帳號:guest(18.221.102.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李旋維
作者(外文):Lee, Hsuan-Wei
論文名稱(中文):具有環矽氧烷結構的單體以及交聯高分子的合成與性質研究
論文名稱(外文):Monomers possessing cyclotetrasiloxane units and the corresponding thermosetting resins: Preparation and properties
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):鄭如忠
蔡麗端
周鶴修
李榮和
蘇進成
口試委員(外文):Jeng, Ru-Jong
Tsai, Li-Duan
Chou, Ho-Hsiu
Lee, Rong-Ho
Su, Chean-Cheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032803
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:174
中文關鍵詞:環矽氧烷熱固性樹脂交聯介電常數熱性質
外文關鍵詞:CyclotetrasiloxaneThermosetting resinsCrosslinkingDielectric constantThermal properties
相關次數:
  • 推薦推薦:0
  • 點閱點閱:339
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在銅箔基板材料上,可交聯的熱固性樹脂為非常關鍵的因素之一,樹脂功能在於絕緣效果,通常以低介電常數/高阻燃性為訴求標準。在高頻基板應用領域(10 GHz),介電常數(Dk)及介電損耗(Df)要求在3.2及0.003以下。本研究主要開發多官能化環狀矽氧烷化合物,期望能達到在高頻基板下的應用。環狀矽氧烷可視為有機/無機化合物,能輕易進行化學反應形成末端為反應性的官能基團。經由交聯反應能擁有良好的熱穩定性及化學穩定性,因此在近期的材料研究中常被討論及應用。本研究主要利用環矽氧烷結構(cD4-4SiH)合成帶有不同官能基團之環矽氧烷化合物,同時具有四官能化之反應點,例如乙烯基(cD4-4VB)、苯并噁嗪(cD4-4Bz)、米氏酸(cD4-4MAMS)及環氧樹脂(cD4-4ECH),利用多種化學結構分析儀器鑑定官能基團及化合物純度。這些結構可自行交聯顯示出良好的成膜性,並擁有以下優點: (1). 多官能基環狀結構,能提高交聯程度; (2). 環狀中心的空間能降低介電常數; (3). 無機物及改質的芳香環能提升材料的熱穩定性。
此外也利用所製備四官能基團之環矽氧烷化合物與碳氫系列的反應型多官能基化合物(乙烯基、氫氧基、胺基、苯并噁嗪基或環氧基)進行交聯反應。藉由不同的樹脂及交聯劑配方,可調控膜材的熱性質及機械性質,同時存在有機-無機化合物及多尺度網狀結構的特性,進而改善殘碳率及介電性質。
環矽氧烷多官能基化合物的成功合成,可導入各種熱固性樹脂材料,大幅拓展高分子材料之分子設計與性能調控範疇。未來應用於無鹵阻燃劑及高頻低介電材料上帶來創新的發展。
On the copper foil substrate material, the cross-linkable thermosetting resin is one of the most critical factors. The function of the resins is the insulating effect, which is usually based on low dielectric constant and high flame retardancy. The dielectric constant (Dk) and dielectric loss (Df) are required to be below 3.2 and 0.003 under the high-frequency substrate (10 GHz). This research mainly develops multifunctional cyclic siloxane compounds, which are expected to be applied under high-frequency substrates. The cyclosiloxanes can be considered as organic/inorganic compounds and be easily transformed into terminal reactive functional groups through grafting or modification. As a result of cross-linking reactions, cyclic siloxanes can possess good thermal and chemical stability, so they have been discussed and applied in recent materials research.
In this study, the cyclosiloxane structure (cD4-4SiH) was reformed into cyclosiloxane compounds with different functional groups at the end, which have tetra-functional reaction sites, such as vinyl (cD4-4VB), benzoxazine (cD4-4Bz), meldrum’s acid (cD4-4MAMS) and epoxy resin (cD4-4ECH). A variety of chemical analyzers are used to identify functional groups and compound purity. In addition, the relevant structures include (1) the multifunctional cyclic structures that increase the degree of cross-linking; (2) the free volume in the ring center that reduces the dielectric constant; (3) inorganic and modified aromatic rings that enhance the thermal stability of the material. These structures can also self-crosslink to show good film formation, thermal properties, and high char yield.
In addition, the prepared cyclosiloxane compounds with tetra- functional groups are crosslinked with reactive multifunctional compounds of the the hydrocarbon family (vinyl, hydroxyl, amine, benzoxazine or epoxy). Different crosslinking agents and formulations can be used to modulate the thermal and mechanical properties of the film, resulting in a combination of organic-inorganic compounds and multi-scale network structures, which in turn improves char yield and dielectric properties.
The successful synthesis of multifunctional compounds from cyclosiloxane can be incorporated into various thermosetting resin materials to significantly expand the scope of molecular design and property modulation of polymer materials. In the future, it can also be applied to halogen-free flame retardants and high-frequency with low-dielectric materials, leading to innovative developments.
第一章 緒論 1
1-1 環矽氧烷結構與特性 1
1-2 反應官能基團之交聯共聚物 6
1-3 環矽氧烷高分子之應用領域 10
1-4 研究動機 18
第二章 文獻回顧 20
2-1 含乙烯基(Vinyl)之環矽氧烷化合物 20
2-1-1 乙烯基的簡介與化合物 20
2-1-2 含乙烯基團之矽氧烷文獻探討 27
2-2 含苯并噁嗪(Benzoxazine)基團之環矽氧烷化合物 30
2-2-1 苯并噁嗪簡介與化合物 30
2-2-2 含苯并噁嗪基團之矽氧烷文獻探討 33
2-3 米氏酸(Meldrum’s acid)反應的熱固性樹脂 44
2-3-1 米氏酸簡介 44
2-3-2 含米氏酸基團之矽氧烷文獻探討 46
2-4 含有cD4結構之高分子文獻回顧 48
第三章 實驗部分 56
3-1 實驗藥品 56
3-2 實驗儀器 66
3-3 實驗步驟 69
3-3-1 cD4-4As之合成反應 69
3-3-2 cD4-4PhOH之合成反應 69
3-3-3 cD4-4VB之合成反應 70
3-3-4 cD4-4Bz之合成反應 71
3-3-5 MAMS之合成反應 72
3-3-6 cD4-4MAMS之合成反應 73
3-3-7 cD4-4ECH之合成反應 74
3-3-8 CR-cD4-4VB之膜材製備 75
3-3-9 CR-PPE/cD4-4VB之膜材製備 75
3-3-10 CR-PPE/TAIC之膜材製備 75
3-3-11 CR-cD4-4Bz之膜材製備 76
3-3-12 CR-PBz之膜材製備 76
3-3-13 CR-cD4-4Bz/cD4-4PhOH之膜材製備 77
3-3-14 CR-cD4-4Bz/Bis-Bz之膜材製備 77
3-3-15 CR-cD4-4Bz/PBz之膜材製備 78
3-3-16 CR-cD4-4MAMS之膜材製備 78
3-3-17 CR-cD4-4ECH/cD4-4PhOH之膜材製備 78
3-3-18 CR-cD4-4ECH/DDS之膜材製備 79
3-3-19 CR-cD4-4ECH/ JA-D230之膜材製備 79
3-3-20 CR-cD4-4ECH/JA-T403之膜材製備 80
第四章 結果與討論 81
4-1 cD4-4VB反應流程圖 82
4-1-1 cD4-4VB合成及光譜討論 83
4-1-2 cD4-4VB交聯後(Cr-cD4-4VB)性質探討 92
4-1-3 Cr-PPE/TAIC與Cr-PPE/cD4-4VB製備及性質探討 97
4-1-4 cD4-4VB結論 106
4-2 cD4-4Bz反應流程圖及應用研究探討 107
4-2-1 cD4-4Bz合成及光譜討論 107
4-2-2 cD4-4Bz交聯後(Cr-cD4-4Bz)性質探討 110
4-2-3 cD4-4Bz與其它Bz化合物或苯酚衍生物共固化探討 112
4-2-4 cD4-4Bz結論 124
4-3 cD4-4MAMS反應流程圖及應用研究探討 125
4-3-1 cD4-4MAMS合成及光譜討論 125
4-3-2 cD4-4MAMS交聯後(Cr-cD4-4MAMS)性質探討 127
4-3-3 cD4-MAMS結論 133
4-4 cD4-4ECH與cD4-4PhOH反應流程圖及應用研究探討 133
4-4-1 cD4-4ECH合成及光譜討論 133
4-4-2 cD4-4ECH與不同交聯劑之配方調控與膜材探討 135
4-4-3 cD4-4PhOH與環氧樹脂之膜材探討 145
4-4-4 cD4-4ECH與cD4-4PhOH結論 151
第五章 結論 153
第六章 參考文獻 156
1. K. Vojinović, U. Losehand, N. W. Mitzel, “Dichlorosilane–dimethyl ether aggregation: a new motif in halosilane adduct formation”, Dalton Trans. 2004, 2578-2581.
2. J. D. Tong, R. Bai, Y. F. Zou, C. Y. Pan, S. Ichimura, “Flexibility improvement of epoxy resin by using polysiloxanes and their derivatives”, J. Appl. Polym. Sci. 1994, 52, 1373.
3. E. Yilgor, I. Yilgor, “1,3-bis(γ-aminopropyl)tetramethyldisiloxane modified epoxy resins: curing and characterization”, Polymer 1998, 39, 1691.
4. K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, “Low dielectric constant materials for microelectronics”, J. Appl. Phys. 2003, 93, 8793-8841.
5. M. R. Baklanov, and K. Maex, “porous low dielectric constant materials for microelectronics”, Phil. Trans. R. Soc. A 2006, 364, 201-215.
6. J. Wu & P. T. Mather, “POSS Polymers: Physical Properties and Biomaterials Applications”, Journal of Macromolecular Science, Part C: Polymer Reviews 2009, 49, 25-63.
7. E. Ayandele, B. Sarkar, and P. Alexandridis, “Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites”, Nanomaterials 2012, 2, 445-475.
8. Y. J. Lee, J. M. Huang, S. W. Kuo, J. S. Lu, F. C. Chang, “Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications”, Polymer 2005, 46, 173-181.
9. K. Greve, E. Nielsen, O. Ladefoged, “Siloxanes (D3, D4, D5, D6, HMDS)”, Environmental Project 2014, No. 1531.
10. H. H. Moretto, M. Schulze, G. Wanger, “Silicones”, Ullmann's Encyclopedia of Industrial Chemistry 2012, 32, 675-712
11. R. P. BRILL, G. R. PALMESE, “An Investigation of Vinyl–Ester-Styrene Bulk Copolymerization Cure Kinetics Using Fourier Transform Infrared Spectroscopy”, J. Appl. Polym. Sci. 2000, 76, 1572-1582.
12. J. A. Reina, A. Serra, V. Cadiz, “Thermosets obtained by chemical modification of poly(epich1orohydrin) with vinyl-terminated aromatic
Carboxylates”, Macromol. Chem. Phys. 1996, 197, 3001-3015.
13. X. Fernandez-Francos. D. Foix, A. Serra, J. M. Salla, X. Ramis, “Novel thermosets based on DGEBA and hyperbranched polymers modified with vinyl and epoxy end groups”, React. Funt. Polym. 2010. 70, 798-806.
14. I. Hamerton, “High-performance thermoset–thermoset polymer blends: a review of the chemistry of cyanate ester–bismaleimide Blends”, High Perform. Polym, 1996, 8, 83-95.
15. E. Dolci, V. Froidevaux, C. Joly-Duhamel, R. Auvergne, B. Boutevin and S. Caillol, “Maleimides As a Building Block for the Synthesis of High Performance Polymers”, Polym. Rev. 2016, 56, 512-556.
16. R. J. Iredale, C. Ward and I. Hamerton, “Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides”, Prog. Polym. Sci. 2017, 69, 1-21.
17. L. C. Over, E. Grau, S. Grelier, M. A. R. Meier and H. Cramail, “Macromolecules in Microfluidics: A Synergy for Systems Engineering Macromol”, Chem. Phys. 2017, 218, 1600411.
18. K. Kudo, M. Furutani and K. Arimitsu, “Imidazole-Type Thermal Latent Curing Agents With High Miscibility For One-Component Epoxy Thermosetting Resins” J. Polym. Sci. A Polym. Chem. 2016, 54, 2680-2688.
19. H. Liu, X. Wan, and D. Wu, “Preparation, isothermal kinetics, and performance of a novel epoxy thermosetting system based on phosphazene-cyclomatrix network for halogen-free flame retardancy and high thermal stability”, Thermochimica Acta 2015, 607, 60-73.
20. X. Ning and H. Ishida, “Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers”, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1121-1129.
21. N. N. Ghosh, B. Kiskan and Y. Yagci, “Polybenzoxazines-New high performance thermosetting resins: Synthesis and properties”, Prog. Polym. Sci. 2007, 32, 1344-1391.
22. T. Takeichi, T. Kawauchi and T. Agag, “High Performance Polybenzoxazines as a Novel Type of Phenolic Resin”, Polym. J. 2008, 40, 1121-1131.
23. H. Y. Li, Y. Y. Lee, Y. Chang, C. H. Lin and Y. L. Liu, “Robustly blood-inert and shape-reproducible electrospun polymeric mats”, Adv. Mater. Interfaces. 2015, 2, 1500065.
24. T. Matsumoto, D. Mikami, T. Hashimoto, M. Kaise, R. Takahashi and S. Kawabata, “Alicyclic polyimides-a colorless and thermally stable polymer for opto-electronic devices”, J. Phys.: Conf. Ser. 2009, 187, 012005.
25. P. Rosso, L. Ye, K. Friedrich, S. Sprenger, “A Toughened Epoxy Resin by Silica Nanoparticle Reinforcement”, J. Appl. Polym. Sci. 2006, 100, 1849-1855.
26. L. Zhang, J. Mao, S. Wang, Y. Zheng, X. Liu, Y. Cheng, “Benzoxazine Based High Performance Materials with Low Dielectric Constant: A Review”, Curr. Org. Chem. 2019, 23, 809-822.
27. N. H. Nordin, M. R. Ramli, N. Othman and Z. Ahmad, “Synthesis and Thermal Stability of Crosslinked Carbazole-Substituted Poly- (dimethylsiloxane) for LED Encapsulation”, Polym. & Polym. Compo. 2014, 22, 625-632.
28. Rajiv Srivastava, D. M. Dukes, “High refractive index siloxanes”, WO patent 2014/152686 A2, 2014.
29. H. Jin, and W. Xu, “The Preparation and Properties of Fluoroacrylate- Modified Polysiloxane as a Fabric Coating Agent”, Coatings 2018, 8, 31.
30. M. O. Saed & E. M. Terentjev, “Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers”, Scientific Reports 2020, 10, 6609-6617.
31. H. Rao, Z. Zhanga, C. Song, Tao Qiao, S. Xu, “Gas separation properties of siloxane/polydimethylsiloxane hybrid membrane containing fluorine”, Separation and Purification Technology 2011, 78, 132-137.
32. B. Gierczyk, G. Schroeder, M. Cegłowski, “New polymeric metal ion scavengers with polyamine pod and moieties”, React. Funct. Polym. 2011, 71, 463-479.
33. 陳敏東, 張幸, 張明道, 徐靜, 肖博, 徐磊磊, 令狐庚, 蓋鑫磊, 沈亞飛, “一種樹型骨架離子液體及其製備方法與應用”, CN patent 105732695 A, 2016.
34. F. Dong, L. Lu, C. S. Ha, “Silsesquioxane-Containing Hybrid Nanomaterials: Fascinating Platforms for Advanced Applications”, Macromol. Chem. Phys. 2019, 220, 1800324-1800344.
35. X. Y. Zhao and H. J. Liu, “Review of polymer materials with low dielectric Constant”, Polym Int. 2010, 59, 597-606.
36. S. W. Kuo, F. C. Chang, “POSS related polymer nanocomposites”. Prog. Polym. Sci. 2011, 36, 1649-1696.
37. L. Li, R. Liang, Y. Li, H. Liu, S. Feng, “Hybrid thiol-ene network nanocomposites based on multi(meth)acrylate POSS” J. Colloid Interface Sci. 2013, 406, 30-36.
38. H. Zhou, Q. Ye, J. Xu, “Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications” Mater. Chem. Front. 2017, 1, 212-230.
39. M. Huang, C. H. Hsu, J. Wang, S. Mei, X. Dong, Y. Li, M. Li, H. Liu, W. Zhang, T. Aida, W. B. Zhang, K. Yue, S. Z. D. Cheng, “Selective assemblies of giant tetrahedra via precisely controlled positional interactions” Science 2015, 348, 424-428.
40. W. Zhang, M. Huang, H. Su, S. Zhang, K. Yue, X. H. Dong, , X. Li, H. Liu, S. Zhang, C. Wesdemiotis, B. Lotz, W. B. Zhang, Y. Li, S. Z. D. Cheng, “Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks.” ACS Cent. Sci. 2016, 2, 48-54.
41. A. Grill, and D. A. Neumayer, “Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization”, J. Appl. Phys. 2003, 94, 6697-6707.
42. J. H. Jin, S. C. Yang, and B. S. Bae, “Network structure–property relationship in UV-cured organic/inorganic hybrid nanocomposites”, Polym. Chem. 2011, 2, 168.
43. B. De and N. Karak, “Ultralow dielectric, high performing hyperbranched epoxy thermosets: synthesis, characterization and property evaluation”, RSC Adv. 2015, 5, 35080-35088.
44. K. Nozaki, P. D. Bartlett,“The kinetics of decomposition of benzoyl peroxide in solvents. I”, J. Am. Chem. Soc. 1946, 68, 1686-1692.
45. C. J. Bevingt, “The sensitized polymerization of styrene. The rate and efficiency of initiation”, Trans. Faraday Soc. 1955, 51, 1392-1397.
46. S. Penczek, G. Moad, “Glossary of basic terms in polymer science”, Pure Appl. Chem. 1996, 68, 2287-2311.
47. Hanna Dodiuk, Sydney H Goodman, Handbook of Thermoset Plastics, 2nd Ed, 1999.
48. Santosh K. Yadav, Kevin M. Schmalbach, Emre Kinaci, Joseph F. Stanzione III, Giuseppe R. Palmese, “Recent advances in plant-based vinyl ester resins and reactive diluents”, European Polymer Journal 2018, 98, 199-215.
49. M. Sultania, J.S.P. Rai, D. Srivastava, “Studies on the synthesis and curing of epoxidized novolac vinyl ester resin from renewable resource material”, Eur. Polym. J. 2010, 46, 2019-2032.
50. X. Yang, S. Li, J. Xia, J. Song, K. Huang, M. Li, “Renewable myrcene-based UV curable monomer and its copolymers with acrylated epoxidized soybean oil: design Preparation, and Characterization”, Bioresources 2015, 10, 2130-2142.
51. M. P. Luda, A.I. Balabanovich1, G. Camino, “Thermal decomposition of fire retardant brominated epoxy resins”, J. Anal. Appl. Pyrolysis. 2002, 65, 5-40.
52. Pritchard, G., et al, “Thermosetting Resins for Reinforced Plastics”, Applied Science Publishers 1982, London.
53. S. K. Yadava, K. M. Schmalbach, E. Kinacia, J. F. Stanzione III, G. R. Palmesea, “Recent advances in plant-based vinyl ester resins and reactive diluents”, Eur. Polym. J. 2018, 98, 199-215.
54. L. Shan, C. G. Robertson, K. N. E. Verghese, E. Burts, J. S. Riffle, T. C. Ward, K. L. Reifsnider, “Influence of Vinyl Ester/Styrene Network Structure on Thermal and Mechanical Behavior”, J. Appl. Polym. Sci. 2001, 80, 917-927.
55. T. F. Scott, W. D. Cook, J. S. Forsythe, “Kinetics and network structure of thermally cured vinyl ester resins”, Eur. Polym. J. 2002, 38, 705-716.
56. M. Ouaknine, I. J. Malik, M. Odera, T. Ishigaki, T. Ueda, T. Fukada, W. S. Yoo, P. Soussan, P. Muller, “Low temperature RTP for BCB curing”, Microelectron Eng. 2007, 74, 2646–2652.
57. J. Zhou, J. Wang, Y. Tao, L. Fang, J. Sun, and Q. Fang, “New Triazine-Based Polymers with Low Dielectric Constants and High Thermostability Derived from Biorenewable Anethole and Thermocrosslinkable Benzocyclobutene”, ACS Sustainable Chem. Eng. 2018, 6, 5620-5626.
58. M. A. Amendt, L. M. Pitet, S. Moench and M. A. Hillmyer, “Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets”, Polym. Chem. 2012, 3, 1827-1837.
59. W. Y. Hung, C. Y. Lin, T. L. Cheng, S. W. Yang, A. Chaskar, G. L. Fan, K. T. T. Wong, T. C. Chao, M. R. Tseng, “A new thermally crosslinkable hole injection material for OLEDs”, Org. Electron. 2012, 13, 2508-2515.
60. H. Rener, G. Schlamp, I. Kleineachter, E. Drost, H. M. Luschow, P. Tews, P. Panster, M. Diehl, J. Lang, T. Kreuzer, A. Knodler, K. A. Starz, K. Dermann, J. Rothaut, R. Drieselmann, C. Peter, R. Schiele, “Platinum Group Metals and Compounds”, Ullmann's Encyclopedia of Industrial Chemistry 2012, 28, 318-388.
61. J. Stein, L. N. Lewis, Y. Gao, and R. A. Scott, “In Situ Determination of the Active Catalyst in Hydrosilylation Reactions Using Highly Reactive Pt(0) Catalyst Precursors”, J. Am. Chem. Soc. 1999, 121, 3693-3703.
62. J. J. Wang, Y. J. Luo, K. K. Jin, C. Yuan, J. Sun, F. K. He and Q. Fang, “A novel one-pot synthesized organosiloxane: synthesis and conversion to directly thermo-crosslinked polysiloxanes with low dielectric constants and excellent thermostability”, Polym. Chem. 2015, 6, 5984-5988.
63. J. J. Li, M. Du, Z. Q. Zhao, and H. Liu, “Cyclopolymerization of Disiloxane-Tethered Divinyl Monomers To Synthesize Chirality-Responsive Helical Polymers”, Macromolecules 2016, 49, 445-454.
64. H. Ishida, “Overview and historical background of polybenzoxazine research”, Handbook of benzoxazine resins Elsevier: 2011, p3-81.
65. W. Burke, “3, 4-Dihydro-1, 3, 2H-Benzoxazines. Reaction of p-substituted phenols with N, N-dimethylolamines”. Journal of the American Chemical Society 1949, 71 (2), 609-612.
66. A. Renaud, Y. Paint, A. Lanzutti, L. Bonnaud, L. Fedrizzi, P. Dubois, M. Poorteman, M. G. Olivier, “Sealing porous anodic layers on AA2024-T3 with a low viscosity benzoxazine resin for corrosion protection in aeronautical applications”, RSC Adv. 2019, 9, 16819-16830.
67. X. Li, S. Zhao, W. Hu, X. Zhang, L. Pei, Z. Wang, “Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2”, Applied Surface Science 2019, 481, 374-378.
68. C. H. Lin, S. X. Cai, T. S. Leu, T. Y. Hwang, H. H. Lee, “Synthesis and Properties of Flame-Retardant Benzoxazines by Three Approaches”, Journal of Polymer Science: Part A: Polymer Chemistry 2006, 44, 3454-3468.
69. C. W. Chang, C. H. Lin, H. T. Lin, H. J. Huang, K. Y. Hwang, A. P. Tu, “Development of an aromatic triamine-based flame-retardant benzoxazine and its high-performance copolybenzoxazines”, European Polymer Journal 2009, 45, 680-689.
70. Q. Y. Xu, M. Zeng, J. B. Chen, S. G. Zeng, Y. W. Huang, Z. J. Feng, Q. Q. Xu, C. J. Yan, Y. Gu, “Synthesis, polymerization kinetics, and high-frequency dielectric properties of novel main-chain benzoxazine copolymers”, Reactive and Functional Polymers 2018, 122, 158-166.
71. Y. Lyu, Hatsuo Ishida, “Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications”, Progress in Polymer Science 2019, 99, 101168-101224.
72. T. Takeichi, T. Kano, T. Agag, T. Kawauchi, N. Furukawa, “Preparation of High Molecular Weight Polybenzoxazine Prepolymers Containing Siloxane Unites and Properties of Their Thermosets”, Polymer Chemistry 2010, 48, 5945-5952.
73. S. Bagherifam, B. Kiskan, B. Aydogan, Y. Yagci, J. Hacaloglu, “Thermal degradation of polysiloxane and polyetherester containing benzoxazine moieties in the main chain”, Journal of Analytical and Applied Pyrolysis 2011, 90, 155-163.
74. K. Zhang, X. Yu, S. W. Kuo, “Outstanding Dielectric and Thermal Properties of Main Chain-Type Poly(benzoxazine-co-imide-co- siloxane)-Based Cross-Linked Networks”, Polym. Chem. 2019, 10, 2387-2396.
75. Y. L. Liu, C. W. Hsu, C. I. Chou, “Silicon-Containing Benzoxazines and Their Polymers: Copolymerization and Copolymer Properties”, J Polym Sci Part A: Polym Chem. 2007, 45, 1007-1015.
76. K. C. Chen, H. T. Li, W. B. Chen, C. H. Liao, K. W. Sun, F. C. Chang, “Synthesis and characterization of a novel siloxane-imide-containing polybenzoxazine”, Polym Int. 2011, 60, 436-442.
77. H. Li, J. L. Xu, K. Zeng, Y. Li, C. Z. G. Li, “Synthesis and characterization of siloxane-containing benzoxazines with high thermal stability”, High Performance Polymer 2019, 32(3), 1-8.
78. P. Sharma, L. Nebhani, “Hybrid polymers based on bio-based benzoxazines with inorganic siloxane linkage to confer impressive thermal performance”, Polymer 2020, 199, 122549-122558.
79. C. Y. Hsieh, W. C. Su, C. S. Wu, L. K. Lin, K. Y. Hsu, Y. L. Liu, “Benzoxazine-containing branched polysiloxanes: Highly efficient reactive-type flame retardants and property enhancement agents for polymers”, Polymer 2013, 54, 2945-2951.
80. K. C. Chen, H. T. Li, C. H. Shih, W. B. Chen, S. C. Huang, “A New Thermosetting Resin Prepared From a Siloxane-Containing Benzoxazine and Epoxy Resin”, Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), 2014.
81. C. H. Lin, W. B. Chen, W. T. Whang, C. H. Chen, “Characteristics of Thermosetting Polymer Nanocomposites: Siloxane-Imide-Containing Benzoxazine with Silsesquioxane Epoxy Resins”, Polymers 2020, 12, 2510-2519.
82. S. Rajesh Kumar, S. Krishna Mohan, J. Dhanasekaran, “Novel glass fabric reinforced polybenzoxazine-silicate composites along with polyvinyl butyral for high service temperature applications”, New J. Chem. 2018, 42, 16083-16092.
83. Y. H. Liu, W. A. Zhang, Y. Chen, S. Zheng, “Polybenzoxazine Containing Polysilsesquioxane: Preparation and Thermal Properties”, J. Appl. Polym. Sci. 2006, 99, 927-936.
84. Y. J. Lee, S. W. Kuo, C. F. Huang, F. C. Chang, “Synthesis and characterization of polybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomeric silsesquioxane (POSS)”, Polymer 2006, 47, 4378-4386.
85. K. W. Huang, S. W. Kuo, “High-Performance Polybenzoxazine Nanocomposites Containing Multifunctional POSS Cores Presenting Vinyl-Terminated Benzoxazine Groups”, Macromol. Chem. Phys. 2010, 211, 2301-2311.
86. A. M. Dumas, E. Fillion, “Meldrum’s Acids and 5-Alkylidene Meldrum’s Acids in Catalytic Carbon-Carbon Bond-Forming Processes”, Acc. Chem. Res. 2009, 43, 440-454.
87. D. Davidson, S. A. Bernhard, “The Structure of Meldrum's Supposed β-Lactonic Acid”, J. Am. Chem. Soc. 1948, 70, 3426-3428.
88. F. A. Leibfarth, M. Kang, M. Ham, J. Kim, L. M. Campos, N. Gupta, B. Moon and C. J. Hawker, “A facile route to ketene-functionalized polymers for general materials applications”, Nat. Chem. 2010, 2, 207-212.
89. F. A. Leibfarth, Y. Schneider, N. A. Lynd, A. Schultz, B. Moon, E. J. Kramer, G. C. Bazan and C. J. Hawker, “Ketene Functionalized Polyethylene: Control of Cross-Link Density and Material Properties”, J. Am. Chem. Soc. 2010, 132, 14706-14709.
90. Y. Miyamura, C. Park, K. Kinbara, F. A. Leibfarth, C. J. Hawker and T. Aida, “Controlling Volume Shrinkage in Soft Lithography through Heat-Induced Cross-Linking of Patterned Nanofibers”, J. Am. Chem. Soc. 2011, 133, 2840-2843.
91. F. A. Leibfarth, M. Wolffs, L. M. Campos, K. Delany, N. Treat, M. J. Kade, B. Moon and C. J. Hawker, “Low-temperature ketene formation in materials chemistry through molecular engineering”, Chem. Sci. 2012, 3, 766-771.
92. M. Wolffs, M. J. Kade and C. J. Hawker, “An energy efficient and facile synthesis of high molecular weight polyesters using ketenes”, Chem. Commun. 2011, 47, 10572-10574.
93. W. L. Su and Y. L. Liu, “Self-crosslinkable and modifiable polysiloxanes possessing Meldrum’s acid groups”, Polym. Chem. 2018, 9, 4781-4788.
94. Jacob S. A. Ishibashi and Julia A. Kalow, “Vitrimeric Silicone Elastomers Enabled by Dynamic Meldrum’s Acid-Derived Cross-Links”, ACS Macro Lett. 2018, 7, 482-486.
95. Y. Kang, C. Lee, J. K. Lee, J I. Lee, “Cyclic siloxane-based compounds and solid polymer electrolyte composition containing the same as a crosslinking agent”, US patent 81242832 B2, 2012.
96. M. Handke, W. Jastrzebski, A. Kowalewska, W. Mozgawa, “Spectroscopic study of preceramic polymers (xerogels) obtained by hydrolytic condensation of ethoxycyclosiloxanes”, J. Mol. Struct. 2009, 248-253.
97. C. M. Uritu, M. Calin, S. S. Maier, C. Cojocaru, A. Nicolescu, D. Peptanariu, C. A. Constantinescu, D. Stan, M. Barboiu, and M. Pinteala, “Flexible cyclic siloxane core enhances the transfection efficiency of polyethylenimine-based non-viral gene vectors”, J. Mater. Chem. B 2015, 3, 8250-8267.
98. S. Zhao, Z. Yang, and X. Zhou, “Microstructure and Mechanical Properties of Compact SiC/SiC Compositev Fabricated with an Infiltrative Liquid Precursor”, J. Am. Ceram. Soc. 2015, 98, 1332-1337.
99. Farhad G. Mizori, “Adhesive compositions containing cyclic siloxanes and methods for use thereof”, US patent 7777064 B2, 2010.
100. I. Nor, V. Sandu, C. Ibanescu, N. Hurduc, “Synthesis and characterization of star and brush grafted polysiloxanes, obtained by atom transfer radical polymerization”, e-Polymers 2008, 138, 1-15
101. V. Hurduc, M. Bercea, M. Lungu, and I. Nor, “Copolymers with Controlled Architectures as Rheological Additives for Alkydic Resin Solutions”, J. Macromol. Sci, Part B: Ph. 2009, 48, 379-390.
102. B. Marciniec, “Comprehensive Handbook on Hydrosilation”, Pergamon Press. New York, 1992.
103. R. Pieters, R.A. de Graaf, L.P.B.M. Janssen, “The kinetics of the homogeneous benzylation of potato starch in aqueous solutions”, Carbohydrate Polymers 2003, 51, 375-381.
104. K. Dilts & M. Durand, “The synthesis of substituted benzyl phenyl ethers: An undergraduate organic chemistry experiment”, J. Chem. Educ. 1990, 67, 74.
105. B. Laubie, E. Bonnafous, V. Desjardin, P. Germain, E. Fleury, “Silicone-based surfactant degradation in aqueous media”, Sci. Total Environ. 2013, 454, 199-205.
106. V. Percec, H. Nava, J. M. Rodriguez-Parada, “Functional polymers and sequential copolymers by phase transfer catalysis”, Polym. Bull. 1984, 12, 261-268.
107. F. D. Uhlig & H. C. Marsmann, “Silicon-29 NMR some practical Aspects”, Inc Gelest Catalogue 2003, 195-195.
108. J. Daum, G. Erdodi, J. P. Kennedy, “Cyclolinear Polysiloxanes. I. Synthesis and Characterization”, J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4039-4052.
109. C. W. Chen, I. H. Lin, C. C. Lin, J. L. Lin, Masaki Horie, “Synthesis of poly(2,6-dimethyl-1,4-phenylene oxide) derivatives in water using water-soluble copper complex catalyst with natural ligands”, Polymer 2013, 54, 5684-5690.
110. E. N. Peters, S. M. Fisher, H. Guo, “Polyphenylene Ether Macromonomers. XI. Use in Non-Epoxy Printed Wiring Boards”, Degonzague IPC Printed Circuits EXPO & APEX., 2011.
111. G. W. Hwang, C. T. Lin, C. S. Chiu, “Curable polyphenylene ether resin, composition made therefrom, and process for preparing the resin”, US Patent 6569982B2, 2003.
112. H. Inoue, E. Saito, Hi. Fujiwara, “Poly (phenylene ether) resin composition, prepreg, and laminated sheet”, US Patent 7413791B2, 2008.
113. C. H. Chen, C. H. Liu, M. Ariraman, C. H. Lin, and T. Y. Juang, “Phosphinated Poly(aryl ether)s with Acetic/Phenyl Methacrylic/ Vinylbenzyl Ether Moieties for High-Tg and Low-Dielectric Thermosets”, ACS Omega 2018, 3, 6031-6038.
114. H. W. Lee, L. M. Chang, Y. L. Liu, “Thermosetting resins from a tetra-functional vinylbenzene compound possessing cyclic siloxane cores”, J. Polym. Sci., Part A: Polym. Chem. 2021, 59, 1912-1918.
115. C. Bo, X. Yang, L. Hu, M. Zhang, P. Jia, Y. Zhou, “Enhancement of Flame-Retardant and Mechanical Performance of Phenolic Foam with the Incorporation of Cardanol-Based Siloxane”, Polym. Compos. 2019, 40, 2539-2547.
116. S. Ohashi and H. Ishida “Various Synthetic Methods of Benzoxazine Monomers”, Advanced and Emerging Polybenzoxazine Science and Technology 2017, p1-8.
117. K. Zhang, H. Ishida, “Smart synthesis of high-performance thermosets based on ortho-amide-imide functional benzoxazines”, Front.Mater. 2015, 2, 1-9.
118. C. X. Zhang, Y. Y. Deng, Y. Y. Zhang, P. Yang, Y. Gu, “Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl- 1,3-benzoxazine from phenol, aniline and formaldehyde”, Chin. Chem. Lett. 2015, 26, 348-352.
119. K.S. Santhosh Kumar, C.P. Reghunadhan Nair, T. S. Radhakrishnan, K. N. Ninan, “Bis allyl benzoxazine: Synthesis, polymerization and polymer properties”, Eur. Polym. J. 2007, 43, 2504-2514.
120. C. L. Zhu, X. Gao, W. X. Fan, X. F. Fu, “Synthesis, characterization, and properties of a novel aromatic ester-based polybenzoxazine”, RSC Adv. 2020, 10, 6953-6959.
121. M. Z. Xu, Y. X. Lei, D. X. Ren, L. Chen, K. Li, X. B. Liu, “Thermal Stability of Allyl-Functional Phthalonitriles-Containing Benzoxazine/Bismaleimide Copolymers and Their Improved Mechanical Properties”, Polymers 2018, 10, 596-610.
122. Y. L. Liao, C. C. Hu, J. Y. Lai, Y. L. Liu, “Crosslinked polybenzoxazine based membrane exhibiting in-situ self-promoted separation performance for pervaporation dehydration on isopropanol aqueous solutions”, J. Membr. Sci. 2017, 531, 10-15.
123. M. Zhong, P. K. Su, J. Y. Lai, Y. L. Liu, Organic solvent-resistant and thermally stable polymeric microfiltration membranes based on crosslinked polybenzoxazine for size-selective particle separation and gravity-driven separation on oil-water emulsions”, J. Membr. Sci. 2018, 550, 18-25.
124. Y. L. Liu, C. I. Chou, “High Performance Benzoxazine Monomers and Polymers Containing Furan Groups”, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5267-5282.
125. T. Takeichi, T. Kano, T. Agag, “Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets”, Polymer 2005, 46, 12172-12180.
126. T. Agag and T. Takeichi, “Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets”, Macromol. 2003, 36, 6010-6017.
127. M. Arslan, B. Kiskan, Y. Yagci, “Ring-Opening Polymerization of 1,3-Benzoxazines via Borane Catalyst”, Polymers 2018, 10, 239-251.
128. K. Zhang, L. Han, Y. J. Nie, M. L. Szigeti, H. Ishida, “Examining the effect of hydroxyl groups on the thermal properties of polybenzoxazines: using molecular design and Monte Carlo simulation”, RSC Adv. 2018, 8, 18038-18050.
129. Y. L. Liu, S. H. Li, “Poly(dimethylsiloxane) Star Polymers Having Nanosized Silica Cores”, Macromol. Rapid Commun. 2004, 25, 1392-1395.
130. Y. L. Liu, C. I. Chou, “The effect of silicon sources on the mechanism of phosphoruse silicon synergism of flame retardation of epoxy resins”, Polym. Degrad. Stab. 2005, 90, 515-522.
131. M. Laskoski, M. B. Schear, A. Neal, D. D. Dominguez, H. L. Ricks-Laskoski, J. Hervey, T. M. Keller, “Improved synthesis and properties of aryl ether-based oligomeric phthalonitrile resins and polymers”, Polymer 2015, 67, 185-191.
132. H. Jung, Frank A. Leibfarth, S. Woo, S. Lee, M.Kang, B.Moon, C. J. Hawker, and J. Bang, “Efficient Surface Neutralization and Enhanced Substrate Adhesion through Ketene Mediated Crosslinking and Functionalization”, Adv. Funct. Mater. 2013, 23, 1597-1602.
133. Y. L. Liu, Y. J. Chen, W. L. Wei, “Novel thermosetting resins based on 4-(N-maleimidophenyl)glycidylether I. Preparation and characterization of monomer and cured resins”, Polymer 2003, 44, 6465-6473.
134. A. Maiorana, S. Spinella, and R. A. Gross, “Bio-Based Alternative to the Diglycidyl Ether of Bisphenol A with Controlled Materials Properties”, Biomacromolecules 2015, 16, 1021-1031.
135. T. Nobuta, G. Xiao, D. Ghislieri, K. Gilmore, and P. H. Seeberger, “Continuous and Convergent Access to Vicinyl Amino Alcohols”, Chem. Commun. 2014, 00, 1-3.
136. Z. He, Y. Wang, T. Zhao, Z. Ye, and H. Huang, “Ultrasonication- assisted rapid determination of epoxide values in polymer mixtures containing epoxy resin”, Anal. Methods. 2014, 6, 4257-4261.
137. A. Farkas, P. F. Strohm, “Imidazole catalysis in the curing of epoxy resins”, J. Appl. Polym. Sci. 1968, 12, 159-168.
138. J. M. Batron, P. M. Shepherd, “The curing reaction of an epoxide resin with 2‐ethyl‐4‐methylimidazole, a calorimetric study of the kinetics of formation of epoxide‐imidazole adducts”, Macromol. Chem. Phys. 1975, 4, 919-930.
139. C. S. Wu, Y. L. Liu, Y. S. Chiu, “Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents”, Polymer 2002, 43, 4277-4284.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *