帳號:guest(18.226.164.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃捷威
作者(外文):Huang, Chieh-Wei
論文名稱(中文):可降解高分子薄膜之混摻粒子研究與水域降解性質探討
論文名稱(外文):Synthesis and Characterization of Biodegradable Polymer Composite Films and Discussion of Polymer Degradation in Waters
指導教授(中文):王潔
指導教授(外文):Wang, Jane
口試委員(中文):劉大佼
汪上曉
口試委員(外文):Liu, Ta-Jo
Wong, Shan-Hill
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032560
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:94
中文關鍵詞:生物可降解高分子複合材料海水降解
外文關鍵詞:biodegradable polymercompositeseawater degradation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:516
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於一般塑膠產品在環境中無法自然分解,其大量的生產及使用已經造成嚴重的環境汙染問題,因此,發展生物可降解高分子塑料的需求日益增長。一種全新的生物可降解高分子 PGM因為其優秀的機械性質和與一般生物可降解高分子相比較低的成本而被視為具有取代一般塑料之潛力。。本研究中 PGM 透過狹縫式塗佈技術 (slot-die) 製成薄膜,除探討塗佈基材的選擇外,亦透過調整並優化 PGM 的熱交聯製程,以及混摻填充材料來提升 PGM 的機械性質。在針對基材的選擇上,由於不鏽鋼板平整的表面和堅硬的性質,作為基材可以得到平整的高分子薄膜,並且可以避免基材和高分子因為交聯過程中的內縮而產生皺褶,為了利於脫膜,以羧甲基纖維素 (carboxymethyl cellulose,CMC) 水溶液為主之離型層濃度亦提升至10% 以利於脫膜。
本研究於PGM中混摻入二氧化矽 (SiO2) 以及碳黑 (CB) 製成複合材料並探討其對於提升機械性質之影響,PGM的楊氏模數及最大拉伸強度為2000 MPa 和40 MPa,當混摻5%的SiO2時,薄膜之楊氏模數增加至2800 MPa且最大拉伸強度達到70 MPa,其增強效果在交聯程度較低時更為顯著。同時,本研究亦使用雷射剝蝕感應耦合電漿質譜 (LA-ICP-MS) 分析PGM混摻奈米金粒子 (AuNPs)之薄膜,得到奈米金粒子於PGM中之分佈於較快之交聯製程如UV交聯時較為均勻之結果。
為模擬PGM薄膜於水域環境中之降解速率,本研究將PGM薄膜浸泡於淡水及海水中兩個月,並秤量樣品重量的減少比例以推算其降解速率,研究結果顯示兩個月內,PGM薄膜在海水中可以完全降解,同時在淡水中可以降解 95%,其降解速率遠高於一般市售常見之生物可降解高分子材料如PLA,同時又具有優異之機械性質,有極大潛力取代市面上的塑料產品,提高永續發展的可能性。
The massive production of non-degradable plastics has brought up severe pollution problems to the environments. In response to this issue, biodegradable polymers are in high demand as alternatives for common plastics. Poly(glycerol maleate) (PGM) was introduced as a novel biodegradable polymers with high potential due to competitive mechanical properties and low costs. In this project, the mechanical properties of PGM were improved by modifying the thermal curing process and blending with plastic fillers. The PGM films were fabricated via slot-die coating technique and the selection of substrates were studied. Stainless steel plates were chosen as the substrates for their stiffness and flatness to avoid winkles caused by the shrinkage of polymer. 10 wt% of carboxylmethyl cellulose (CMC) were applied as the sacrificial layer for successfully peeling off PGM films from the substrates.
PGM was blended with SiO2 and carbon black to improve the performance on mechanical properties. The Young’s modulus and the ultimate tensile strength of pure PGM was around 2000 MPa and 40 MPa. With the incorporation of 5wt% of SiO2, the Young’s modulus of PGM composite films can be increased to 2800 MPa, while the ultimate tensile strength raised to around 70 MPa. The reinforcements were more significant with lower crosslinking density of PGM. With the incorporation of gold nanoparticles (AuNPs), the distribution of small particles in PGM matrix was modeled by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). It was found that the distribution of AuNPs was better with UV crosslinking, which has shorter crosslinking time.
The degradation rate of PGM in various aqueous environments was also developed by immersing the films in freshwater systems and seawater systems. The mechanism of the degradation was further discussed by the weight loss, the surface morphology and the swelling ratio of PGM. It was observed that PGM films completely degraded in seawater systems after 56 days and also degraded over 95% in freshwater systems. The hydrolytic degradation is believed to be dominant in the degradation of PGM.
摘要 2
Abstract 3
謝誌 5
Table of Content 7
List of Figure 9
List of Table 11
1 Research Background 12
1.1 Plastic Pollution in Agriculture and Effects to Oceans 12
1.1.1 Common Plastics Used in Agriculture 14
1.1.2 Applications of Biodegradable Plastic in Agriculture 19
1.1.3 Plastics Pollution in The Ocean 23
1.2 Biodegradable Polyesters Degradation 26
1.2.1 Strong-base Hydrolytic Degradation 26
1.2.2 Hydrolytic Degradation in Various Aqueous Environments 27
1.3 Introduction to Common Polymer Additives 32
1.3.1 Applications of Carbon Black and Silica in Elastomers 33
1.3.2 Applications of Carbon Black and Silica in Biodegradable Plastics 35
1.4 Introduction to Poly(glycerol maleate) (PGM) 36
1.4.1 PGM Synthesized with Waste Glycerol 37
1.5 Motivation and Goals 40
2 Experimental Materials and Methods 41
2.1 Research Framework 41
2.2 Experimental Materials 42
2.3 Experimental Equipment and Instruments 43
2.4 Experimental Procedure 46
2.4.1 Synthesis of PGM 46
2.4.2 Synthesis of Gold Nanoparticles 46
2.4.3 Preparation of PGM Composite 47
2.4.4 Fabrication of Films 48
2.5 Characterization of PGM and PGM composite 49
2.5.1 Nanoparticles Distribution Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry 49
2.5.2 Tensile Test 50
2.5.3 Degradation in Various Aqueous Environments 50
2.5.4 Swelling Test 53
3 Results and Discussions 54
3.1 Improvement of the Fabrication of PGM Films and Characterization 54
3.1.1 Adjustment of the Fabrication Process 54
3.1.2 Mechanical Properties 58
3.2 Fabrication of PGM Composite Films 59
3.2.1 Fabrication of PGM Composite Films with fillers 59
3.2.2 Fabrication of PGM-AuNPs Composite Films 61
3.3 Characterization of PGM and PGM Composite Films 62
3.3.1 Mechanical Properties 62
3.3.2 Distribution of Gold nanoparticles in PGM films 66
3.2.3 Degradation in Various Aqueous Environments 68
3.2.4 Swelling Ratio Test 80
4 Conclusion 82
5 Future Work 85
6 References 86
1. Pathak, V. M.; Navneet, Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing 2017, 4 (1), 15.
2. The New Plastics Economy: Rethinking the Future of Plastics; World Economic Forum: 2016.
3. An analysis of European plastics production, demand and waste data; PlasticsEurope: 2016.
4. Vox, G.; Loisi, R. V.; Blanco, I.; Mugnozza, G. S.; Schettini, E., Mapping of Agriculture Plastic Waste. Agriculture and Agricultural Science Procedia 2016, 8 (Supplement C), 583-591.
5. Yan, C.; He, W.; Turner, N., Plastic-film mulch in Chinese agriculture: Importance and problems. 2014; Vol. 4, p 32-36.
6. Liu, E. K.; He, W. Q.; Yan, C. R., ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China. Environmental Research Letters 2014, 9 (9), 091001.
7. Scarascia-Mugnozza, G.; Sica, C.; Russo, G., PLASTIC MATERIALS IN EUROPEAN AGRICULTURE: ACTUAL USE AND PERSPECTIVES. Journal of Agricultural Engineering; Vol 42, No 3 (2011) 2012.
8. A report on plastics industry; FICCI: 2014.
9. Kyrikou, I.; Briassoulis, D., Biodegradation of Agricultural Plastic Films: A Critical Review. Journal of Polymers and the Environment 2007, 15 (2), 125-150.
10. Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A. I., PLastic Films for Agricultural Applications. Journal of Plastic Film & Sheeting 2006, 22 (2), 85-102.
11. Cannington F, D. R., Roan RG Florida vegetable production using plastic film mulch with drip irrigation. Proc Nat Agr Plastics Congr 1975, 12, 11-15.
12. Liu, X. J.; Wang, J. C.; Lu, S. H.; Zhang, F. S.; Zeng, X. Z.; Ai, Y. W.; Peng, S. B.; Christie, P., Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice–wheat cropping systems. Field Crops Research 2003, 83 (3), 297-311.
13. Zhang, Y.-L.; Wang, F.-X.; Shock, C. C.; Yang, K.-J.; Kang, S.-Z.; Qin, J.-T.; Li, S.-E., Effects of plastic mulch on the radiative and thermal conditions and potato growth under drip irrigation in arid Northwest China. Soil and Tillage Research 2017, 172 (Supplement C), 1-11.
14. Clarke, S. P. Recycling farm plastic films fact sheet Retrieved from http://www.omafra.gov.on.ca/english/engineer/facts/95-019.htm.
15. Kasirajan, S.; Ngouajio, M., Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development 2012, 32 (2), 501-529.
16. Zhang, W.; Zhang, X., A forecast analysis on fertilizers consumption worldwide. Environmental Monitoring and Assessment 2007, 133 (1), 427-434.
17. Majeed, Z.; Ramli Nur, K.; Mansor, N.; Man, Z., A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. In Reviews in Chemical Engineering, 2015; Vol. 31, p 69.
18. Roy, A.; Singh, S. K.; Bajpai, J.; Bajpai, A. K., Controlled pesticide release from biodegradable polymers. Central European Journal of Chemistry 2014, 12 (4), 453-469.
19. Chen, L.; Xie, Z.; Zhuang, X.; Chen, X.; Jing, X., Controlled release of urea encapsulated by starch-g-poly(l-lactide). Carbohydrate Polymers 2008, 72 (2), 342-348.
20. Ge, J.; Wu, R.; Shi, X.; Yu, H.; Wang, M.; Li, W., Biodegradable polyurethane materials from bark and starch. II. Coating material for controlled-release fertilizer. Journal of Applied Polymer Science 2002, 86 (12), 2948-2952.
21. Davidson, D.; Gu, F. X., Materials for Sustained and Controlled Release of Nutrients and Molecules To Support Plant Growth. Journal of Agricultural and Food Chemistry 2012, 60 (4), 870-876.
22. Varma, J.; Dubey, N. K., Prospectives of botanical and microbial products as pesticides of tomorrow. Current Science 1999, 76 (2), 172-179.
23. Bonhommea, S.; Cuerb, A.; Delort, A. M.; Lemairea, J.; Sancelmeb, M.; Scott, G., Environmental biodegradation of polyethylene. Polym Degrad Stab 2003, 81.
24. Albregts, E.; Howard, C., Effect of mulches on okra, pepper and strawberries in central Florida. Agricultural Research Center, IFAS, University of Florida: 1972.
25. Otey, F. H.; Mark, A. M.; Mehltretter, C. L.; Russell, C. R., Starch-Based Film for Degradable Agricultural Mulch. Product R&D 1974, 13 (1), 90-92.
26. Narayan, R., Misleading claims and misuse proliferate in the nascent Bioplastics Magazine 2010, pp 38-41.
27. Corbin, A. Using Biodegradable Plastics as Agricultural Mulches; Washington state university extension: 2013.
28. Formin, V. A., and Guzeev, V.V., Biodegradable polymers, their present state and future prospects. Prog. Rubber Plast Tech. 2001, 17, 186-204.
29. Hayes, D. G.; Dharmalingam, S.; Wadsworth, L. C.; Leonas, K. K.; Miles, C.; Inglis, D. A., Biodegradable Agricultural Mulches Derived from Biopolymers. In Degradable Polymers and Materials: Principles and Practice (2nd Edition), American Chemical Society: 2012; Vol. 1114, pp 201-223.
30. Kijchavengkul, T.; Auras, R., Compostability of polymers. Polymer International 2008, 57 (6), 793-804.
31. Martín-Closas, L.; Pelacho, A. M., Agronomic Potential of Biopolymer Films. In Biopolymers – New Materials for Sustainable Films and Coatings, John Wiley & Sons, Ltd: 2011; pp 277-299.
32. Sigler, M., The Effects of Plastic Pollution on Aquatic Wildlife: Current Situations and Future Solutions. Water, Air, & Soil Pollution 2014, 225 (11), 2184.
33. Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L., Plastic waste inputs from land into the ocean. Science 2015, 347 (6223), 768.
34. Cózar, A.; Echevarría, F.; González-Gordillo, J. I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á. T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; Fernández-de-Puelles, M. L.; Duarte, C. M., Plastic debris in the open ocean. Proceedings of the National Academy of Sciences 2014, 111 (28), 10239-10244.
35. Reisser, J.; Shaw, J.; Wilcox, C.; Hardesty, B. D.; Proietti, M.; Thums, M.; Pattiaratchi, C., Marine Plastic Pollution in Waters around Australia: Characteristics, Concentrations, and Pathways. PLOS ONE 2013, 8 (11), e80466.
36. Avio, C. G.; Gorbi, S.; Regoli, F., Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research 2017, 128 (Supplement C), 2-11.
37. Thompson, R. C.; Gall, S. C. In Impacts of marine debris on biodiversity: current status and potential solutions, 2014; Secretariat of the Convention on Biological Diversity.
38. Goldstein, M. C.; Goodwin, D. S., Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre. PeerJ 2013, 1, e184.
39. Braid, H. E.; Deeds, J.; DeGrasse, S. L.; Wilson, J. J.; Osborne, J.; Hanner, R. H., Preying on commercial fisheries and accumulating paralytic shellfish toxins: a dietary analysis of invasive Dosidicus gigas (Cephalopoda Ommastrephidae) stranded in Pacific Canada. Marine Biology 2012, 159 (1), 25-31.
40. Zettler, E. R.; Mincer, T. J.; Amaral-Zettler, L. A., Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environmental Science & Technology 2013, 47 (13), 7137-7146.
41. Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M., The behaviors of microplastics in the marine environment. Marine Environmental Research 2016, 113 (Supplement C), 7-17.
42. Nair, L. S.; Laurencin, C. T., Biodegradable polymers as biomaterials. Progress in Polymer Science 2007, 32 (8), 762-798.
43. Engineer, C.; Parikh, J.; Raval, A., Review on Hydrolytic Degradation Behavior of Biodegradable Polymers from Controlled Drug Delivery System. Trends in Biomaterials & Artificial Organs 2011, 25 (2).
44. Cam, D.; Hyon, S.-h.; Ikada, Y., Degradation of high molecular weight poly(l-lactide) in alkaline medium. Biomaterials 1995, 16 (11), 833-843.
45. Tisserat, B.; Finkenstadt, V. L., Degradation of Poly(l-Lactic Acid) and Bio-Composites by Alkaline Medium Under Various Temperatures. Journal of Polymers and the Environment 2011, 19 (3), 766-775.
46. Deroiné, M.; Le Duigou, A.; Corre, Y.-M.; Le Gac, P.-Y.; Davies, P.; César, G.; Bruzaud, S., Accelerated ageing and lifetime prediction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in distilled water. Polymer Testing 2014, 39 (Supplement C), 70-78.
47. Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum. ASTM International: 2009.
48. Tsuji, H.; Suzuyoshi, K., Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater. Polymer Degradation and Stability 2002, 75 (2), 347-355.
49. Le Duigou, A.; Davies, P.; Baley, C., Seawater ageing of flax/poly(lactic acid) biocomposites. Polymer Degradation and Stability 2009, 94 (7), 1151-1162.
50. Deroiné, M.; Le Duigou, A.; Corre, Y.-M.; Le Gac, P.-Y.; Davies, P.; César, G.; Bruzaud, S., Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability 2014, 105 (Supplement C), 237-247.
51. Deroiné, M.; Le Duigou, A.; Corre, Y.-M.; Le Gac, P.-Y.; Davies, P.; César, G.; Bruzaud, S., Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability 2014, 108 (Supplement C), 319-329.
52. Greene, J.; Recycling, C. D. o. R.; Recovery; CSU, C. R. F., Report Topic: PLA and PHA Biodegradation in the Marine Environment : Contractor's Report. Department of Resources Recycling and Recovery: 2012.
53. Alvarez-Zeferino, J. C.; Beltr¨¢n-Villavicencio, M.; V¨¢zquez-Morillas, A., Degradation of Plastics in Seawater in Laboratory. Open Journal of Polymer Chemistry 2015, Vol.05No.04, 8.
54. Tosin, M.; Weber, M.; Siotto, M.; Lott, C.; Degli Innocenti, F., Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions. Frontiers in Microbiology 2012, 3, 225.
55. Pfaendner, R., How will additives shape the future of plastics? Polymer Degradation and Stability 2006, 91 (9), 2249-2256.
56. Onuegbu, G. C.; Igwe, I. O., The Effects of Filler Contents and Particle Sizes on the Mechanical and End-Use Properties of Snail Shell Powder Filled Polypropylene. Materials Sciences and Applications 2011, Vol.02No.07, 4.
57. Rattanasom, N.; Prasertsri, S.; Ruangritnumchai, T., Comparison of the mechanical properties at similar hardness level of natural rubber filled with various reinforcing-fillers. Polymer Testing 2009, 28 (1), 8-12.
58. Nunes, R. C. R.; Fonseca, J. L. C.; Pereira, M. R., Polymer–filler interactions and mechanical properties of a polyurethane elastomer. Polymer Testing 2000, 19 (1), 93-103.
59. Leblanc, J. L., Rubber–filler interactions and rheological properties in filled compounds. Progress in Polymer Science 2002, 27 (4), 627-687.
60. Wang, N.; Zhang, X.; Ma, X.; Fang, J., Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polymer Degradation and Stability 2008, 93 (6), 1044-1052.
61. Zhu, A.; Diao, H.; Rong, Q.; Cai, A., Preparation and properties of polylactide–silica nanocomposites. Journal of Applied Polymer Science 2010, 116 (5), 2866-2873.
62. Wu, Y.; Shi, R.; Chen, D.; Zhang, L.; Tian, W., Nanosilica filled poly(glycerol-sebacate-citrate) elastomers with improved mechanical properties, adjustable degradability, and better biocompatibility. Journal of Applied Polymer Science 2011, 123 (3), 1612-1620.
63. Rai, R.; Tallawi, M.; Grigore, A.; Boccaccini, A., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. 2012; Vol. 37, p 1051-1078.
64. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R., A tough biodegradable elastomer. Nat Biotech 2002, 20 (6), 602-606.
65. Quispe, C. A. G.; Coronado, C. J. R.; Carvalho Jr, J. A., Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews 2013, 27 (Supplement C), 475-493.
66. Ayoub, M.; Abdullah, A. Z., Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews 2012, 16 (5), 2671-2686.
67. Valerio, O.; Horvath, T.; Pond, C.; Manjusri, M.; Mohanty, A., Improved utilization of crude glycerol from biodiesel industries: Synthesis and characterization of sustainable biobased polyesters. Industrial Crops and Products 2015, 78 (Supplement C), 141-147.
68. C. Thompson, J.; B. He, B., CHARACTERIZATION OF CRUDE GLYCEROL FROM BIODIESEL PRODUCTION FROM MULTIPLE FEEDSTOCKS. Applied Engineering in Agriculture 2006, 22 (2), 261.
69. Hu, S.; Luo, X.; Wan, C.; Li, Y., Characterization of Crude Glycerol from Biodiesel Plants. Journal of Agricultural and Food Chemistry 2012, 60 (23), 5915-5921.
70. Chen, H. H. Synthesis and fabrication of glycerol-based polymeric biodegradable films via slot-die coating National Tsing Hua University, 2017.
71. Basu, S. K.; Scriven, L. E.; Francis, L. F.; McCormick, A. V., Mechanism of wrinkle formation in curing coatings. Progress in Organic Coatings 2005, 53 (1), 1-16.
72. Tsou, E. Y. The research and development of a novel biodegradable film-material synthesis and film making process. National Tsing Hua University, 2015.
73. Chieng, B. W.; Ibrahim, N. A.; Wan Yunus, W. M. Z.; Hussein, M. Z.; Silverajah, V. S. G., Graphene Nanoplatelets as Novel Reinforcement Filler in Poly(lactic acid)/Epoxidized Palm Oil Green Nanocomposites: Mechanical Properties. International Journal of Molecular Sciences 2012, 13 (9).
74. Shah, N. M.; Pool, M. D.; Metters, A. T., Influence of Network Structure on the Degradation of Photo-Cross-Linked PLA-b-PEG-b-PLA Hydrogels. Biomacromolecules 2006, 7 (11), 3171-3177.
75. Lu, B.; Wang, G.-X.; Huang, D.; Ren, Z.-L.; Wang, X.-W.; Wang, P.-L.; Zhen, Z.-C.; Zhang, W.; Ji, J.-H., Comparison of PCL degradation in different aquatic environments: Effects of bacteria and inorganic salts. Polymer Degradation and Stability 2018, 150, 133-139.
76. Hsieh, Y.-K.; Chang, C.-T.; Jen, I. H.; Pu, F.-C.; Shen, S.-H.; Wan, D.; Wang, J., Use of Gold Nanoparticles to Investigate the Drug Embedding and Releasing Performance in Biodegradable Poly(Glycerol Sebacate). ACS Applied Nano Materials 2018.
77. Castilla-Cortázar, I.; Más-Estellés, J.; Meseguer-Dueñas, J. M.; Escobar Ivirico, J. L.; Marí, B.; Vidaurre, A., Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polymer Degradation and Stability 2012, 97 (8), 1241-1248.
78. Harrison Kate, L.; Jenkins Mike, J., The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone. Polymer International 2004, 53 (9), 1298-1304.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *