帳號:guest(18.221.255.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃道泓
作者(外文):Huang, Dao-Hong.
論文名稱(中文):含聚甲基丙烯酸正丁酯及發色團之光感應啟動器
論文名稱(外文):Photoresponsive actuators containing poly(n-butyl methacrylate) and chromophore
指導教授(中文):堀江正樹
指導教授(外文):Masaki, Horie
口試委員(中文):蘇安仲
游進陽
口試委員(外文):Su, An-Chung
Yu, Chin-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032553
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:68
中文關鍵詞:高分子發色團光感應玻璃轉化溫度自我修復
外文關鍵詞:polymerchromophorephoto-responsiveglass transition temperatureself-healing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
創新的發明不斷使人類的生活更加進步,許多研究者畢生致力於創造出智慧型機器,在這些機器之中,分子機器被視為最有趣的系統之一。藉由外在的能量激發,例如光、熱,快速且可控制的動作不僅可以被應用在光電和生物的領域,可逆的變化更大大地提升日常生活的使用性。
此篇報告中,我們提出了由高分子及染料所組成的光感應啟動器之概念。含聚甲基丙烯酸正丁酯及二茂鐵的高分子薄膜在波長445奈米雷射的激發下,我們觀查到膨脹及收縮的現象,且膨脹收縮的效果可以利用染料的濃度及薄膜厚度來加以控制。除此之外,將此高分子薄膜導入雙層膜的系統中,在雷射光的激發下,可以觀查到此雙層膜彎向光源,彎曲的現象主要來自於非晶相中高分子鏈移動能力不同所致。我們再將雙層膜的概念延伸,將此光感應啟動器製作成桌子形狀之機器,藉由雷射光激發,我們發現此機器可以反覆地舉起及放下自身重量15倍之物品。值得注意的是,此高分子薄膜在雷射光的照射下,物理損傷逐漸變得不明顯,換句話說這個高分子可以被雷射光治癒,而且在治癒的同時,我們也記錄下逐漸恢復的機械性質。
除了觀查到巨觀的形變,小角度散射和X 光繞射被用來調查微結構的變化,原位小角度散射顯示結構上的形變來自於主要粒子的形態轉變,因為無規高分子鏈的形狀在橢圓形及碟形之間轉變,造成巨觀的膨脹及收縮。不同溫度下的X 光繞射圖譜顯示可逆巨觀的型變是由於高分子微結構上的變化所造成,在此基礎下,我們提出了含聚甲基丙烯酸正丁酯及二茂鐵之光感應啟動器在雷射光激發下的反應機制,並以圖示說明。
另外,我們還發現含聚甲基丙烯酸正丁酯及二茂鐵之薄膜在表面有一些物理性的受損下(例如刮痕、裂縫),使用445奈米的雷射光照射幾分鐘或加熱後傷口會自行修復。而且我們也利用雷射及加熱成功把兩片完全分離的薄膜融合成一片,並且使用機械力恢復的程度來計算恢復效率。

Innovative devices should contribute to improvements in human life. Many researchers have dedicated their life in creating smart machines. Among them, molecular machines are regarded as one of the most interesting material systems toward future opto-electronic and bio applications due to its rapid and controllable motion in the presence of external stimulus. In addition, the characteristic of reversible motion provides numerous opportunities for practical usage.
This thesis reports development of photo-responsive actuators composed of a polymer and chromophores. Thin film comprising poly(butyl methacrylate) (PBMA) as a host matrix and ferrocene as a guest chromophore shows expansion/contraction upon 445-nm laser turning on/off. Relatively higher efficiency of photomechanical conversion is revealed by tuning doping concentration of ferrocene and film thickness. The ferrocene-doped PBMA film with gold coating is applied to an electric circuit, serving as photo-responsive switch due to its rapid and reversible motion. Furthermore, the deformation of ferrocene-doped PBMA film is used in a double layer system, in which ferrocene-doped PBMA film plays the role of a photoresponsive active layer and commercial sticky tape composed of acetic ester serves as a passive layer. The different chain mobility in amorphous area upon 445-nm laser irradiation enables the bending motion toward the passive layer. Moreover, a cargo attached onto the table-shaped machine is fabricated. The cargo machine (0.7 mg) possesses the ability to lift an object up to10.5 mg up and down reversibly controlled by the laser on and off. The mechanical force provided by a double layer film composed of the active and passive layers is recorded.
In addition to the macroscopic deformation, the structural change in molecular level was also investigated by small angle X-ray scattering (SAXS) and X-ray diffraction (XRD). In-situ SAXS indicates that the deformation is caused by the transformation of main particles. The shape of polymer random coils alter between oval particles and disk-like particles, which results in macroscopic area change. XRD patterns of the polymer-ferrocene films are observed at various temperatures to reveal the reversible microscopic structural change. On the basis of the SAXS and XRD analysis, a mechanism of structural changes in ferrocene-doped PBMA film upon external stimuli is discussed.
Besides photo-responsive deformation, one interesting finding reveals that the ferrocene-doped PBMA film is able to recover from physical damage such as scratches and cracks by photoirradiation or heat. The damaged film is recovered by applying 445-nm laser irradiation in a few minutes. In addition, two separate films are able to fuse into one by photo-irradiation or heat. The mechanical force before and after healing is estimated. The healing process is illustrated and the extent of healing is calculated by healing efficiency.
摘要-----III
Abstract-----I
Table of contents-----III
Chapter 1 Introduction and aim-----1
Chapter 2 Photo-responsive polymer film with tunable shape and its morphology study-----22
Chapter 3 Self-healing in ferrocene doped PBMA film-----48
Chapter 4 Conclusion and Future Prospective-----59
Chapter 5 Experimental section-----61
References-----67
1. M. Doi, Introduction to polymer physics, Oxford university press, 1996.
2. T. Hatakeyama and F. Quinn, Thermal analysis: fundamentals and applications to polymer science, [sl], 1999.
3. L. H. Sperling, Introduction to physical polymer science, John Wiley & Sons, 2005.
4. J. E. Mark, Physical properties of polymers handbook, Springer, 2007.
5. D. W. Van Krevelen and K. Te Nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Elsevier, 2009.
6. F. Bovey, Macromolecules: an introduction to polymer science, Elsevier, 2012.
7. K. P. Menard, Dynamic mechanical analysis: a practical introduction, CRC press, 2008.
8. P. J. Haines, Thermal methods of analysis: principles, applications and problems, Springer Science & Business Media, 2012.
9. M. Loadman, Analysis of rubber and rubber-like polymers, Springer Science & Business Media, 1999.
10. S. Palzer, Trends Food Sci. Technol., 2010, 21, 12-25.
11. S. Prager and M. Tirrell, J. Chem. Phys., 1981, 75, 5194-5198.
12. D. Y. Wu, S. Meure and D. Solomon, Prog. Polym. Sci., 2008, 33, 479-522.
13. P. G. de Gennes, J. Chem. Phys., 1971, 55, 572-579.
14. K. Jud and H. Kausch, Polym. Bull., 1979, 1, 697-707.
15. R. Wool and K. O'Connor, Polym. Eng. Sci., 1981, 21, 970-977.
16. B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, et al., Annu Rev Mater Res, 2010, 40, 179-211.
17. C. B. Lin, S. Lee and K. S. Liu, Polym. Eng. Sci., 1990, 30, 1399-1406.
18. P. P. Wang, S. Lee and J. P. Harmon, J. Polym. Sci., Part B: Polym. Phys., 1994, 32, 1217-1227.
19. Y. M. Boiko, G. Guérin, V. A. Marikhin, et al., Polymer, 2001, 42, 8695-8702.
20. S. Burattini, B. W. Greenland, D. Chappell, et al., Chem Soc Rev, 2010, 39, 1973-1985.
21. H. Meng and G. Li, Polymer, 2013, 54, 2199-2221.
22. T. Ikeda and T. Ube, Mater. Today, 2011, 14, 480-487.
23. Z. Mahimwalla, K. G. Yager, J.-i. Mamiya, et al., Polym. Bull., 2012, 69, 967-1006.
24. H. Yu, J. Mater. Chem. C, 2014, 2, 3047-3054.
25. T. Ikeda, M. Nakano, Y. Yu, et al., Adv. Mater., 2003, 15, 201-205.
26. P. Xie and R. Zhang, J. Mater. Chem., 2005, 15, 2529.
27. Y. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145-145.
28. Y. Yu, M. Nakano, A. Shishido, et al., Chem. Mater., 2004, 16, 1637-1643.
29. J. Wei and Y. Yu, Soft Matter, 2012, 8, 8050.
30. C. L. Van Oosten, C. W. Bastiaansen and D. J. Broer, Nat. Mater., 2009, 8, 677-682.
31. H. Yu, C. Dong, W. Zhou, et al., Small, 2011, 7, 3039-3045.
32. Y. Hu, Z. Li, T. Lan, et al., Adv. Mater., 2016, 28, 10548-10556.
33. M. Yamada, M. Kondo, R. Miyasato, et al., J. Mater. Chem., 2009, 19, 60-62.
34. M. Yamada, M. Kondo, J. Mamiya, et al., Angew. Chem. Int. Ed., 2008, 47, 4986-4988.
35. F. Cheng, R. Yin, Y. Zhang, et al., Soft Matter, 2010, 6, 3447.
36. Y. Mizutani, Y. Otani, Y. Otani, et al., 2008, 7266, 72660D.
37. Y. Yu and T. Ikeda, Angew. Chem. Int. Ed., 2006, 45, 5416-5418.
38. T. Ikeda, J. Mamiya and Y. Yu, Angew. Chem. Int. Ed., 2007, 46, 506-528.
39. K. M. Lee, H. Koerner, R. A. Vaia, et al., Macromolecules, 2010, 43, 8185-8190.
40. H. Koerner, T. J. White, N. V. Tabiryan, et al., Mater. Today, 2008, 11, 34-42.
41. S. B. Sane, T. Çağin, W. G. Knauss, et al., J. Comput. Aided Mol. Des., 2001, 8, 87-106.
42. S. Devikala, P. Kamaraj and M. Arthanareeswari, Orient j. chem., 2016, 32, 2269-2274.
43. K. Suhailath, M. T. Ramesan, B. Naufal, et al., Polym. Bull., 2016, 74, 671-688.
44. F. Kovanda, E. Jindová, K. Lang, et al., Appl. Clay Sci., 2010, 48, 260-270.
45. K. J. Chen, Y. C. Tsai, Y. Suzaki, et al., Nat Commun, 2016, 7, 13321.
46. L. Zhang, H. Liang, J. Jacob, et al., Nat Commun, 2015, 6, 7429.
47. S. D. Bergman and F. Wudl, J. Mater. Chem., 2008, 18, 41-62.
48. D. W. Schaefer and R. S. Justice, Macromolecules, 2007, 40, 8501-8517.
49. G. Bushell, Y. Yan, D. Woodfield, et al., Adv. Colloid Interface Sci., 2002, 95, 1-50.
50. X. Su, P. G. Jessop and M. F. Cunningham, Green Chem., 2017, 19, 1889-1894.
51. M. Zhang, D. Xu, X. Yan, et al., Angew. Chem. Int. Ed., 2012, 51, 7011-7015.
52. V. K. Thakur and M. R. Kessler, Polymer, 2015, 69, 369-383.
53. Y.-L. Liu and T.-W. Chuo, Polym Chem, 2013, 4, 2194.
54. Y. Amamoto, J. Kamada, H. Otsuka, et al., Angew. Chem. Int. Ed., 2011, 123, 1698-1701.
55. Y. Bai, Y. Chen, Q. Wang, et al., J. Mater. Chem. A, 2014, 2, 9169.
56. S. J. Garcia, Eur. Polym. J., 2014, 53, 118-125.
57. K. Suhailath, P. Jayakrishnan, B. Naufal, et al., Adv. Polym. Tech., 2016.
58. A. Codou, M. Moncel, J. G. van Berkel, et al., Phys Chem Chem Phys, 2016, 18, 16647-16658.
59. S. R. White, N. R. Sottos, P. H. Geubelle, et al., Nature, 2001, 409, 794-797.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *