帳號:guest(3.143.5.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林昆彥
作者(外文):Lin, Kun-Yan
論文名稱(中文):螺旋擾流器正方形雙通道之紊流平均熱流相關性分析與暫態特徵正交分解研究
論文名稱(外文):Mean Thermal-Fluidic Correlation and Transient Proper Orthogonal Decomposition of Turbulent Flow in Twin-Pass Square Channel with Spiral Turbulators
指導教授(中文):劉通敏
指導教授(外文):Liou, Tong-Miin
口試委員(中文):丁川康
吳興茂
口試委員(外文):Ting, Chuan-Kang
Wu, Sing-Maw
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033503
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:166
中文關鍵詞:紊性熱流相關性皮爾遜積矩相關係數斯皮爾曼等級相關係數特徵正交分解螺旋擾流器正方形雙通道質點影像測速儀紅外線熱像儀
外文關鍵詞:Turbulent Thermal-Fluidic CorrelationPearson Product-moment Correlation CoefficientSpearman Rank Correlation CoefficientProper Orthogonal Decomposition(POD)Spiral TurbulatorTwin-Pass Square ChannelPIVInfrared Thermography
相關次數:
  • 推薦推薦:0
  • 點閱點閱:403
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了達成節能減碳的目標,各式熱交換器效率之提升已成為工業界與學術界致力研究發展的重點,其中擾流器為強化管道內熱性能的重要設計之ㄧ,因此本研究根據常見於自然界中對數螺旋結構的概念,提出一款適用於方管中的新型螺旋擾流器,並使用質點影像測速儀和紅外線熱像儀,量測180度銳轉正方形雙通道內全展入口紊流場其結構變化及壁溫分布。正方形管道之水力直徑(DH)為45.5mm,以空氣為工作流體、特徵長度為DH、管道截面平均速度為特徵速度(U b)之雷諾數在紊流場量測中固定為10,000,而在壁溫與壓損量測中由5,000變化至20,000。擾流器之參數變化為截距比(Pi/DH),其變化範圍為1、2、3及 。研究結果發現流體經螺旋擾流器(Pi/DH=)後會形成四股強度相同的順時針立體螺旋沖壁(Downwash)速度大小為0.24U b,使其後方1DH內平均紐塞數((Nu) ̅)相較於全展紊流平滑圓管紐塞數(〖Nu〗_∞)提升2.5倍。本研究進一步將本文與前人結果之數據于以綜合,並首度同時利用皮爾遜積矩相關係數(Pearson Product-moment Correlation Coefficient)及斯皮爾曼等級相關係數(Spearman Rank Correlation Coefficient)來線性與非線性定量分析軸向流場與熱傳分布之相關性,所探討之相關參數包括無因次化側向對流(((√((〖U_st〗^2+〖U_sp〗^2 ) )⁄U_b ) ) ̅_sp)、縱向(((U_ver⁄U_b ) ) ̅_sp)、絕對縱向(((|U_ver |⁄U_b ) ) ̅_sp)平均速度,主流(((〖u_st)〗_rms/U_b)) ̅_sp)、側向((((〖u_sp)〗_rms/U_b)) ̅_sp)、縱向((((〖u_ver)〗_rms/U_b)) ̅_sp)紊流強度,紊流動能(((k/U_b^2)) ̅_sp)及截面平均渦度(⌈ω ̅ ⌉ D_H/U_b)等八個流力參數與熱傳紐塞數比((Nu) ̅_sp/Nu_∞),發現最具新穎性之結果為能確認出最具通用性與相關性的流力參數((k/U_b^2)) ̅_sp,其相關係數達到0.89,從而提出一個可同時適用於本研究與前人流道配置的經驗公式((Nu) ̅_sp⁄(Nu_∞=10.76×(((k⁄(U_b^2 )) ) ̅_sp )^0.43 )),所有數據皆落於±31%之內。本研究亦使用特徵正交分解方法(Proper Orthogonal Decomposition)首度分析180度銳轉雙通道轉彎區流場中高能量比重的相干模態(Coherent Modes),藉由統計方法可發現定性上於平滑雙通道轉彎區90度截面上存在類似90度圓形彎管流的漩渦交替運動(Swirl Switching),定量上於上下交替渦旋(模態一、二)的能量比重相近分別為10.1%和7.3%;而加裝螺旋擾流器後會使漩渦交替運動產生改變,其上下交替渦旋(模態一、三)的能量比重分別為8.1%和3%。相較於平滑雙通道兩者渦旋能量間程度上的差異與出現的模態不同是導致交替運動以及平均流場中狄恩渦旋皆呈不對稱之原因。
To save energy and reduce carbon emissions, highly efficient heat exchangers play a pivotal role in industrial applications and academic research. Among all types of heat transfer enhancement techniques, turbulators are most commonly used. In this study, a novel turbulator inspired by logarithmic spiral structure in nature is proposed and its influence on turbulent flow field and temperature distribution in a twin-pass square channel with 180-deg sharp turn is explored by Particle Image Velocimetry (PIV) and Infrared Thermography (IRT). The channel features a fully developed inlet and a hydraulic diameter (DH) of 45.5mm. The Reynolds number (Re) based on working fluid air, bulk mean velocity (Ub), and DH is fixed at 10,000 for PIV and ranges from 5,000 to 20,000 for IRT. For the spiral turbulator, the pitch ratio (Pi/DH) is in the range of 1,2,3, and . The results show that there are four clockwise vortices behind the novel spiral turbulator and their velocity magnitude is around 0.24Ub. The vortex motion results in 2.5 times average Nusselt number ((Nu) ̅) augmentation within 1DH of the turbulator rear compared to that of fully developed pipe flow (〖Nu〗_∞). Furthermore, the linear and nonlinear correlations between fluid flow and heat transfer in present and previous data are firstly analyzed by both Pearson product-moment and Spearman rank correlations. It is newly found that the mean turbulent kinetic energy (((k/U_b^2)) ̅_sp) is the most universal and relevant parameters to the spanwise-averaged Nusselt number ratio ((Nu) ̅_sp/Nu_∞) with a correlation coefficient up to 0.89 among eight parameters examined, including averaged convective velocity (((√((〖U_st〗^2+〖U_sp〗^2 ) )⁄U_b ) ) ̅_sp), vertical velocity (((U_ver⁄U_b ) ) ̅_sp), absolutely vertical velocity (((|U_ver |⁄U_b ) ) ̅_sp), streamwise turbulence intensity (((〖u_st)〗_rms/U_b)) ̅_sp), spanwise turbulence intensity ((((〖u_sp)〗_rms/U_b)) ̅_sp), vertical turbulence intensity ((((〖u_ver)〗_rms/U_b)) ̅_sp), ((k/U_b^2)) ̅_sp, and mean vorticity magnitude ((|ω ̅ | D_H)⁄U_b ). Based on the correlation analysis, an universal empirical correlation ((Nu) ̅_sp⁄(Nu_∞=10.76×(((k⁄(U_b^2 )) ) ̅_sp )^0.43 )) is proposed for the present and previous channels. The maximum absolute difference is less than 31% compared with the experimental data. Finally, the most energetic coherent modes of turbulent flow field in the 180-deg sharp turn are also identified by proper orthogonal decomposition (POD) for the first time. It is observed that there exists swirl switching in the secondary flow at the midturn of smooth channel similar to that of the 90-deg bent pipe flow. The energy proportions of switching vortices in the first and second mode are 10.1% and 7.3%, respectively. As the channel is mounted with spiral turbulators, the swirl switching (Mode 1 and 3) is altered with energy proportions of 8.1% and 3%. Compared to that of the smooth channel, the asymmetry of swirl switching and mean Dean vortex structure is attributed to unequal energy proportions of the switching vortices.
摘要 i
Abstract iii
誌謝 v
圖目錄 ix
表目錄 xiv
符號說明 xv
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-2-1 常用於單通道的擾流器 4
1-2-2 常用於雙通道的擾流器 14
1-2-3 常見於自然界的螺旋結構 19
1-2-4 特徵正交分解方法於流場應用 20
1-3 研究目的 21
第2章 實驗系統及方法 41
2-1 實驗管道模型及構造 41
2-1-1 流力實驗模型 41
2-1-2 熱傳及壓力實驗模型 42
2-1-3 新型擾流器幾何結構 42
2-2 實驗系統 43
2-2-1 內流道冷卻系統 43
2-2-2 光學流場量測系統 44
2-2-3 全域熱傳量測系統 47
2-2-4 壓力量測系統 49
2-3 實驗條件 49
第3章 實驗數據處理與誤差分析 65
3-1 實驗數據換算方法 65
3-1-1 流力實驗數據處理 65
3-1-2 熱傳及壓損實驗數據換算 66
3-2 特徵正交分解方法 67
3-3 軸向熱流相關性分析 70
3-4 實驗誤差估算 72
第4章 雙通道內加裝螺旋擾流器之熱傳結果與流場結構 80
4-1 流力與熱傳實驗技術驗證 80
4-2 截距比效應 81
4-2-1 紐塞數比分布 81
4-2-2 整體平均熱傳與壓損表現 84
4-2-3 當前研究數據與先前文獻比較 86
4-3 平均流場結構 86
4-3-1 第一通道流場特性 87
4-3-2 轉彎區流場特性 90
4-3-3 第二通道流場特性 92
4-4 區域熱傳表現與流場之關係 96
第5章 軸向熱流相關性分析 112
5-1 標準實驗組 113
5-2 綜合多組數據分析 117
第6章 POD分析 128
6-1-1 平滑雙通道 128
6-1-2 螺旋擾流器雙通道 130
第7章 結論 138
7-1 結論 138
7-2 未來建議 139
附錄A 於雙通道內設置六組不同螺旋擾流器幾何排列的熱傳表現 140
A-1 三款不同螺旋擾流器幾何結構 140
A-2 擾流器凸出型式及排列方式 140
A-3 結果與討論 141
A-3-1 紐塞數比分布 141
A-3-2 整體平均熱傳與壓損表現 142
A-4 結論 143
附錄B 軸向熱流相關分析於前人平滑雙通道 148
附錄C 論文口試之補充答辯 153
參考文獻 157
[1] R.L. Webb, N. Kim, Principles of Enhanced Heat Transfer, Taylor and Francis Group, New York, (2005).
[2] A.E. Bergles, Heat Transfer Enhancement The Encouragement and Accommodation of High Heat Fluxes, Journal of Heat Transfer 119 (1997) 8-19.
[3] T. Kuppan, Heat Exchanger Design Handbook, Marcel Dekker Inc., New York, (2000).
[4] M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices, Renewable and Sustainable Energy Reviews 49 (2015) 444-469.
[5] J.C. Han, L.R. Glicksman, W.M. Rohsenow, An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces, International Journal of Heat and Mass Transfer 21(8) (1978) 1143-1156.
[6] J.C. Han, Heat Transfer and Friction in Channels with Two Opposite Rib-Roughened Walls, Journal of Heat Transfer 106(4) (1984) 774-781.
[7] B.N. Prasad, J.S. Saini, Effect of Artificial Roughness on Heat Transfer and Friction Factor in a Solar Air Heater, Solar Energy 41(6) (1988) 555-560.
[8] J.C. Han, Y.M. Zhang, High Performance Heat Transfer Ducts with Parallel Broken and V-Shaped Broken Ribs, International Journal of Heat and Mass Transfer 35(2) (1992) 513-523.
[9] T.M. Liou, J.J. Hwang, Turbulent Heat Transfer Augmentation and Friction in Periodic Fully Developed Channel Flows, Journal of Heat Transfer 114(1) (1992) 56-64.
[10] S. Acharya, S. Dutta, T.A. Myrum, R.S. Baker, Periodically Developed Flow and Heat Transfer in a Ribbed Duct, International Journal of Heat and Mass Transfer 36(8) (1993) 2069-2082.
[11] T.M. Liou, J.J. Hwang, S.H. Chen, Simulation and Measurement of Enhanced Turbulent Heat Transfer in a Channel with Periodic Ribs on One Principal Wall, International Journal of Heat and Mass Transfer 36(2) (1993) 507-517.
[12] T.M. Liou, J.J. Hwang, Effect of Ridge Shapes on Turbulent Heat Transfer and Friction in a Rectangular Channel, International Journal of Heat and Mass Transfer 36(4) (1993) 931-940.
[13] M.E. Taslim, T. Li, D.M. Kercher, Darryl E. Experimental Heat Transfer and Friction in Channels Roughened With Angled, V-Shaped, and Discrete Ribs on Two Opposite Walls, Journal of Turbomachinery 118(1) (1996) 20-28.
[14] J.J. Hwang, T.Y. Lia, T.M. Liou, Effect of Fence Thickness on Pressure Drop and Heat Transfer in a Perforated-Fenced Channel, International Journal of Heat and Mass Transfer 41(4) (1998) 811-816.
[15] T.M. Liou, S.H. Chen, Turbulent Heat and Fluid Flow in a Passage Disturbed by Detached Perforated Ribs of Different Heights, International Journal of Heat and Mass Transfer 41(12) (1998) 1795-1806.
[16] R.K. Karwa, Experimental Studies of Augmented Heat Transfer and Friction in Asymmetrically Heated Rectangular Ducts with Ribs on the Heated Wall in Transverse, Inclined, V-Continuous and V-Discrete Pattern, International Communications in Heat and Mass Transfer 30(2) (2003) 241-250.
[17] A.K. Viswanathan, D.K. Tafti, Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Ribbed Duct, Journal of Fluids Engineering 127(5) (2005) 888-896.
[18] L. Wang, B. Sundén, Experimental Investigation of Local Heat Transfer in a Square Duct With Continuous and Truncated Ribs, Experimental Heat Transfer 18(3) (2005) 179-197.
[19] L. Wang, B. Sundén, Experimental Investigation of Local Heat Transfer in a Square Duct with Various-Shaped Ribs, Heat and Mass Transfer 43 (2007) 759-766.
[20] K.R. Aharwal, B.K. Gandhi, J.S. Saini, Experimental Investigation on Heat-transfer Enhancement due to a Gap in an Inclined Continuous Rib Arrangement in a Rectangular Duct of Solar Air Heater, Renewable Energy 33(4) (2008) 585-596.
[21] T.M. Liou, S.W. Chang, J.S. Chen, T.L. Yang, Y.A. Lan, Influence of Channel Aspect Ratio on Heat Transfer in Rotating Rectangular Ducts with Skewed Ribs at High Rotation Numbers, International Journal of Heat and Mass Transfer 52(23) (2009) 5309-5322.
[22] C. Nuntadusit, M. Wae-hayee, A. Bunyajitradulya, S. Eiamsa-ard, Thermal Visualization on Surface with Transverse Perforated Ribs, International Communications in Heat and Mass Transfer 39(5) (2012) 634-639.
[23] C. Berner, F. Durst, D.M. McEligot, Flow Around Baffles, Journal of Heat Transfer 106(4) (1984) 743-749.
[24] M.A. Habib, A.M. Mobarak, M.A. Sallak, E.A. Abdel Hadi, R.I. Affify, Experimental Investigation of Heat Transfer and Flow Over Baffles of Different Heights, Journal of Heat Transfer 116(2) (1994) 363-368.
[25] P. Dutta, S. Dutta, Effect of Baffle Size, Perforation, and Orientation on Internal Heat Transfer Enhancement, International Journal of Heat and Mass Transfer 41(19) (1998) 3005-3013.
[26] Y.T. Yang, C.Z. Hwang, Calculation of Turbulent Flow and Heat Transfer in a Porous-Baffled Channel, International Journal of Heat and Mass Transfer 46(5) (2003) 771-780.
[27] K.H. Ko, N.K. Anand, Use of Porous Baffles to Enhance Heat Transfer in a Rectangular Channel, International Journal of Heat and Mass Transfer 46(22) (2003) 4191-4199.
[28] P. Dutta, A. Hossain, Internal Cooling Augmentation in Rectangular Channel Using Two Inclined Baffles, International Journal of Heat and Fluid Flow 26(2) (2005) 223-232.
[29] R. Karwa, B.K. Maheshwari, N. Karwa, Experimental Study of Heat Transfer Enhancement in an Asymmetrically Heated Rectangular Duct with Perforated Baffles, International Communications in Heat and Mass Transfer 32(1) (2005) 275-284.
[30] R. Karwa, B.K. Maheshwari, Heat Transfer and Friction in an Asymmetrically Heated Rectangular Duct with Half and Fully Perforated Baffles at Different Pitches, International Communications in Heat and Mass Transfer 36(3) (2009) 264-268.
[31] E. Smithberg, F. Landis, Friction and Forced Convection Heat-Transfer Characteristics in Tubes with Twisted Tape Swirl Generators, Journal of Heat Transfer 86(1) (1964) 39-48.
[32] A.W. Date, Prediction of Fully-developed Flow in a Tube Containing a Twisted-tape, International Journal of Heat and Mass Transfer 17(8) (1974) 845-859.
[33] R.M. Manglik, A.E. Bergles, Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows, Journal of Heat Transfer 115(4) (1993) 890-896.
[34] L. Wang, B. Sundén, Performance Comparison of Some Tube Inserts, International Communications in Heat and Mass Transfer 29(1) (2002) 45-56.
[35] S.W. Chang, K.W. Yu, M.H. Lu, Heat Transfers in Tubes Fitted with Single, Twin, and Triple Twisted Tapes, Experimental Heat Transfer 18(4) (2005) 279-294.
[36] S. Eiamsa-ard, C. Thianpong, P. Eiamsa-ard, Turbulent Heat Transfer Enhancement by Counter/Co-Swirling Flow in a Tube Fitted with Twin Twisted Tapes, Experimental Thermal and Fluid Science 34(1) (2010) 53-62.
[37] S. Eiamsa-ard, P. Promvonge, Heat Transfer Characteristics in a Tube Fitted with Helical Screw-Tape with/without Core-Rod Inserts, International Communications in Heat and Mass Transfer 34(2) (2007) 176-185.
[38] S. Eiamsa-ard, K. Yongsiri, K. Nanan, C. Thianpong, Heat Transfer Augmentation by Helically Twisted Tapes as Swirl and Turbulence Promoters, Chemical Engineering and Processing: Process Intensification 60 (2012) 42-48.
[39] P. Promvonge, S. Eiamsa-ard, Heat Transfer in a Circular Tube Fitted with Free-Spacing Snail Entry and Conical-Nozzle Turbulators, International Communications in Heat and Mass Transfer 34(7) (2007) 838-848.
[40] P. Promvonge, Heat Transfer Behaviors in Round Tube with Conical Ring Inserts, Energy Conversion and Management 49(1) (2008) 8-15.
[41] V. Kongkaitpaiboon, K. Nanan, S. Eiamsa-ard, Experimental Investigation of Heat Transfer and Turbulent Flow Friction in a Tube Fitted with Perforated Conical-Rings, International Communications in Heat and Mass Transfer 37(5) (2010) 560-567.
[42] P. Promvonge, Thermal Performance in Circular Tube Fitted with Coiled Square Wires, Energy Conversion and Management 49(5) (2008) 980-987.
[43] C. Thianpong, K. Yongsiri, K. Nanan, S. Eiamsa-ard, Thermal Performance Evaluation of Heat Exchangers Fitted with Twisted-Ring Turbulators, International Communications in Heat and Mass Transfer 39(6) (2012) 861-868.
[44] H. Karakaya, A. Durmuş, Heat Transfer and Exergy Loss in Conical Spring Turbulators, International Journal of Heat and Mass Transfer 60 (2013) 756-762.
[45] C. Muthusamy, M. Vivar, I. Skryabin, K. Srithar, Effect of Conical Cut-Out Turbulators with Internal Fins in a Circular Tube on Heat Transfer and Friction factor, International Communications in Heat and Mass Transfer 44 (2013) 64-68.
[46] P. Promvonge, Thermal Performance in Square-Duct Heat Exchanger with Quadruple V-Finned Twisted Tapes, Applied Thermal Engineering 91 (2015) 298-307.
[47] K. Nanan, C. Thianpong, M. Pimsarn, V. Chuwattanakul, S. Eiamsa-ard, Flow and Thermal Mechanisms in a Heat Exchanger Tube Inserted with Twisted Cross-Baffle Turbulators, Applied Thermal Engineering 114 (2017) 130-147.
[48] T.M. Liou, C.C. Chen, LDV Study of Developing Flows Through a Smooth Duct With a 180 Deg Straight-Corner Turn, Journal of Turbomachinery 121(1) (1999) 167-174.
[49] T.M. Liou, C.C. Chen, Heat Transfer in a Rotating Two-Pass Smooth Passage with a 180 Rectangular Turn, International Journal of Heat and Mass Transfer 42(2) (1999) 231-247.
[50] J. Schabacker, A. Bölcs, B.V. Johnson, PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180° Bend, Proceedings of the ASME Turbo Expo Conference, (1998).
[51] T.M. Liou, C.C. Chen, Y.Y. Tzeng, T.W. Tsai, Non-Intrusive Measurements of Near-Wall Fluid Flow and Surface Heat Transfer in a Serpentine Passage, International journal of Heat and Mass Transfer 43(17) (2000) 3233-3244.
[52] R.G. Hibbs, S. Acharya, Y. Chen, D.E. Nikitopoulos, T.A. Myrum, Heat Transfer in a Two-Pass Internally Ribbed Turbine Blade Coolant Channel with Cylindrical Vortex Generators, Journal of Turbomachinery 120(3) (1998) 589-600.
[53] Y. Chen, D. Nikitopoulos, R. Hibbs, S. Acharya, T. Myrum, Detailed Mass Transfer Distribution in a Ribbed Coolant Passage with a 180 Bend, International Journal of Heat and Mass Transfer 43(8) (2000) 1479-1492.
[54] S. Acharya, R. Hibbs, Y. Chen, D. Nikitopoulos, Mass/Heat Transfer in a Ribbed Passage with Cylindrical Vortex Generators: The Effect of Generator-Rib Spacing, Journal of Heat Transfer 122(4) (2000) 641-652.
[55] E.A. Sewall, D.K. Tafti, A.B. Graham, K.A. Thole, Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct, International Journal of Heat and Fluid Flow 27(2) (2006) 243-258.
[56] S. Dutta, J.C. Han, Y.M. Zhang, Influence of Rotation on Heat Transfer from a Two-Pass Channel with Periodically Placed Turbulence and Secondary Flow Promoters, International Journal of Rotating Machinery 1(2) (1995) 129-144.
[57] Y. Zhang, J.C. Han, J.A. Parsons, C.P. Lee, Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel with 60 deg Angled Rib Turbulators,Journal of Turbomachinery 117(2) (1995) 272-280.
[58] J.A. Parsons, J.C. Han, Y. Zhang, Effect of Model Orientation and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Square Channel with Rib Turbulators, International Journal of Heat and Mass Transfer 38(7) (1995) 1151-1159.
[59] C.Y. Zhao, W.Q. Tao, Effect of Rib Angle Orientation on Local Mass Transfer Distribution Around Sharp 180 Deg Turn with Rib-Turbulators Mounted in Entire Two-Pass Channels, Heat and Mass Transfer 32(5) (1997) 325-332.
[60] S.V. Ekkad, J.C. Han, Detailed Heat Transfer Distributions in Two-Pass Square Channels with Rib Turbulators, International Journal of Heat and Mass Transfer 40(11) (1997) 2525-2537.
[61] D. Chanteloup, Y. Juaneda, A. Bolcs, Combined 3D Flow and Heat Transfer Measurements in a 2-Pass Internal Coolant Passage of Gas Turbine Airfoils, ASME Turbo Expo 2002: Power for Land, Sea, and Air, American Society of Mechanical Engineers (2002) 509-520.
[62] H. Iacovides, G. Kelemenis, M. Raisee, Flow and Heat Transfer in Straight Cooling Passages with Inclined Ribs on Opposite Walls: an Experimental and Computational Study, Experimental Thermal and Fluid Science 27(3) (2003) 283-294.
[63] T.M. Liou, G.Y. Dai, Pressure and Flow Characteristics in a Rotating Two-Pass Square Duct with 45-Deg Angled Ribs, Journal of Turbomachinery 126(1) (2004) 212-219.
[64] S.W. Chang, T.M. Liou, Y. Po, Coriolis and Rotating Buoyancy Effect on Detailed Heat Transfer Distributions in a Two-Pass Square Channel Roughened by 45 Ribs at High Rotation Numbers, International Journal of Heat and Mass Transfer 53(7) (2010) 1349-1363.
[65] T.M. Liou, C.C. Chen, T.W. Tsai, Heat Transfer and Fluid Flow in a Square Duct with 12 Different Shaped Vortex Generators, Journal of Heat Transfer 122(2) (2000) 327-335.
[66] T.M. Liou, M.Y. Chen, Y.M. Wang, Heat Transfer, Fluid Flow, and Pressure Measurements Inside a Rotating Two-Pass Duct With Detached 90-Deg Ribs, Journal of Turbomachinery 125(3) (2003) 565-574.
[67] T.M. Liou, Y.S. Hwang, M.Y. Chen, Heat Transfer Improvement by Arranging Detached Ribs on Suction Surfaces of Rotating Internal Coolant Passages, International Journal of Heat and Mass Transfer 50(11) (2007) 2414-2424.
[68] T.M. Liou, S.W. Chang, S.P. Chan, Experimental Study on Thermal Flow Characteristics in Square Serpentine Heat Exchangers Mounted with Louver-type Turbulators, International Journal of Heat and Mass Transfer 116 (2018) 897-908.
[69] A. Agrawal, N. Kejalakshmy, J. Chen, B.M.A. Rahman, K.T.V. Grattan, Golden Spiral Photonic Crystal Fiber: Polarization and Dispersion Properties, Optics Letters 33(22) (2008) 2716-2718.
[70] V.A. Tucker, Gliding Flight: Drag and Torque of a Hawk and a Falcon with Straight and Turned Heads, and a Lower Value for the Parasite Drag Coefficient, Journal of Experimental Biology 203(24) (2000) 3733-3744.
[71] V.A. Tucker, The Deep Fovea, Sideways Vision and Spiral Flight Paths in Raptors, Journal of Experimental Biology 203(24) (2000) 3745-3754.
[72] V.A. Tucker, A.E. Tucker, K. Akers, J.H. Enderson, Curved Flight Paths and Sideways Vision in Peregrine Falcons (Falco Peregrinus), Journal of Experimental Biology 203(24) (2000) 3755-3763.
[73] J.D. Harman, Rotor with Logarithmic Scaled Shape, U.S. Patents No. 5,934,877 (1999).
[74] J.L. Lumley, The Structure of Inhomogeneous turbulent Flows, Atmospheric Turbulence and Radio Wave Propagation (1967).
[75] H.P. Bakewell Jr, J.L. Lumley, Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow, The Physics of Fluids 10(9) (1967) 1880-1889.
[76] F.R. Payne, J.L. Lumley, Large Eddy Structure of the Turbulent Wake Behind a Circular Cylinder, The Physics of Fluids 10(9) (1967) S194-S196.
[77] P. Moin, Probing Turbulence via Large Eddy Simulation, American Institute of Aeronautics and Astronautics (1984) 84-174.
[78] L. Sirovich, Turbulence and the Dynamics of Coherent Structures. I-Coherent Structures, Quarterly of Applied Mathematics 45(3) (1987) 561-571.
[79] L.H. Feng, J.J. Wang, C. Pan, Proper Orthogonal Decomposition Analysis of Vortex Dynamics of a Circular Cylinder Under Synthetic Jet Control, Physics of Fluids 23(1) (2011) 014106.
[80] J. Kostas, J. Soria, M.S. Chong, A Comparison Between Snapshot POD Analysis of PIV Velocity and Vorticity Data, Experiments in Fluids 38(2) (2005) 146-160.
[81] B. Patte-Rouland, G. Lalizel, J. Moreau, E. Rouland, Flow Analysis of an Annular Jet by Particle Image Velocimetry and Proper Orthogonal Decomposition, Measurement Science and Technology 12(9) (2001) 1404.
[82] P. Druault, P. Guibert, F. Alizon, Use of Proper Orthogonal Decomposition for Time Interpolation from PIV Data, Experiments in Fluids 39(6) (2005) 1009-1023.
[83] H.V. Ly, H.T. Tran, Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition, Mathematical and Computer Modelling 33(1) (2001) 223-236.
[84] K.E. Meyer, J.M. Pedersen, O. ÖZcan, A Turbulent Jet in Crossflow Analysed with Proper Orthogonal Decomposition, Journal of Fluid Mechanics 583 (2007) 199-227.
[85] L.H.O. Hellström, M.B. Zlatinov, G. Cao, A.J. Smits, Turbulent Pipe Flow Downstream of a 90 bend, Journal of Fluid Mechanics 735 (2013) R7.
[86] S.T. Yeh, X. Wang, C.L. Sung, S. Mak, Y.H. Chang, L. Zhang, C.F.J. Wu, V. Yang, Common Proper Orthogonal Decomposition-Based Spatiotemporal Emulator for Design Exploration, AIAA Journal 56(6) (2018) 2429-2442.
[87] T.S. Wang, M.K. Chyu, Heat Convection in a 180-deg Turning Duct with Different Turn Configurations, Journal of Thermophysics and Heat Transfer 8(3) (1994) 595-601.
[88] S.Y. Son, K.D. Kihm, J.C. Han, PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels with Smooth and 90° Ribbed Walls, International Journal of Heat and Mass Transfer 45(24) (2002) 4809-4822.
[89] W.C. Chang, Experimental Studies of 180-Deg Sharp Turn Effect on Turbulence Statistics and Thermal-Fluidic Correlations in a Smooth Square Duct, Power Mechanical Enginnering, National Tsing Hua University, Hsinchu, Taiwan, (2018).
[90] V. Aga, Experimental Investigation of the Influence of Flow Structure on Compound Angled Film cooling Performance, Doctoral Dissertation, ETH Zurich (2009).
[91] C.S. Wang, ParaPIVlab: PIVlab in Parallel, Technical report, DOI: 10.13140/RG.2.2.30705.79203 (2017).
[92] K. Pearson, LIII. On Lines and Planes of Closest Fit to Systems of Points in Space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11) (1901) 559-572.
[93] L. Graftieaux, M. Michard, N. Grosjean, Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows, Measurement Science and Technology 12(9) (2001) 1422.
[94] K. Fukunaga, Introduction to Statistical Pattern Recognition, Elsevier (2013).
[95] R.R. Johnson, P.J. Kuby, Elementary Statistics, Cengage Learning (2011).
[96] S.P. Chan, Influence of Core Flow and Boundary Layer Flow Induced by Perturbator and Channel Cross-Sectional Geometry on Heat Transfer Performance in Heat Exchangers, Power Mechnical Engineering National Tsing Hua University, Hsinchu, Taiwan, (2017).
[97] R.D. Keane, R.J. Adrian, Optimization of Particle Image Velocimeters: II. Multiple Pulsed Systems, Measurement Science and Technology 2(10) (1991) 963.
[98] J.C. Tseng, Influence of Slat Attack Angle and Pitch Ratio on Turbulent Hydrothermal Characteristics in a Two-Pass Square Louvered Channel, Power Mechnical Engineering National Tsing Hua University, Hsinchu, Taiwan, (2018).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *