熱面積需求下,可大幅提升最大熱傳瓦數。
This study experimentally investigates a novel 3-D configuration pulsating heat pipes (PHPs) combining fin-and-tube condenser under two same heat sources. Three models of the fin-and-tube condenser are adopted: the original tubes (non-tube model), further inserted with three smaller solid tubes (solid-tube model), or further inserted with three smaller hollow tubes (hollow-tube model). The thermal performances of the PHPs are compared with those of a commercial water cooling system. It is shown that all three types of PHPs can operate up to 1000W, using methanol as the working fluid with a filling ratio around 60%. But the thermal resistances of the PHPs are higher than the water cooling system. Excluding the resistance of the welding parts, the non-tube model is better than the other models under vertical arrangement, and has stronger changes on temperature distribution and oscillating motions as the power increases. Under horizontal arrangement, only the non-tube model can operate up to 900W and the other models dry out at 400W. This difference can be attributed to the increase of the whole flow resistance and pat of the liquid is trapped in the separate channels of the heat exchanger tubes. Using HFE-7000 as the working fluid with a filling ratio around 60%, the flow direction is fixed and the system thermal resistances of the non-tube model decrease by 7.2% ~ 18.8% than methanol under low power condition; however, dryout occurs beyond 800 W. Using methanol as the working fluid with a filling ratio around 50%, the non-tube model has the best heat performance, with a thermal resistance of 0.056℃/W at 1 kW. Oppositely, the hollow-tube model will dry out under high power condition because part of the working fluid is trapped. Finally, the present 3-D configuration increases the proportion of the heating area covered by the heat pipe to 66.67%, and greatly increases the effective cooling area. These features allow the proposed 3-D pulsating heat pipes to handle a supplied power up to 1 kW, much higher than any amount for the 2-D configurations in the existing literature.
摘要 I
Abstract II
目錄 III
圖表目錄 V
符號表 VIII
第一章 緒論 1
1.1研究背景 1
1.2脈衝式熱管結構與工作原理 1
1.3文獻回顧 5
1.4脈衝式熱管之設計參數 18
1.4.1熱管內徑 18
1.4.2工作流體 18
1.4.3填充率 19
1.4.4匝數 20
1.5研究動機與目的 20
第二章 實驗設備與方法 21
2.1市售水冷系統實驗 21
2.1.1實驗目的 21
2.1.2實驗設備與架構 21
2.1.3實驗步驟 27
2.1.4實驗參數 28
2.1.5實驗誤差分析 29
2.2脈衝式熱管系統實驗 31
2.2.1實驗目的 31
2.2.2實驗設備與架構 31
2.2.3實驗步驟 39
2.2.3.1前置作業流程 39
2.2.3.2實驗流程 40
2.2.4實驗參數 41
2.2.5實驗誤差分析 43
第三章 結果與討論 45
3.1工作流體為甲醇、充填率約60%三種模組 45
3.1.1工作流體、模組、充填率之選擇 45
3.1.2垂直擺放操作狀態下之性能量測與比較 46
3.1.2.1無插管模組特性量測 50
3.1.2.2實心管模組特性量測 53
3.1.2.3空心管模組特性量測 55
3.1.3水平擺放操作狀態下之性能量測與比較 56
3.2工作流體為HFE-7000、充填率約60%兩種模組 58
3.3工作流體為甲醇、充填率約50%兩種模組 60
3.4與現有文獻比較加熱面積和最大操作瓦數 62
第四章 結論 65
參考文獻 67
[1] H. khalkhali, A. Faghri, Z.J. Zuo. Entropy generation in a heat pipe system, Appl. Therm. Eng. 19 (1999) 1027-1043.
[2] X. Han, X. Wang, H. Zheng, X. Xu, G. Chen. Review of the development of pulsating heat pipe for heat dissipation, Renew. Sustain. Energy. Rev. 59 (2016) 692-709.
[3] M.B. Shafii, A. Faghri, Y. Zhang. Analysis of heat transfer in unlooped and looped pulsating heat pipes, Int. J. Numerical Methods for Heat & Fluid Flow 12 (5) (2002) 585-609.
[4] S. Khandekar, M. Schneider, P. Scha ̈fer, R. Kulenovic, M. Groll. Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes, Microscale Thermophys. Eng. 6 (4) (2002) 303-317.
[5] H. Akachi. Structure of a heat pipe, (1990) U.S. Patent, Patent No. 4921041.
[6] H. Akachi. Structure of micro-heat pipe, (1993) U.S. Patent, Patent No. 5219020.
[7] H. Akachi, F. Polasek, P. Stulc. Pulsating heat pipe, Proceedings of the 5th Int. Heat Pipe Symposium, Melbourne, Australia (1996) 208-217.
[8] H.L. Wook, S.J. Hyun, H.K. Jeung, S.K. Jong. Flow visualization of oscillating capillary tube heat pipe, 11th Int. Heat pipe Conf., vol. 2, Japan (1999) 166-169.
[9] W.H. Lee, H.S. Jung, J.H. Kim, J.S. Kim. Flow visualization of oscillating capillary tube heat pipe, Proc. of the 11th Int. Heat pipe Conf., Japan Association for Heat Pipes, Tokyo, Japan (1999) 131-136.
[10] B.Y. Tong, T.N. Wong, K.T. Ooi. Closed-loop pulsating heat pipe, Appl. Therm. Eng. 21 (2001) 1845-1862.
[11] S. Khandekar, M. Schneider, M. Groll. Mathematical modeling of pulsating heat pipes: state of the art and future challenges, Proc. of 5th ISHMT ASME joint Int. Conf. on Heat and Mass Transfer, Kolkata, India (2002) 856-862.
[12] S. Khandekar, M. Groll, P. Charoensawan, P. Terdtoon. Pulsating heat pipes: thermo-fluidic characteristics and comparative study with single phase thermosyphon, Proc. of the 12th Int. Heat Transfer Conf., vol. 4, France (2002) 459-464.
[13] S. Khandekar, X. Cui, M. Groll. Thermal performance modeling of pulsating heat pipes by artificial neural network, Proc. of 12th Int. Heat Transfer Conf., Moscow (2002) 215-219.
[14] M. Groll, S. Khandekar. Pulsating heat pipes: a challenge and still unsolved problem in heat pipe science, Archives of Thermodynamics 23 (4) (2002) 17-28.
[15] S. Khandekar, N. Dollinger, M. Groll. Understanding operational regimes of closed loop pulsating heat pipes: an experimental study, Appl. Therm. Eng. 23 (2003) 707-719.
[16] P. Charoensawan, S. Khandekar, M. Groll, P. Terdtoon. Closed loop pulsating heat pipes Part A: parametric experimental investigations, Appl. Therm. Eng. 23 (2003) 2009-2020.
[17] S. Khandekar, M. Groll. An insight into thermos-hydrodynamic coupling in closed loop pulsating heat pipes, Int. J. Therm. Sci. 43 (2004) 13-20.
[18] X.M. Zhang, J.L. Xu, Z.Q. Zhou. Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids, Exp. Heat Transfer 17 (2004) 47-67.
[19] H. Yang, S. Khandekar, M.Groll. Operational limit of closed loop pulsating heat pipes, Appl. Therm. Eng. 28 (2008) 49-59.
[20] C.Y. Tseng, K.S. Yang, K.H. Chien, M.S. Jeng, C.C. Wang. Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters, Exp. Therm. Fluid Sci. 54 (2014) 85-92.
[21] C.Y. Tseng, K.S. Yang, K.H. Chien, S.K. Wu, C.C. Wang. A novel double pipe pulsating heat pipe design to tackle inverted heat source arrangement, Appl. Therm. Eng. 106 (2016) 697-701.
[22] C.H. Sun, C.Y. Tseng, K.S. Yang, S.K. Wu, C.C. Wang. Investigation of the evacuation pressure on the performance of pulsating heat pipe, Int. Commun. in Heat and Mass Transfer 85 (2017) 23-28.
[23] J. Qu, H. Wu, P. Cheng. Start-up heat transfer and flow characteristics of silicon-based micro pulsating heat pipes, Int. J. Heat and Mass Transfer 55 (2012) 6109-6120.
[24] L. Xiao, Y. Cao. Recent advances in pulsating heat pipes and its derivatives, J. Enhanced heat Transfer 19 (3) (2012) 213-231
[25] http://img.ttbuy.com.tw/Key3/cooler/CL-W013-AL00BL-A_Pacific-RL360/pic3i.jpg
[26] A. Hathaway, C. Wilson, H. Ma, Experimental investigation of uneven-turn water and acetone oscillating heat pipes, J. Thermophys. Heat Transfer 26(1) (2012) 115-122.
[27] M. Mohammadi, M. Taslimifar, M.H. Saidi, M.B. Shafii, H. Afshin, S.K. Hannani, Ferrofluidic open loop pulsating heat pipes: efficient candidates for thermal management of electronics, Experimental Heat Transfer 27(3) (2014) 296-312.
[28] Y. Hu, T. Liu, X. Li, S. Wang, Heat transfer enhancement of micro oscillating heat pipes with self-rewetting fluid, Int. J. Heat Mass Transfer 70 (2014) 496-503.
[29] M. Mohammadi, M. Taslimifar, S. Haghayegh, S.K. Hannani, M.B. Shafii, M.H. Saidi, H. Afshin, Open-loop pulsating heat pipes charged with magnetic nanofluids: powerful candidates for future electronic coolers, Nanosc. Microsc. Therm. 18(1) (2014) 18-38.
[30] C. Wilson, B. Borgmeyer, R. Winholtz, H. Ma, D. Jacobson, D. Hussey, Thermal and visual observation of water and acetone oscillating heat pipes, Journal of Heat Transfer 133(6) (2011) 061502.
[31] Y. Ji, H. Ma, H.-h. Chen, Volume fraction effect on heat transfer performance of an oscillating heat pipe, J. Thermophys. Heat Transfer 27(1) (2012) 111-115.
[32] R.R. Riehl, N. dos Santos, Water-copper nanofluid application in an open loop pulsating heat pipe, Appl. Therm. Eng. 42 (2012) 6-10.
[33] K. Jahani, M. Mohammadi, M.B. Shafii, Z. Shiee, Promising technology for electronic cooling: nanofluidic micro pulsating heat pipes, J Electron Packaging, 135(2) (2013) 021005.
[34] M. Mohammadi, M. Mohammadi, M. Shafii, Experimental investigation of a pulsating heat pipe using ferrofluid (magnetic nanofluid), Journal of Heat Transfer 134(1) (2012) 014504.
[35] I. Yoon, C. Wilson, B. Borgmeyer, R. Winholtz, H. Ma, D. Jacobson, D. Hussey, Neutron phase volumetry and temperature observations in an oscillating heat pipe, Int. J. Therm. Sci. 60 (2012) 52-60.
[36] V. Karthikeyan, S. Khandekar, B. Pillai, P.K. Sharma, Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states, Appl Therm Eng, 62(2) (2014) 470-480.
[37] N. Iwata, H. Ogawa, Y. Miyazaki, Temperature-controllable oscillating heat pipe, J. Thermophys .Heat Transfer 25(3) (2011) 386-392.
[38] Y. Ji, H. Ma, F. Su, G. Wang, Particle size effect on heat transfer performance in an oscillating heat pipe, Exp. Therm. Fluid Sci. 35(4) (2011) 724-727.
[39] X. Cui, Y. Zhu, Z. Li, S. Shun, Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe, Appl. Therm. Eng. 65(1-2) (2014) 394-402.
[40] X. Liu, Y. Chen, M. Shi, Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs), Int. J. Therm. Sci. 65 (2013) 224-233.
[41] Z. Lin, S. Wang, J. Chen, J. Huo, Y. Hu, W. Zhang, Experimental study on effective range of miniature oscillating heat pipes, Appl. Therm. Eng. 31(5) (2011) 880-886.
[42] M. Mameli, L. Araneo, S. Filippeschi, L. Marelli, R. Testa, M. Marengo, Thermal response of a closed loop pulsating heat pipe under a varying gravity force, Int. J. Therm. Sci. 80 (2014) 11-22.
[43] N. Zhao, D. Zhao, H. Ma, Experimental investigation of magnetic field effect on the magnetic nanofluid oscillating heat pipe, Journal of Thermal Science and Engineering Applications 5(1) (2013) 011005.
[44] V.M. Patel, Gaurav, H.B. Mehta, Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe, Appl. Therm. Eng. 110 (2017) 1568-1577.
[45] B. Kim, L. Li, J. Kim, D. Kim, A study on thermal performance of parallel connected pulsating heat pipe, Appl. Therm. Eng. 126 (2017) 1063-1068.
[46] H. Ma, C. Wilson, Q. Yu, K. Park, U. Choi, M. Tirumala, An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe, Journal of Heat Transfer 128(11) (2006) 1213-1216.
[47] H. Gamit, V. More, B. Mukund, H. Mehta, Experimental investigations on pulsating heat pipe, Energy Procedia 75 (2015) 3186-3191.
[48] V. Pastukhov, Y.F. Maydanik, Development of a pulsating heat pipe with a directional circulation of a working fluid, Appl. Therm. Eng. 109 (2016) 155-161.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *