帳號:guest(3.133.124.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳東翰
作者(外文):Wu, Dong-Han
論文名稱(中文):建立光學常數計算模型與開發高溫樣本方向放射率自動化量測系統
論文名稱(外文):Construction of Numerical Model for Obtaining Optical Constants and Development of Automatic Measurement System for High Temperature Directional Emissivity
指導教授(中文):陳玉彬
指導教授(外文):Chen, Yu-Bin
口試委員(中文):洪哲文
林詩淳
口試委員(外文):Hong, Che-Wun
Lin, Albert
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033501
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:放射率高溫自動化光學常數計算模型
外文關鍵詞:automaticemissivityhigh temperaturenumerical modeloptical constants
相關次數:
  • 推薦推薦:0
  • 點閱點閱:389
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
放射率為材料的基本熱物理性質之一,定義為樣本所放射之特定波長輻射功率,與在相同溫度下理想表面(黑體)所放射相同波長之輻射功率的比值,是溫度、波長、方向等變數之函數。量測樣本表面放射率對熱物理與應用非常重要,卻易受環境與其他影響而失真。本研究成功建立光學常數計算模型,可由樣本在紅外光波段且兩種不同角度之放射率頻譜,計算出該樣本之光學常數。文中以硫化鋅為例,該物質在波長範圍為8 µm - 14 µm之熱輻射性質,成功驗證此計算模型之正確性。本研究也利用黑體爐、自行設計樣本加熱平台、光學鏡組、傅立葉轉換紅外線光譜儀及自動化模組,建構出一套高溫樣本方向放射率自動化量測系統,再以藍寶石基板、金平板、純鐵、表面具有一維週期結構之碳化矽等樣本,量測溫度400 K - 700 K下放射角度0o - 60o,波長範圍包含4 µm - 25 µm之放射率。量測結果與數值模擬值一致並與過往文獻吻合,證實此量測系統之能力。本文成功建立光學常數計算模型與樣本方向高溫放射率系統兩者,不僅獲得之結果相輔相成,對於未來探究材料在不同高溫下的基礎熱物理性質及開發波長選擇性或指向性輻射熱放射元件將有相當大的貢獻。
Emissivity is a fundamental thermos-physical property, defined as the ratio of emitted intensity from a real surface to an ideal surface (blackbody) at same temperature. Tailored emissivity, showing wavelength-selectivity or direction-dependence is important in energy-harvesting, optoelectronics, and thermal applications. In this study, a numerical model for obtaining optical constants using infrared emissivity spectra of different emission angles was successfully established. The numerical model was verified with thermal radiative properties of ZnS in the wavelength range between 8 um and 14 um. The other contribution of this study was to develop an automatic measurement system for high temperature directional emissivity. This system was composed of a blackbody oven, sample heater, optical elements, FTIR spectrometer and a LabVIEW user interface. The emissivity of sapphire, gold, iron, and SiC was used to verify the working range of measurement system from 400 K to 700 K in temperature, 0º to 60º in emission degree, and 4 μm to 25 μm in wavelength. Measurement results of directional emissivity agree well with those from numerical prediction. They are also consistent with results in the published references. The two contributions, the developed numerical model and automatic measurement system, show results supporting each other.Both can provide large beneifits to insightful investigation on radiative properties of materials at high temperatures as well as utilization of these properties.
摘要 i
Abstract ii
圖目錄 vi
表目錄 ix
符號表 x
第一章 緒論 1
1.1 背景介紹 1
1.2 研究動機 3
1.3 研究目標 4
第二章 理論基礎 6
2.1 光追朔法 6
2.2 嚴格耦合波理論 9
2.3 放射率量測基本理論 13
第三章 樣本設計與製作 15
3.1 光罩尺寸與圖案設計 15
3.2 樣本製作步驟與實驗參數 17
3.3 樣本結構尺寸量測 20
第四章 建立光學常數計算模型 24
4.1 模擬樣本之熱輻射性質 24
4.2 計算樣本光學常數之方法 27
第五章 高溫樣本方向放射率自動化量測系統 28
5.1 系統架構 28
5.2 組成元件 29
5.2.1 樣本加熱平台 29
5.2.2 黑體爐 32
5.2.3 傅立葉轉換紅外線光譜儀 35
5.2.4 光學鏡組 38
5.3 自動化量測 43
5.4 量測方式 47
第六章 結果與討論 49
6.1 模擬單層樣本之熱輻射性質 49
6.2 模擬一維週期結構樣本之熱輻射性質 53
6.3 計算樣本之光學常數 56
6.4 放射率量測結果 59
6.4 重複性實驗 64
第七章 結論與未來工作 66
7.1 結論 66
7.2 未來工作 67
參考文獻 68
[1]J. R. Howell, M. P. Menguc, and R. Siegel, Thermal radiation heat transfer. CRC press, 2010.
[2]F. Giovannetti, S. Föste, N. Ehrmann, and G. Rockendorf, "High transmittance, low emissivity glass covers for flat plate collectors: Applications and performance," Solar Energy, vol. 104, pp. 52-59, 2014.
[3]Y. Zhai et al., "Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling," Science, vol. 355, no. 6329, pp. 1062-1066, 2017.
[4]M. D. Islam, I. Kubo, M. Ohadi, and A. A. Alili, "Measurement of solar energy radiation in Abu Dhabi, UAE," Applied Energy, vol. 86, no. 4, pp. 511-515, 2009.
[5]C. Lin, B. Wang, K. H. Teo, and P. Bandaru, "Application of impedance matching for enhanced transmitted power in a thermophotovoltaic system," Physical Review Applied, vol. 7, no. 3, p. 034003, 2017.
[6]E. Elizalde, J. M. Frigerio, and "Determination of thickness and optical constants of thin films from photometric and ellipsometric.," 1986.
[7]M. Cathelinaud, F. Lemarquis, and C. Amra, "Index determination of opaque and semitransparent metallic films application to light absorbers," 2002.
[8]T. Fu and J. Liu, "Measurement method for high-temperature infrared optical constants of ZnS crystal materials in a multi-layer structure," Infrared Physics & Technology, vol. 69, pp. 88-95, 2015.
[9]M. F. Modest, Radiative heat transfer. Academic press, 2013.
[10] Q. Zhu, Y. Cui, L. Mu, and L. Tang, "Characterization of Thermal Radiative Properties of Nanofluids for Selective Absorption of Solar Radiation," International Journal of Thermophysics, vol. 34, no. 12, pp. 2307-2321, 2012.
[11]Y.-B. Chen, Y.-C. Lee, Y.-F. Chang, Y.-H. Lin, and P.-H. Chen, "Tempering Hemispherical Radiative Properties with a Resonance Compilation," Plasmonics, vol. 10, no. 3, pp. 595-603, 2014.
[12]H. Jo, J. L. King, K. Blomstrand, and K. Sridharan, "Spectral emissivity of oxidized and roughened metal surfaces," International Journal of Heat and Mass Transfer, vol. 115, pp. 1065-1071, 2017.
[13]G. Teodorescu, P. D. Jones, R. A. Overfelt, and B. Guo, "Normal emissivity of high-purity nickel at temperatures between 1440 and 1605 K," Journal of Physics and Chemistry of Solids, vol. 69, no. 1, pp. 133-138, 2008.
[14]I. G. de Arrieta et al., "Mid-infrared optical properties of pyrolytic boron nitride in the 390-1050° C temperature range using spectral emissivity measurements," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 194, pp. 1-6, 2017.
[15]T. Ishikawa, J. T. Okada, P.-F. Paradis, and Y. Watanabe, "Emissivity Measurements of Molten Metals with an Electrostatic Levitator," INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION, vol. 34, no. 3, 2017.
[16]D. Ren, H. Tan, Y. Xuan, Y. Han, and Q. Li, "Apparatus for measuring spectral emissivity of solid materials at elevated temperatures," International Journal of Thermophysics, vol. 37, no. 5, p. 51, 2016.
[17]L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, I. Fernández, and M. J. Tello, "New experimental device for infrared spectral directional emissivity measurements in a controlled environment," Review of Scientific Instruments, vol. 77, no. 11, 2006.
[18]C. Zhang et al., "Measurement of high-temperature spectral emissivity using integral blackbody approach," presented at the Infrared, Millimeter-Wave, and Terahertz Technologies IV, 2016.
[19]O. Rozenbaum, D. D. S. Meneses, Y. Auger, S. Chermanne, and P. Echegut, "A spectroscopic method to measure the spectral emissivity of semi-transparent materials up to high temperature," Review of Scientific Instruments, vol. 70, no. 10, pp. 4020-4025, 1999.
[20]C. Monte, B. Gutschwager, S. P. Morozova, and J. Hollandt, "Radiation Thermometry and Emissivity Measurements Under Vacuum at the PTB," International Journal of Thermophysics, vol. 30, no. 1, pp. 203-219, 2008.
[21]F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Physical Review B, vol. 69, no. 15, p. 155412, 2004.
[22]A. S. Glassner, An introduction to ray tracing. Elsevier, 1989.
[23]Palik and E. D., "Handbook of optical constants of solids. Vol. 3. Academic press," 1998.
[24]H. Kitajima, K. Hieda, and Y. Suematsu, "Use of a total absorption ATR method to measure refractive indices of metal-foils," 1980.
[25]M.-H. Chiu, J.-Y. Lee, and D.-C. Su, "Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry," 1999.
[26]Z. M. Z. M. Zhang, Nano/microscale heat transfer (no. Sirsi) i9780071436748). 2007.
[27]N. Chateau and J.-P. Hugonin, "Algorithm for the rigorous coupled-wave analysis of grating diffraction," JOSA A, vol. 11, no. 4, pp. 1321-1331, 1994.
[28]M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," JOSA a, vol. 12, no. 5, pp. 1068-1076, 1995.
[29]N. Chateau and J.-P. Hugonin, "Algorithm for the rigorous coupled-wave analysis of grating diffraction," Journal of the Optical Society of America A, vol. 11, no. 4, pp. 1321-1331, 1994/04/01 1994.
[30]M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Journal of the Optical Society of America A, vol. 12, no. 5, pp. 1068-1076, 1995/05/01 1995.
[31]Y.-B. Chen, Z. Zhang, and P. Timans, "Radiative properties of patterned wafers with nanoscale linewidth," Journal of Heat Transfer, vol. 129, no. 1, pp. 79-90, 2007.
[32]T. Echániz, R. B. Pérez-Sáez, and M. J. Tello, "IR radiometer sensitivity and accuracy improvement by eliminating spurious radiation for emissivity measurements on highly specular samples in the 2-25 μm spectral range," Measurement, vol. 110, pp. 22-26, 2017.
[33]J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
[34]J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature, vol. 416, no. 6876, p. 61, 2002.
[35]T. Scientic. Nicolet Is50. Available: https://www.thermofisher.com/order/catalog/product/912A0760
[36]K. J. Åström and T. Hägglund, PID controllers: theory, design, and tuning. Instrument society of America Research Triangle Park, NC, 1995.
[37]FY700. Available: http://www.fa-taie.com.tw/admin/product/images/file/2014-12-31/54a35490c2bb2.pdf
[38]Isotech. PEGASUS R MODEL 970. Available: http://www.isotech.co.uk/infrared-calibrators/high-emissivity-blackbody-sources/pegasus-r-model-970
[39]P. Haslinger et al., "Attractive force on atoms due to blackbody radiation," Nature Physics, vol. 14, no. 3, p. 257, 2018.
[40]R. L. Burden and J. D. Faires, "Numerical analysis," ed: Cengage Learning, 2011.
[41]MPD249-P01. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7004&pn=MPD249-P01
[42]I. Yamada et al., "Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass," Optics letters, vol. 36, no. 19, pp. 3882-3884, 2011.
[43]I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, "Mid-infrared wire-grid polarizer with silicides," Optics letters, vol. 33, no. 3, pp. 258-260, 2008.
[44]M. Nevière and E. Popov, Light propagation in periodic media: differential theory and design. CRC Press, 2002.
[45]L. U. Manual, "National Instruments," Austin, TX, 1998.
[46]D. C. Harris et al., "Thermal, structural, and optical properties of Cleartran® multispectral zinc sulfide," Optical Engineering, vol. 47, no. 11, pp. 114001-114001-15, 2008.
[47]H. Li, "Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives," Journal of physical and chemical reference data, vol. 13, no. 1, pp. 103-150, 1984.
[48]B. Rousseau, J. F. Brun, D. D. S. Meneses, and P. Echegut, "Temperature Measurement: Christiansen Wavelength and Blackbody Reference," International Journal of Thermophysics, vol. 26, no. 4, pp. 1277-1286, 2005.
[49]M. Balat-Pichelin and A. Bousquet, "Total hemispherical emissivity of sintered SiC up to 1850 K in high vacuum and in air at different pressures," Journal of the European Ceramic Society, vol. 38, no. 10, pp. 3447-3456, 2018.
[50]C. Fan and J. Longtin, "Laser-based measurement of liquid temperature or concentration at a solid-liquid interface," Experimental thermal and fluid science, vol. 23, no. 1, pp. 1-9, 2000.
[51]B. Rousseau, J. Brun, D. D. S. Meneses, and P. Echegut, "Temperature measurement: Christiansen wavelength and blackbody reference," International Journal of Thermophysics, vol. 26, no. 4, pp. 1277-1286, 2005.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *