帳號:guest(18.223.196.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):程煜涵
作者(外文):Cheng, Yu-Han
論文名稱(中文):雙酚A二環氧甘油醚製程之改善
論文名稱(外文):Improvement of Bisphenol A Diglycidyl Ether Production
指導教授(中文):汪上曉
指導教授(外文):Wong, Shan-Hill
口試委員(中文):陳幹男
李恩各
口試委員(外文):Chen, Kan-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032563
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:環氧化製程微波反應模擬移動床
外文關鍵詞:EpoxidationMicrowaveSimulated moving bed
相關次數:
  • 推薦推薦:0
  • 點閱點閱:741
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
永續發展概念深入人心,綠色化學概念因而誕生。此概念的核心是利用化學技術減少對人類以及有害的原物料,同時也盡可能不產生有害的物質,開發對環境友善之技術。雙酚A二環氧甘油醚(Bisphenol A diglycidyl ether,BADGE)具有良好之物理機械性能、耐化學藥品性以及絕緣性佳等諸多優點,因此用途非常廣,傳統雙酚A二環氧甘油醚之製備方法為,使用雙酚A(Bisphenol A)和環氧氯丙烷(Epichlorohydrin,ECH)在鹼性條件下反應而成,但此製備方法需要使用到含氯物質,在製程後端會產生大量的含鹽廢水,此問題造成處理成本提高。
本研究利用過氧化氫作為氧化劑,在催化劑存在下,以二烯丙基雙酚A(Bisphenol A diallyl ether,BADAE)作為原料,來產生雙酚A二環氧甘油醚,此方法解決了後端廢水之問題;但由於過氧化氫氧化能力不足,反應過程中極易分解,因此產生未反應物、中間產物以及主要產物之分離問題。本研究確認可以層析法能解決上述物質之分離,並使用模擬移動床使製程能連續化操作並提升填料與移動相之使用效率,由實驗結果得知分離所得BADGE純度達99.3%;回收率則可達到92%。
微波加熱已經在化學合成領域中被廣泛應用於增強反應速率,因此本研究也探討以微波方式取代傳統油浴法來提供上述反應所需之能量,比較油浴與微波法,於固定溫度80℃,低微波功率條件下操作,縮短了反應時間1/3;然而使用固定微波功率,並以回流的方式控制溫度,提升了微波能量,但並未提生反應產率反而產生更嚴重的聚合現象。
Bisphenol A diglycidyl ether(BADGE) has superior mechanical, adhesive properties, high chemical resistance and other advantages. Hence BADGE has been widely used in paint, adhesive and composite materials. Traditionally, BADGE is manufactured by the reaction of Bisphenol A and Epichlorohydrin(ECH). The process of production of BADGE produces a large amount of salt and wastewater. Hence, it is hoped that BADGE is produced from Bisphenol A diallyl ether (BADAE) and hydrogen peroxide as oxidant. This process solved the problem of salt and waste water.
Due to the insufficient oxidation capacity of hydrogen peroxide, the separation of unreacted materials, intermediates and product is required. We demonstrate that it is possible to separate these substances using chromatographic method and develop a continuous production by the simulated moving bed (SMB). The experiment results show that the purity of BADGE is 99.3% and the recovery is 92%.
Microwave heating has been exploited extensively in the synthesis community as it leads to significant rate enhancements in organic chemical transformation. This study investigated the use of microwave heating in the allyl epoxidation process to replace conventional oil bath heating. The use of microwave heating at a fixed temperature of 80 ℃ reduced the reaction duration by 1/3 of oil bath heating, without sacrifice much of the maximum yield of BADGE. On the other hand, instead of enhancing the BADGE yield, the use of microwave heating at fixed power increased the polymerization of the reaction.

摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1前言 1
1-2研究動機、目的 2
1-3章節安排 3
第二章 微波技術應用於烯丙基環氧化反應 4
2-1文獻回顧 4
2-1-1雙酚A二環氧甘油醚簡介 4
2-1-2雙酚A二環氧甘油醚製備方法 7
2-1-3微波 9
2-2研究方法 11
2-2-1實驗設備與儀器 11
2-2-2實驗藥品 11
2-2-3分析方法 12
2-2-4實驗步驟 15
2-3結果與討論 20
第三章 以層析法進行烯丙基環氧化反應產物分離之測試 29
3-1文獻回顧 29
3-1-1層析原理 29
3-1-2模擬移動床技術特色與應用 33
3-1-3三角理論 37
3-1-4模擬移動床在各領域之應用 39
3-2研究方法 42
3-2-1實驗設備與儀器 42
3-2-2實驗藥品 43
3-2-3分析方法 44
3-2-4實驗步驟 49
3-3結果與討論 56
3-3-1管柱層析實驗結果 56
3-3-2模擬移動床實驗結果 57
第四章 總結 66
第五章 參考文獻 68

1. 垣內弘, 環氧樹脂應用實務. 復漢: 1998.
2. Qi, B.; Zhang, Q. X.; Bannister, M.; Mai, Y. W., Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives. Compos Struct 2006, 75 (1-4), 514-519.
3. Alneri, E.; Ricci, M.; Venturello, C., J. Org. Chem. 1983, 48, 3831-2833.
4. D'Aloisio, R.; Venturello, C., J. Org. Chem. 1988, 53, 1553-1557.
5. Payne, G. B.; Williams, P. H.; Deming, P. H., Reactions of Hydrogen Peroxide .7. Alkali-Catalyzed Epoxidation and Oxidation Using a Nitrile as Co-Reactant. J Org Chem 1961, 26 (3), 659-&.
6. Wu, J.; Yang, X. Q.; Jamison, T. F.; Hatton, T. A., Microwave assisted syntheses of cyclic carbonates from olefins utilizing sodium bicarbonates in a green pathway. Abstr Pap Am Chem S 2014, 247.
7. Siores, E.; Do Rego, D., Microwave applications in materials joining. Journal of Materials Processing Technology 1995, 48 (1), 619-625.
8. Polshettiwar, V.; Varma, R. S., Microwave-assisted organic synthesis and transformations using benign reaction media. Accounts Chem Res 2008, 41 (5), 629-639.
9. Gabriel, C.; Gabriel, S.; Grant, E. H.; Halstead, B. S. J.; Mingos, D. M. P., Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 1998, 27 (3), 213-223.
10. 楊維清, 微波促進的有機合成反應研究. 四川大學碩士學位論文 2002.
11. 毛展, 微波輔助非均相催化劑用於綠色有機合成的研究. 上海師範大學碩士學位論文 2016.
12. Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J., The Use of Microwave-Ovens for Rapid Organic-Synthesis. Tetrahedron Lett 1986, 27 (3), 279-282.
13. Wang, J.; Jiang, F. C., Recent development of microwave induced organic reaction. Chinese J Org Chem 2002, 22 (3), 212-219.
14. Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G., Application of Commercial Microwave-Ovens to Organic-Synthesis. Tetrahedron Lett 1986, 27 (41), 4945-4948.
15. Strain, H. H.; Sherma, J., Michael Tswett's contributions to sixty years of chromatography. Journal of Chemical Education 1967, 44 (4), 235.
16. Mallik, B.; Chakravarti, B.; Chakravarti, D. N., Principles of Chromatography Curr. Protoc. Essential Lab. Tech. 2016.
17. Snyder, L. R.; Kirkland, J. J., Introduction to modern liquid chromatography. Wiley: New York,, 1974; p xv, 534 p.
18. Jönsson, J. A. k., Chromatographic theory and basic principles. Dekker: New York, 1987; p xi, 396 p.
19. 吳健三, 高效液相層析儀. 建宏層析企業股份有限公司: 2003.
20. Broughton, B. D.; Gerhold, G. C. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. 1961.
21. Juza, M.; Mazzotti, M.; Morbidelli, M., Simulated moving-bed chromatography and its application to chirotechnology. Trends Biotechnol 2000, 18 (3), 108-118.
22. Yu, H. W.; Ching, C. B., Optimization of a simulated moving bed based on an approximated Langmuir model. Aiche J 2002, 48 (10), 2240-2246.
23. Mazzotti, M.; Storti, G.; Morbidelli, M., Optimal operation of simulated moving bed units for nonlinear chromatographic separations. Journal of Chromatography A 1997, 769 (1), 3-24.
24. 梁明在, 模擬移動床在純化天然活性成份的應用. 化工 2011, 58 (1), 71-82.
25. Migliorini, C.; Mazzotti, M.; Morbidelli, M., Robust design of countercurrent adsorption separation processes: 5. Nonconstant selectivity. Aiche J 2000, 46 (7), 1384-1399.
26. Charton, F.; Nicoud, R. M., Complete Design of a Simulated Moving-Bed. Journal of Chromatography A 1995, 702 (1-2), 97-112.
27. Liang, M. T.; Lin, C. H.; Tsai, P. Y.; Wang, H. P.; Wan, H. P.; Yang, T. Y., The separation of butanediol and propanediol by simulated moving bed. J Taiwan Inst Chem E 2016, 61, 12-19.
28. Migliorini, C.; Mazzotti, M.; Morbidelli, M., Continuous chromatographic separation through simulated moving beds under linear and nonlinear conditions. Journal of Chromatography A 1998, 827 (2), 161-173.
29. Mazzotti, M., Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm. Journal of Chromatography A 2006, 1126 (1), 311-322.
30. 王德華; 王輝國, 模擬移動床技術進展. 化工進展 2004, 23 (6), 609-614.
31. Rezazadeh, M.; Esfahani, M. S.; Rahimi, A.; Ehsani, M. R., Mathematical Modeling of a Simulated Moving-Bed Adsorption Process: Parex (TM) Technology as a Case Study. Chem Eng Technol 2015, 38 (5), 759-768.
32. Lee, J.; Shin, N. C.; Lim, Y.; Han, C., Modeling and simulation of a simulated moving bed for adsorptive para-xylene separation. Korean J Chem Eng 2010, 27 (2), 609-618.
33. Gomes, P. S.; Minceva, M.; Rodrigues, A. E., Simulated moving bed technology: old and new. Adsorption 2006, 12 (5-6), 375-392.
34. Broughton, D. B., Production-Scale Adsorptive Separations of Liquid Mixtures by Simulated Moving-Bed Technology. Sep Sci Technol 1984, 19 (11-12), 723-736.
35. Otani, S.; Akita, S.; Iwamura, T.; Kanaoka, M.; Matsumura, K.; Noguchi, Y.; Sando, K.; Mori, T.; Takeuchi, I.; Tsuchiya, T. Separation Process of Components of Feed Mixture Utilizing Solid Sorbent. . 1973.
36. Ash, G.; Barth, K.; Hotier, G.; Mank, L.; Renard, P., Eluxyl - a New Paraxylene Separation Process. Rev I Fr Petrol 1994, 49 (5), 541-549.
37. Broughton, D. B.; Dranoff, J. S.; Chi, C. W.; Breck, D. W., Adsorption - Discussion. Chem Eng Prog 1977, 73 (10), 51-53.
38. Giacobello, S.; Storti, G.; Tola, G., Design of a simulated moving bed unit for sucrose-betaine separations. Journal of Chromatography A 2000, 872 (1-2), 23-35.
39. Azevedo, D. C. S.; Rodrigues, A. E., Design methodology and operation of a simulated moving bed reactor for the inversion of sucrose and glucose-fructose separation. Chem Eng J 2001, 82 (1-3), 95-107.
40. Kishihara, S.; Horikawa, H.; Tamaki, H.; Fujii, S.; Nakajima, Y.; Nishio, K., Continuous Chromatographic-Separation of Palatinose (6-O-Alpha-D-Glucopyranosyl-D-Fructose) and Trehalulose (1-O-Alpha-D-Gluco-Pyranosyl-D-Fructose) Using a Simulated Moving-Bed Adsorber. J Chem Eng Jpn 1989, 22 (4), 434-436.
41. Nagamatsu, S.; Murazumi, K.; Makino, S., Chiral separation of a pharmaceutical intermediate by a simulated moving bed process. Journal of Chromatography A 1999, 832 (1-2), 55-65.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *