帳號:guest(18.117.186.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮王慶燈
作者(外文):Nguyen, Vuong Khanh Dang
論文名稱(中文):酸鹼應答中空微球系統能自我生成一氧化氮釋放膠束倉庫用於加強腫瘤放療敏感度
論文名稱(外文):A pH-Responsive Hollow Microsphere System that Can In Situ Self-Generate NO Micellar Depots for Enhancing Tumor Radiosensitivity
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):賴伯亮
黃倉淼
劉培毅
口試委員(外文):Po, Liang-Lai
Huang, Tsang-maio
Oliver, Liu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032710
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:29
中文關鍵詞:放射治疗一氧化氮癸酸钠泡沫产生胶束贮库
外文關鍵詞:radiotherapynitric oxidesodium decanoatebubble generationmicellar depots
相關次數:
  • 推薦推薦:0
  • 點閱點閱:833
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
实体瘤组织的微环境通常以缺氧为特征,缺氧已被认为是抗放射治疗的主要原因。一氧化氮(NO)被认为是放射增敏剂,因为它具有固定辐射诱导的DNA损伤的能力。由于难以直接施用气态NO分子,已经尝试递送外源NO供体。然而,当暴露于含有血红素的蛋白质如血红蛋白(Hb)时,由NO供体产生的NO的体内半衰期极短,限制了其用于放射增敏的应用。为了延长其半衰期,必须立即保护所产生的NO免于Hb的进入。为了解决这个问题,提出了一种空心微球(HM)系统,其包含PLGA壳和含有pH响应性NO供体(DETA-NONOate; NONOate)和表面活性剂分子(癸酸钠; SD)的水性核。 。在酸性肿瘤组织中,环境质子通过HM的PLGA壳渗透并与其包封的NONOate反应,自发产生NO气泡;同时,表面活性剂分子SD在不存在Hb的条件下主动捕获产生的NO气泡以在HM(Micelles @ HM)内形成胶束贮库。由NONOate和SD在本体溶液(Micelles @ BS)中自组装的含NO的胶束贮库和在其中存在Hb的本体溶液中由游离NONOate产生的NO用作对照。在前一种情况下,产生的NO立即在Micelles @ HM内得到保护,而在后两种情况下,由于环境Hb的存在,产生的NO的一部分可能会发生降解。我们的结果表明,Micelles @ HM产生的NO水平显着高于(~80%)Micelles @ BS(~35%)和游离NONOate(~20%)产生的NO水平,这表明Micelles @ HM在缺乏Hb大大提高了NO的稳定性。然后NO气体可以从Micelles @ HM中逐渐释放出来,充当放射增敏剂并增强辐射诱导的细胞死亡。在体外研究中,结果表明NO(60μM)具有放射增敏作用,当联合放射(2Gy)和Micelles @ HM显着改善NO在Hb存在下的稳定性和放射增敏作用。在体内研究中,与治疗后20天的其他组相比,微粒(MP)与放射联合显示出更好的抗肿瘤效果(肿瘤体积下降约20%)。该研究的前瞻性结果为逆转缺氧引起的放射抗性提供了有用的策略。
The microenvironment of solid tumor tissues is generally characterized by hypoxia, which has been regarded as the major cause of resistance to radiotherapy. Nitric oxide (NO) is considered as a radiosensitizer, owing to its capability on fixation of radiation-induced DNA damage. As directly administering gaseous NO molecules is difficult, attempts have been made to deliver exogenous NO donors. Nevertheless, the in vivo half-life of NO that is generated from NO donors is extremely short when exposed to heme-containing proteins such as hemoglobin (Hb), restricting its application for the radiosensitization. To extend its half-life, the generated NO must be immediately protected from the access of Hb. In an attempt to address this concern, a hollow microsphere (HM) system that comprises a PLGA shell and an aqueous core containing a pH-responsive NO donor (DETA-NONOate; NONOate) and a surfactant molecule (sodium decanoate; SD) is proposed. In acidic tumor tissues, environmental protons infiltrate through the PLGA shell of the HMs and react with their encapsulated NONOate to generate NO bubbles spontaneously; meanwhile, the surfactant molecules SD actively trap the generated NO bubbles to form micellar depots within the HMs (Micelles@HM) in a condition that is absence of Hb. The NO-containing micellar depots that are self-assembled by NONOate and SD in bulk solutions (Micelles@BS) and the NO generated from free NONOate in bulk solutions, in which Hb is present, are used as controls. In the former case, the generated NO is immediately protected within the Micelles@HM, while in the latter two cases, part of the generated NO may undergo degradation owing to the presence of environmental Hb. Our results demonstrate that the NO level generated by Micelles@HM was significantly higher (~80%) than those generated by Micelles@BS (~35%) and free NONOate (~20%), suggesting that the Micelles@HM formed in the absence of Hb largely improves the stability of NO. The NO gas could then be gradually released from Micelles@HM, acting as a radiosensitizer and enhancing radiation-induced cell death. In in vitro study, the results demonstrated that NO (60 µM) has radiosensitization effect when combined radiation (2 Gy) and Micelles@HM significantly improved the stability and radiosensitization effect of NO in the presence of Hb. In in vivo study, micropaticles (MPs) combined with radiation showed greatly better anti-tumor effect (~20% decline in tumor volume) compare to other groups 20 days after treatment. The prospective results of this study provide a useful strategy for reversing hypoxia-caused radioresistance.
Contents ii
List of Figures iv
List of Tables v
Chapter 1: Introduction 1
1.1. Radiation therapy and radiosensitizer 1
1.2. The potential of nitric oxide as a radiosensitizer 2
1.3. Limitations of nitric oxide therapy 3
1.4. In Situ self-assembling micellar depots and functional mechanism 3
1.5. Purpose of the research 5
1.6. Experiment design 7
Chapter 2: Materials and methods 8
2.1. Characteristic of microsphere 8
2.1.1. Microsphere marterials 8
2.1.2. The preparation of microsphere 8
2.1.3. Morphology of particles 9
2.1.4. The release of nitric oxide from particles 9
2.1.5. Loading content of particles 9
2.1.6. The stability of particles 9
2.1.7. Nitric oxide release mechanism 9
2.1.8. Anti-degradation activity 10
2.2. Cell experiment 10
2.2.1. Cell culture 10
2.2.2. Cell viability & Cell cytotoxicity 10
2.2.3. Nitric oxide radiosensitization mechanism 10
2.3. In vivo study 10
Chapter 3: Result and discussion 12
3.1. Characteristic of the hollow microsphere 12
3.1.1. Morphology of particles 12
3.1.2. Formulation of particles 12
3.1.3. The release profile of nitric oxide from particles 13
3.1.4. The detection of sodium decanoate 13
3.1.5. Particle stability 14
3.1.6. Nitric oxide release mechanism 15
3.1.7. Anti-degradation activity 19
3.2. In vitro study 20
3.2.1. Cell viability 20
3.2.2. Nitric oxide radiosensitization mechanism 23
3.3. In vivo study 23
Chapter 4: Conclusion 25
References 26
[1] Rajamanickam Baskar, Jiawen Dai , Nei Wenlong , Richard Yeo and Kheng-Wei Yeoh (2014). Biological response of cancer cells to radiation treatment. Frontier in Molecular Biosciences, 1(24), 1-9.
[2] Bryan Oronsky, Susan Knox and Jan Scicinski (2012). Is Nitric Oxide (NO) the last Word in Radiosensitization? A Review. Translational Oncology, 5(2), 66-71.
[3] Mark De Ridder, Dirk Verellen, Valeri Verovski, Guy Storme (2008). Hypoxic tumor cell radiosensitization through nitric oxide. Nitric oxide, 164-169.
[4] James B. Mitchell,1 David A. Wink, William DeGraff, Janet Gamson, Larry K. Keefer, and Murali C. Krishna (1993). Hypoxie Mammalian Cell Radiosensitization by Nitric Oxide. Cancer research, 5845-5848.
[5] Radiosensitizers, radioprotectors, and radiation mitigators (2014). Jayam Raviraj, Vijay Kumar Bokkasam, Venkata Suneel Kumar, Uday Shankar Reddy, Venkata Suman. Indian Juornal of Dental Research, 25(1), 83-90.
[6] Xiaohuan Gao, Debabrata Saha, Payal Kapur, Thomas Anthony, Edward H. Livingston and Sergio Huerta (2009). Radiosensitization of HT-29 Cells and Xenografts by the Nitric Oxide Donor DETANONOate. Journal of Surgical Oncology,149–158.
[7] Peter Wardman, kai Rothkamm, Lisa Folkes, Michael Woodcock and Peter Johnston (2014). Radiosensitization by Nitric Oxide at Low Radiation Doses. Radiation Research, 167(4), 475-484.
[8] Zining Jin , Wenqian Wang , Nan Jiang, Lei Zhang, Yiming Li, Xiaoyin Xu, Shouliang Cai, Liang Wei, Xuhong Liu, Guanglei Chen, Yizhen Zhou, Cheng Liu, Zhan Li, Feng Jin, Bo Chen (2015). Clinical Implications of iNOS Levels in Triple-Negative Breast Cancer Responding to Neoadjuvant Chemotherapy. PLOS ONE, 10(7).
[9] Pervin, Singh R, Chaudhuri G (2000). Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc Natl Acad Sci, 98(6), 3583-3588.
[10] Lammering G1, Hewit TH, Hawkins WT, Contessa JN, Reardon DB, Lin PS, Valerie K, Dent P, Mikkelsen RB, Schmidt-Ullrich (2001). Epidermal growth factor receptor as a genetic therapy target for carcinoma cell radiosensitization. J Natl Cancer Inst., 93(12), 921-929.
[11] Jones KR, Gewirtz DA, Yannone SM, Zhou S, Schatz DG, Valerie K, Povirk LF. (2005). Radiosensitization of MDA-MB-231 breast tumor cells by adenovirus-mediated overexpression of a fragment of the XRCC4 protein. Mol Cancer Ther., 4(10), 1541-1547.
[12] Liao, Guojian, Qing Liu, and Jianping Xie. (2013). Transcriptional analysis of the effect of exogenous decanoic acid stress on Streptomyces roseosporus. Microbial cell factories, 12(1), [13] Liu, W. F., Ma, M., Bratlie, K. M., Dang, T. T., Langer, R., & Anderson, D. G. (2011). Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials, 32(7), 1796-1801.
[14] Pacher, Pal, Joseph S. Beckman, and Lucas Liaudet. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological reviews, 87(1), 315-424.
[15] Chiueh, C. C. (1999). Neuroprotective properties of nitric oxide. Annals of the New York Academy of Sciences, 890(1), 301-311.
[16] Dengler, T., Kellner, S., & Fürst, G. (1988). Quantitative determination of sodium-octanoate in human serum albumin preparations. Transfusion Medicine and Hemotherapy, 15(6), 273-274.
[17] Kelm, M. (1999). Nitric oxide metabolism and breakdown. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1411(2), 273-289.
[18] Hakim, T. S., Sugimori, K., Camporesi, E. M., & Anderson, G. (1996). Half-life of nitric oxide in aqueous solutions with and without hemoglobin. Physiological measurement, 17(4), 267.
[19] Nurhasni, H., Cao, J., Choi, M., Kim, I., Lee, B. L., Jung, Y., & Yoo, J. W. (2015). Nitric oxide-releasing poly (lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. International journal of nanomedicine, 10, 3065.
[20] Stevenson, S. A., & Blanchard, G. J. (2006). Investigating internal structural differences between micelles and unilamellar vesicles of decanoic acid/sodium decanoate. The Journal of Physical Chemistry B, 110(26), 13005-13010.
[21] Andrade-Dias, C., Lima, S., Teixeira-Dias, J. J., & Teixeira, J. (2008). Why do methylated and unsubstituted cyclodextrins interact so differently with sodium decanoate micelles in water?. The Journal of Physical Chemistry B, 112(48), 15327-15332.
[22] Namani, T., & Walde, P. (2005). From decanoate micelles to decanoic acid/dodecylbenzenesulfonate vesicles. Langmuir, 21(14), 6210-6219.
[23] Merta, J., Torkkeli, M., Ikonen, T., Serimaa, R., & Stenius, P. (2001). Structure of cationic starch (CS)/anionic surfactant complexes studied by small-angle X-ray scattering (SAXS). Macromolecules, 34(9), 2937-2946.
[24] Rodríguez-Pulido, A., Casado, A., Munoz-Ubeda, M., Junquera, E., & Aicart, E. (2010). Experimental and theoretical approach to the sodium decanoate− dodecanoate mixed surfactant system in aqueous solution. Langmuir, 26(12), 9378-9385.
[25] Pryor, W. A., & Squadrito, G. L. (1995). The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. American Journal of Physiology-Lung Cellular and Molecular Physiology, 268(5), L699-L722.
[26] Coleman, J. W. (2001). Nitric oxide in immunity and inflammation. International immunopharmacology, 1(8), 1397-1406.
[27] Dean, H. G., Bonser, J. C., & Gent, J. P. (1989). HPLC analysis of brain and plasma for octanoic and decanoic acids. Clinical chemistry, 35(9), 1945-1948.
[28] Ingrid Moen and Linda E. B. Stuhr (2016). Hyperbaric Oxygen and Cancer. Targeted Oncology, 7(4), 233–242.
[29] Xiaomeng Zhang, Yuxiang Lin, and Robert J. Gillies (2010). Tumor pH and its measurement. J Nucl Med., 51(8), 1167–1170.
[30] Pierre Sonveaux, Benedicte Jordan, Bernard Gallez and Oliver Feron (2009). Nitric oxide delivery to cancer: Why and how?. European journal of cancer, 352-369.
[31] P. Horward-Flanders (1957). Effect of Nitric Oxide on the Radiosensitivity of Bacteria. Nature, 1191-1192.
[32] Sara Rockwell, Iwona T Dobrucki, Eugene Y. Kim, S. Tucker Marrison, and Van Thuc Vu (2009). Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr Mol Med., 9(4), 442-458.
[33] Yasumasa Kato, Shigeyuki Ozawa, Chihiro Miyamoto, Yojiro Maehata, Atsuko Suzuki, Toyonobu Maeda, and Yuh Baba (2013). Acidic extracellular microenvironment and cancer. Cancer cell Int., 13, 89.
[34] Elizabeth Iorns, Katherine Drews-Elger, Toby M. Ward, Sonja Dean, Jennifer Clarke, Deborah Berry, Dorraya El Ashry, Marc Lippman (2012). A New Mouse Model for the Study of Human Breast Cancer Metastasis. PLOS ONE, 7(10).
[35] Li-Hui Wang, Xiao-Rui Jiang, Guo-Liang Chen, Wei Guo, Jing-Yuan Zhang, Li-Juan Cui, Hua-Huan Li, Meng Li, Xing Liu, Jing-Yu Yang & Chun-Fu Wu (2016). Anti-tumor activity of SL4 against breast cancer cells: induction of G2/M arrest through modulation of the MAPK-dependent p21 signaling pathway. Scientific Reports, 6, 34686.
[36] Renaud Warin, Dong Xiao, Julie A. Arlotti, Ajay Bommareddy, and Shivendra V. Singh (2010). Mol Carcinog, 49(5), 500-507.
[37] Yvonne Radestock, Cuong Hoang-Vu and Sabine Hombach-Klonisch (2008). Breast cancer research, 10, R71.
[38] Yu-Jung Lin, Chun-Chieh Chen, Nai-Wen Chi, Trang Nguyen, Hung-Yun Lu, Dang Nguyen, Po-Liang Lai, Hsing-Wen Sung (2017). In Situ Self-Assembling Micellar Depots that Can Actively Trap and Passively Release NO with Long-Lasting Activity to Reverse Osteoporosis. Advanced Materials, 30, 1705605.
[39] KavitaSharmaHarinathChakrapan (2014). Site-directed delivery of nitric oxide to cancers. Nitric Oxide, 43. 8-16.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *