帳號:guest(13.59.72.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李佳陽
作者(外文):Li, Jia-Yang
論文名稱(中文):基於浸潤邊界法的流固耦合演算法研究
論文名稱(外文):Fluid-Structure Interaction Method Development with Immersed Boundary Method
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):陳明志
廖川傑
口試委員(外文):Chern, Ming-Jyh
Liao, Chuan-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:105033469
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:流固耦合浸潤邊界法多重網格彈性體
外文關鍵詞:fluid-solid interactionimmersed boundary methodmultigridelastic solid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:62
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
在包括風機設計以及上呼吸道模擬等工程實際問題中流體和固體的相互作用是當前研究的前沿領域。本論文基於浸潤邊界法提出了一種新的可用於彈性體及附近流暢計算的流固耦合演算法。同時為了增加近邊界處的計算精度在邊界附近採用了多重網格技術。論文應用充分發展圓管內流對計算程式進行了初步的驗證,計算結果與理論解在趨勢上能夠保持一致,但仍然具有明顯的差距,且誤差主要存在於粗、細網格的交界面上,且與泊松方程求解相關。為改善計算結果進一步的研究仍然是必要的。
The interaction between the elastic solid structure and the fluid field it immersed in is of great concern in many areas including wind turbine designing and upper nasal treatments. A new fluid-structure interaction method based on immersed boundary method is developed. Multigrid scheme is applied to trace the interface more accurately. Preliminary validation has been done in a fully developed tube flow model. The result is reasonable in trend, yet has obvious difference from the analytic solution. Advanced research is needed to improve the behavior of the computational program, especially where the two mesh domains transfer information that interacting with Poisson equation solving.
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.1.1 Wind Turbines 1
1.1.2 Obstructed Sleep Apnea Hypopnea Syndrome 2
1.1.3 Fluid-structure Interaction with Elastic Object 3
1.2 LITERATURE SURVEY 4
1.2.1 Arbitrary Lagrangian-Eulerian Method 4
1.2.2 Particle Method 7
1.2.3 Immersed Boundary Method 8
CHAPTER 2 NUMERICAL METHOD 11
2.1 NUMERICAL STRATEGY SELECTION 11
2.2 GOVERNING EQUATIONS 12
2.3 NUMERICAL SCHEME 16
2.4 COMPUTATIONAL ALGORITHM 22
CHAPTER 3 RESULTS AND DISCUSSIONS 32
CHAPTER 4 CONCLUSION 42
BIBLOGRAPHY 43
[1] 郭太英, 黎发贵. 从国外风电发展探讨我国风电发展思路[ J ]. 水电勘测设计, 2006, 58 ( 2 ): 20 ~ 24.
[2] UN Energy Statistics Database. http://data.un.org/Data.aspx?d=EDATA&f=cmID%3aEW
[3] Amy S Jordan, Andrew Wellman, Raphael C Heinzer, Yu-Lun Lo, Karen Schory, Louise Dover, Shiva, Gautam, Atul Malhotra, David P White. Mechanisms used to restore ventilation after partial upper airway collapse during sleep in humans. Thorax 2007; 62: 861–867.
[4] 叶京英,王小轶,韩德民等,中老年女性阻塞性睡眠呼吸暂停低通气综合征的社区调查,中华耳鼻咽喉头颈外科杂志,2005; 40,611-617.
[5] H. Klar Yaggi, John Concato, Walter N. Kernan, Judith H. Lichtman, Lawrence M. Brass, Vahid Mohsenin. Obstructive Sleep Apnea as a Risk Factor for Stroke and Death. N Engl J Med, 2005; 353:2034-2041.
[6] Peker Y, Hedner J, Norum J, Kraiczi H, Carlson J. Incresed incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up. Am J Respir Crit Care Med, 2002; 166(2): 159-165.
[7] Liu Y, Ye JY, Liu ZG, Huang LX, Luo HY, Li YR. The Quantification of Breathing Quality to Predict the Outcome of OSA Surgery, Journal of Biomechanics, 45, Supplement 1, S1.
[8] Malhotra A, Fogel RB, Edwards JK, Shea SA, White DP. Local mechanisms drive genioglossus activation in obstructive sleep apnea. Am J Respir Crit Care Med 2000; 161: 1746-1749.
[9] Liu Y, Ye JY, Liu ZG, Huang LX, Luo HY, Li YR. Flow oscillation – a measure to predict the surgery outcome for obstructed sleep apnea (OSA) subject. Biomechanics, 45: 2284-2288.
[10] Bukac M, Muha B. Stability and Convergence Analysis of the Extensions of the Kinematically Coupled Scheme for the Fluid-Structure Interaction[J]. SIAM Journal on Numerical Analysis, 2016, 54(5): 3032-3061.
[11] Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3): 227-253.
[12] 田保林, 申卫东, 刘妍, 等. ALE 框架下几种不同 Godunov 型格式的数值比较[J]. 計算物理, 2007, 24(5): 537-542.
[13] Tezduyar T E, Takizawa K, Christopher J. Multiscale sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique[C]//International workshop on fluid–structure interaction—theory, numerics and applications. Kassel University Press, Kassel. 2009: 231-252.
[14] Takizawa K, Tezduyar T E. Multiscale space–time fluid–structure interaction techniques[J]. Computational Mechanics, 2011, 48(3): 247-267.
[15] Hermant N, Chouly F, Silva F, et al. Numerical study of the vibrations of an elastic container filled with an inviscid fluid[J]. 2016.
[16] Lotfi B, Lotfi B, Sunden B, et al. 3D fluid-structure interaction (FSI) simulation of new type vortex generators in smooth wavy fin-and-elliptical tube heat exchanger[J]. Engineering Computations, 2016, 33(8): 2504-2529.
[17] Hsu M C, Kamensky D, Xu F, et al. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models[J]. Computational mechanics, 2015, 55(6): 1211-1225.
[18] Gerbeau J F, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2003, 37(4): 631-647.
[19] Gee M W, Küttler U, Wall W A. Truly monolithic algebraic multigrid for fluid–structure interaction[J]. International Journal for Numerical Methods in Engineering, 2011, 85(8): 987-1016.
[20] Hwang S C, Park J C, Gotoh H, et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid–structure interaction analysis method[J]. Ocean Engineering, 2016, 118: 227-241.
[21] Shin S J, Huang W X, Sung H J. Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method[M]//Computational Fluid Dynamics 2008. Springer Berlin Heidelberg, 2009: 481-486.
[22] Huang W X, Chang C B, Sung H J. Three-dimensional simulation of elastic capsules in shear flow by the penalty immersed boundary method[J]. Journal of Computational Physics, 2012, 231(8): 3340-3364.
[23] Huang W X, Sung H J. An immersed boundary method for fluid–flexible structure interaction[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33): 2650-2661.
[24] Wu T H, Guo R S, He G W, et al. Simulation of swimming of a flexible filament using the generalized lattice-spring lattice-Boltzmann method[J]. Journal of theoretical biology, 2014, 349: 1-11.
[25] Liao C C, Chang Y W, Lin C A, et al. Simulating flows with moving rigid boundary using immersed-boundary method[J]. Computers & Fluids, 2010, 39(1): 152-167.
[26] Liao C C, Hsiao W W, Lin T Y, et al. Simulations of two sedimenting-interacting spheres with different sizes and initial configurations using immersed boundary method[J]. Computational Mechanics, 2015, 55(6): 1191-1200.
[27] Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA journal, 1983, 21(11): 1525-1532.
[28] Choi H, Moin P. Effects of the computational time step on numerical solutions of turbulent flow. J Comput Phys 1994;113:1–4.
[29] Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[J]. Lecture notes in computational science and engineering, 2006, 53: 371.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *