帳號:guest(3.138.137.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉哲銘
作者(外文):Yeh, Che-Ming
論文名稱(中文):聚乙烯醇包覆奈米銀觸媒(PVA-Ag)之合成及其應用在無電電鍍銅反應催化之研究
論文名稱(外文):Synthesis of PVA-Capped Ag Nanoparticles and Its Application in Electroless Cu Deposition
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):王潔
吳茂松
口試委員(外文):Wang, Jane
Wu, Mao-Sung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032549
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:98
中文關鍵詞:銀奈米無電電鍍銅
外文關鍵詞:Ag nanoparticlesElectroless Cu Deposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:62
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
在無電電鍍的程序中,鈀是最常用的活化觸媒。由於商用鈀觸媒的不穩定性以及鈀金價格日趨昂貴的趨勢下,因此探尋非鈀系統的無電電鍍觸媒在產學研界都引發了相當大的興趣。本研究的主要目標為開發一新型奈米銀觸媒,以PVA為保護劑、甲醛和硼氫化鈉為還原劑下進行銀觸媒的合成,並搭配表面氫氧化以及矽烷化合物之兩階段表面改質將觸媒吸附於基板上進行無電電鍍銅的測試。
在研究的第一部分,依循前人的研究,以甲醛為還原劑搭配氫氧化鈉為pH調整劑下進行銀觸媒的合成,在穿透式電子顯微鏡(TEM)以及動態奈米粒徑散射分析儀(DLS)的分析下,發現合成出之銀觸媒的粒徑尺寸過大,粒徑分布亦不理想。進而藉由掃描式電子顯微鏡(SEM)、傅立葉轉換紅外光譜儀(FTIR)、核磁共振(NMR)、TEM以及原子力顯微鏡(AFM)的分析下,證明了造成粒徑過大的原因為PVA保護劑與甲醛會在強鹼環境下有著交聯反應的發生,並且隨著交聯反應程度的高低會使合成出來的銀觸媒粒徑有所差異。
第二部分的研究中,由於甲醛不適用於PVA系統下的合成,因此透過硼氫化鈉為新的還原劑進行銀奈米觸媒的合成,在DLS、TEM的分析下,成功的合成出粒徑約13奈米且粒徑分布收斂之銀奈米觸媒,經由X光繞射儀(XRD)、紫外光/可見光分光光譜儀(UV/VIS)的分析,結果顯示銀觸媒皆為純銀且無氧化物的生成。在後續無電電鍍銅催化上,將觸媒吸附於兩階段表面改質之基板進行測試,從測試的結果發現,銀觸媒並無法在無電電鍍銅的反應上順利進行催化,透過感應耦合電漿質譜儀(ICP-MS)、X光射線電子能譜儀(XPS)、觸媒活性檢測(induction time)的檢測下確認銀觸媒在活性以及吸附量與鈀觸媒相比都有著較為不好的表現。在吸附量方面,原因為銀觸媒與ETAS(3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane)上之胺基並無良好的交互作用力使吸附於基表面的觸媒數量過少;在活性方面,由於銀觸媒本身並無優異的吸氫能力,在催化機制上少了氫的氧化反應式,使得銀觸媒在催化上電子釋放的能力與鈀觸媒相比遜色許多。
Palladium is the most popular catalyst being used in the electroless deposition process. Owing to the instability and expensive price of commercial palladium catalysts, a new type of silver catalyst with polyvinyl alcohol (PVA) as protector, formaldehyde (HCHO) and sodium borohydride (NaBH4) as reducing agent were developed.
In the first part of this research, according to the literature study, HCHO and sodium hydroxide (NaOH) are used as the reducing agent and pH controller for synthesizing silver nanoparticles. From the transmission electron micro scope (TEM), the dynamic light scattering (DLS) results, the silver nanoparticles had large particle size and wide distribution because of the cross-linked reaction between PVA and HCHO. In addition, the analysis of TEM, scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), atomic force microscope (AFM) further proved that the PVA reacted with HCHO in strong base condition and the different size distribution was related to degree of cross-linked reaction.
As we found in previous section, HCHO is not a suitable reducing agent in PVA-Ag system due to the cross-linking reaction. The second part aims to using NaBH4 as an alternative to HCHO for preparing PVA-Ag nanoparticles. The results from DLS, TEM, X-ray diffraction (XRD) and UV/VIS spectrometers (UV/VIS) illustrated that monodispersed small PVA-Ag catalyst with particle size of 13 nm in average can be found. However, following by depositing PVA-Ag particles on substrate for electroless copper deposition, by means of surface modified with ETAS silane bridging catalysts and the substrate, we discovered that PVA-Ag failed to trigger copper reduction because of the low loading PVA-Ag catalysts, which was confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Further investigations by XPS revealed that the low PVA-Ag loading originated from a weak interaction between Ag particles and the amino group on ETAS. Besides, the induction time measurement indicated a weaker catalytic activity on copper of PVA-Ag comparing to PVA-Pd, where we supposed that PVA-Ag is deficient in hydrogen adsorption, which is an important step in the chain reaction of hydrogen oxidation and then it affects the following copper reduction.
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章、緒論 1
1.1前言 1
1.2研究目的與動機 5
第二章、文獻回顧 7
2.1鈀觸媒於無電電鍍銅之催化及應用 7
2.1.1無電電鍍銅液組成與特性 8
2.1.2無電電鍍銅液內反應及觸媒催化機制 10
2.1.3鈀觸媒於無電電鍍銅之應用 12
2.2奈米顆粒之聚集與分散 19
2.2.1奈米顆粒之聚集 19
2.2.2奈米顆粒之分散與保護劑種類 20
2.3非鈀系統觸媒 23
2.3.1銀奈米觸媒於無電電鍍銅之催化機制 24
2.3.2銀奈米之合成及其在無電電鍍銅上之應用 24
2.4矽烷化合物表面改質 39
2.4.1矽烷化合物的結構及種類 39
2.4.2表面兩階段改質機制 41
第三章、實驗 43
3.1藥品與材料 43
3.2設備與儀器 44
3.3量測原理 45
3.3.1 原子力顯微鏡(Atomic force microscope, AFM) 45
3.3.2 穿透式電子顯微鏡(Transmission electron microscope, TEM) 47
3.3.3 X光繞射儀(X-ray Diffraction, XRD) 49
3.3.4 觸媒活性檢測(Induction time) 51
3.3.5 紫外光/可見光分光光譜儀(UV/VIS spectrometers) 53
3.3.6 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 55
3.3.7 傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 57
3.3.8 掃描式電子顯微鏡(Scanning electron microscope, SEM) 59
3.3.9 動態散射分析(Dynamic Light Scattering, DLS) 60
3.3.10 核磁共振儀(Nuclear Magnetic Resonance, NMR) 61
3.3.11 感應耦合電漿質譜儀(Inductively Coupled Plasma, ICP) 62
3.4實驗方法 63
3.4.1 PVA/Pd/HCHO奈米顆粒合成 63
3.4.2 PVA/Ag/HCHO/NaOH奈米顆粒合成 64
3.4.3 PVA/Ag/NaBH4奈米顆粒合成 65
3.4.4無電鍍銅沉積 66
第四章、結果與討論 69
4.1 PVA/Ag/HCHO/NaOH銀觸媒分析 69
4.1.1 PVA/Ag/HCHO/NaOH物化性分析 69
4.1.2 PVA/Ag/HCHO/NaOH之交聯分析 73
4.2 PVA/Ag/NaBH4銀觸媒分析 79
4.2.1 PVA/Ag/NaBH4物化性分析 80
4.2.2 PVA/Ag/NaBH4吸附與無電鍍銅測試 82
第五章、結論 91
第六章、參考文獻 92
[1] 楊雲凱, "物理氣相沉積(PVD)介紹," NANO COMMUNUCATION 22卷 No.4, pp. p33-35.
[2] 楊正杰, 張鼎張, and 鄭晃忠, "銅金屬與低介電常數材料與製程," 國科會國家毫微米元件實驗室通訊, 第七卷第四期, pp. 40-46, 2000.
[3] G. O. Mallory and J. B. Hajdu, Electroless plating: fundamentals and applications: William Andrew, 1990.
[4] 陳振瑞, "矽晶圓上之選擇性無電鍍鎳," 碩士論文, vol. 國立清華大學, 1995.
[5] E. J. O'Sullivan, J. Horkans, J. R. White, and J. M. Roldan, "Characterization of PdSn catalysts for electroless metal deposition," IBM journal of research and development, vol. 32, pp. 591-602, 1988.
[6] 陳麗蓉, "製備鈀金屬奈米粒子與應用於化學鍍銅製程之研究," 碩士論文, vol. 國立清華大學, 2004.
[7] M. Paunovic and M. Schlesinger, Fundamentals of electrochemical deposition vol. 45: john wiley & sons, 2006.
[8] 周沛瑜, "磷酸對奈米鈀粒子穩定性及其在無電電鍍銅沉積催化活性之研究," 碩士論文, vol. 國立清華大學, 2009.
[9] 許晉偉, "矽晶圓上高附著性無電鍍鎳磷層之研究," 碩士論文, vol. 國立清華大學, 2016.
[10] 彭超, "奈米鈀金屬活化液之製備及其在化學鍍銅製程之應用," 碩士論文, vol. 國立清華大學, 2006.
[11] R. Litchfield, J. Graves, M. Sugden, D. Hutt, and A. Cobley, "Functionalised copper nanoparticles as catalysts for electroless plating," in Electronics Packaging Technology Conference (EPTC), 2014 IEEE 16th, 2014, pp. 235-240.
[12] Y. Fujiwara, Y. Kobayashi, K. Kita, R. Kakehashi, M. Noro, J.-i. Katayama, et al., "Ag nanoparticle catalyst for electroless Cu deposition and promotion of its adsorption onto epoxy substrate," Journal of the Electrochemical Society, vol. 155, pp. D377-D382, 2008.
[13] C.-L. Lee, Y.-L. Tsai, and C.-W. Chen, "Specific and mass activity of silver nanocube and nanoparticle-based catalysts for electroless copper deposition," Electrochimica Acta, vol. 104, pp. 185-190, 2013.
[14] Palladium price. Available: https://www.cnyes.com/futures/flashchart/PA.html
[15] Silver price. Available: https://www.cnyes.com/futures/flashchart/SL.html
[16] Y. Okinaka and T. Osaka, "Electroless deposition processes: fundamentals and applications," Advances in electrochemical science and engineering, vol. 2, pp. 55-116, 2008.
[17] J. Shu, B. Grandjean, and S. Kaliaguine, "Effect of Cu (OH) 2 on electroless copper plating," Industrial & engineering chemistry research, vol. 36, pp. 1632-1636, 1997.
[18] S. Jayalakshmi, P. Venkatesh, and P. BalaRamesh, "RECENT ADVANCES IN ELECTROLESS COPPER DEPOSITION–A REVIEW."
[19] C. Ryu, K.-W. Kwon, A. L. Loke, H. Lee, T. Nogami, V. M. Dubin, et al., "Microstructure and reliability of copper interconnects," IEEE transactions on electron devices, vol. 46, pp. 1113-1120, 1999.
[20] A. Hung, "Electroless copper deposition with hypophosphite as reducing agent," Plating and surface finishing, vol. 75, pp. 62-65, 1988.
[21] I. Ohno, O. Wakabayashi, and S. Haruyama, "Anodic oxidation of reductants in electroless plating," Journal of the electrochemical society, vol. 132, pp. 2323-2330, 1985.
[22] E. Juzeliunas, H. W. Pickering, and K. G. Weil, "Electrochemical quartz crystal microgravimetry study of metal deposition from EDTA complexes," Journal of the Electrochemical Society, vol. 147, pp. 1088-1095, 2000.
[23] M. Oita, M. Matsuoka, and C. Iwakura, "Deposition rate and morphology of electroless copper film from solutions containing 2, 2′-dipyridyl," Electrochimica Acta, vol. 42, pp. 1435-1440, 1997.
[24] D. G. Kim, J. S. Bae, J. H. Lee, Y. D. Kim, and Y. M. Ahn, "Electrochemical kinetics study of electroless copper plating for electronics application," in Materials Science Forum, 2004, pp. 393-396.
[25] Y. Fujiwara, Y. Kobayashi, T. Sugaya, A. Koishikawa, Y. Hoshiyama, and H. Miyake, "Adsorption promotion of Ag nanoparticle using cationic surfactants and polyelectrolytes for electroless Cu plating catalysts," Journal of the Electrochemical Society, vol. 157, pp. D211-D216, 2010.
[26] Y. Shacham-Diamand, V. Dubin, and M. Angyal, "Electroless copper deposition for ULSI," Thin Solid Films, vol. 262, pp. 93-103, 1995.
[27] J. Van Den Meerakker, "On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces," Journal of Applied Electrochemistry, vol. 11, pp. 387-393, 1981.
[28] Y. Shacham-Diamand and V. M. Dubin, "Copper electroless deposition technology for ultra-large-scale-integration (ULSI) metallization," Microelectronic Engineering, vol. 33, pp. 47-58, 1997.
[29] J. C. R. Shipley, "Method of electroless deposition on a substrate and catalyst solution therefor," ed: Google Patents, 1961.
[30] R. Cohen and K. West, "Characterization of tin-palladium sols," Chemical Physics Letters, vol. 16, pp. 128-130, 1972.
[31] 劉家汝 and 李建良, "化學鍍活化液之發展," 化工, vol. 61, pp. 3-15, 2014.
[32] M. Froment, E. Queau, J. Martin, and G. Stremsdoerfer, "Structural and Analytical Characteristics of Adsorbed Pd‐Sn Colloids," Journal of The Electrochemical Society, vol. 142, pp. 3373-3377, 1995.
[33] P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of palladium colloids: Micron-scale patterning by electroless deposition of copper," Langmuir, vol. 12, pp. 1375-1380, 1996.
[34] C. Peng, S. H. Lo, C.-C. Wan, and Y.-Y. Wang, "Study of the adsorptive behavior of Pd/PVP nanoparticles and its interaction with conditioner in electroless copper deposition," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 308, pp. 93-99, 2007.
[35] C.-W. Hsu, W.-Y. Wang, S.-H. Wang, Y.-H. Kao, and T.-C. Wei, "Adhesive nickel-phosphorous electroless plating on silanized silicon wafer catalyzed by reactive palladium nanoparticles," in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2015 10th International, 2015, pp. 245-249.
[36] S. L. Brandow, W. J. Dressick, C. R. Marrian, G. M. Chow, and J. M. Calvert, "The morphology of electroless Ni deposition on a colloidal Pd (II) catalyst," Journal of the Electrochemical Society, vol. 142, pp. 2233-2243, 1995.
[37] J. Xian, Q. Hua, Z. Jiang, Y. Ma, and W. Huang, "Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals," Langmuir, vol. 28, pp. 6736-6741, 2012.
[38] V. K. LaMer and R. H. Dinegar, "Theory, production and mechanism of formation of monodispersed hydrosols," Journal of the American Chemical Society, vol. 72, pp. 4847-4854, 1950.
[39] V. K. L. Mer, "Nucleation in phase transitions," Industrial & Engineering Chemistry, vol. 44, pp. 1270-1277, 1952.
[40] F. Wang, V. N. Richards, S. P. Shields, and W. E. Buhro, "Kinetics and mechanisms of aggregative nanocrystal growth," Chemistry of Materials, vol. 26, pp. 5-21, 2013.
[41] J. Zhang, F. Huang, and Z. Lin, "Progress of nanocrystalline growth kinetics based on oriented attachment," Nanoscale, vol. 2, pp. 18-34, 2010.
[42] X. Deng, Z. Huang, W. Wang, and R. N. Davé, "Investigation of nanoparticle agglomerates properties using Monte Carlo simulations," Advanced Powder Technology, vol. 27, pp. 1971-1979, 2016.
[43] B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y. R. De Miguel, et al., "Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens," Science and technology of advanced materials, vol. 14, p. 023001, 2013.
[44] G. Schmid and L. F. Chi, "Metal clusters and colloids," Advanced Materials, vol. 10, pp. 515-526, 1998.
[45] The schematic diagram of electrostatic stabilization. Available: http://www.inkline.gr/inkjet/newtech/tech/dispersion/
[46] A. R. Studart, E. Amstad, and L. J. Gauckler, "Colloidal stabilization of nanoparticles in concentrated suspensions," Langmuir, vol. 23, pp. 1081-1090, 2007.
[47] 楊英詩, "The Practicability of Ag-based Activator to Catalyze Electroless Copper Deposition," 碩士論文, vol. 國立清華大學, 2010.
[48] C. Pfeiffer, C. Rehbock, D. Hühn, C. Carrillo-Carrion, D. J. de Aberasturi, V. Merk, et al., "Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles," Journal of The Royal Society Interface, vol. 11, p. 20130931, 2014.
[49] The schematic diagram of Tin-Palladium colliod. Available: http://www.kpmtech.co.kr/chinese/?Mpage=sub02_3_2
[50] M.-P. Pileni, "The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals," Nature materials, vol. 2, pp. 145-150, 2003.
[51] P. Alexandridis, "Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers," Chemical Engineering & Technology, vol. 34, pp. 15-28, 2011.
[52] C. Yee, M. Scotti, A. Ulman, H. White, M. Rafailovich, and J. Sokolov, "One-phase synthesis of thiol-functionalized platinum nanoparticles," Langmuir, vol. 15, pp. 4314-4316, 1999.
[53] H. Hirai, N. Yakura, Y. Seta, and S. Hodoshima, "Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst," Reactive and Functional Polymers, vol. 37, pp. 121-131, 1998.
[54] S. P. Yeap, A. L. Ahmad, B. S. Ooi, and J. Lim, "Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles," Langmuir, vol. 28, pp. 14878-14891, 2012.
[55] W. Yuan, Z. Lu, and C. M. Li, "Controllably layer-by-layer self-assembled polyelectrolytes/nanoparticle blend hollow capsules and their unique properties," Journal of Materials Chemistry, vol. 21, pp. 5148-5155, 2011.
[56] M. Wiśniewska and K. Szewczuk-Karpisz, "Removal possibilities of colloidal chromium (III) oxide from water using polyacrylic acid," Environmental Science and Pollution Research, vol. 20, pp. 3657-3669, 2013.
[57] M. M. Coulter, J. A. Dinglasan, J. B. Goh, S. Nair, D. J. Anderson, and V. M. Dong, "Preparing water-dispersed palladium nanoparticles via polyelectrolyte nanoreactors," Chemical Science, vol. 1, pp. 772-775, 2010.
[58] W.-P. Dow, G.-L. Liao, S.-E. Huang, and S.-W. Chen, "Modification of Cu nanoparticles with a disulfide for polyimide metallization," Journal of Materials Chemistry, vol. 20, pp. 3600-3609, 2010.
[59] W.-P. Dow and T.-J. Huang, "Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst," Journal of Catalysis, vol. 147, pp. 322-332, 1994.
[60] A. P. Reverberi, M. Salerno, S. Lauciello, and B. Fabiano, "Synthesis of copper nanoparticles in ethylene glycol by chemical reduction with vanadium (+ 2) salts," Materials, vol. 9, p. 809, 2016.
[61] S. Shukla, S. Seal, Z. Rahaman, and K. Scammon, "Electroless copper coating of cenospheres using silver nitrate activator," Materials Letters, vol. 57, pp. 151-156, 2002.
[62] A. Vaškelis, A. Jagminienė, L. Tamašauskaitė–Tamašiūnaitė, and R. Juškėnas, "Silver nanostructured catalyst for modification of dielectrics surface," Electrochimica acta, vol. 50, pp. 4586-4591, 2005.
[63] C.-L. Lee and C.-C. Syu, "Ag nanoparticle as a new activator for catalyzing electroless copper bath with 2, 2′-bipyridyl," Electrochimica Acta, vol. 56, pp. 8880-8883, 2011.
[64] C.-R. Liu, N.-K. Chou, C.-H. Li, H.-R. Chen, and C.-L. Lee, "1, 10-Phenanthroline as an accelerator for Ag nanoparticle-catalysed electroless copper deposition," Applied Surface Science, vol. 317, pp. 181-187, 2014.
[65] C.-L. Lee, C.-M. Tseng, R.-B. Wu, C.-C. Wu, and S.-C. Syu, "Catalytic characterization of hollow silver/palladium nanoparticles synthesized by a displacement reaction," Electrochimica Acta, vol. 54, pp. 5544-5547, 2009.
[66] C.-L. Lee, K.-C. Chang, and C.-M. Syu, "Silver nanoplates as inkjet ink particles for metallization at a low baking temperature of 100 C," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 381, pp. 85-91, 2011.
[67] Y.-J. Chao, C.-R. Liu, L.-S. Pan, and C.-L. Lee, "Activity of small silver nanocubes as activators for electroless copper deposition," Electrochimica Acta, vol. 183, pp. 20-26, 2015.
[68] T. Tamai, M. Watanabe, and K. Matsukawa, "In‐situ formation of metal nanoparticle/acrylic polymer hybrid and its application to miniemulsion polymerization," Journal of Applied Polymer Science, vol. 132, 2015.
[69] A. Kaewvilai, R. Tanathakorn, A. Laobuthee, W. Rattanasakulthong, and A. Rodchanarowan, "Electroless copper plating on nano-silver activated glass substrate: A single-step activation," Surface and Coatings Technology, vol. 319, pp. 260-266, 2017.
[70] C.-R. Liu, L.-S. Pan, C.-H. Li, H.-R. Chen, and C.-L. Lee, "Ag/Sn Nanoparticles Reduced by Tin (II) Pyrophosphate, Tin (II) Oxalate, and Tin (II) Sulfate for Catalyzing Electroless Copper Deposition," Journal of The Electrochemical Society, vol. 162, pp. D283-D290, 2015.
[71] B. Arkles, "Hydrophobicity, hydrophilicity and silanes: Water, water everywhere is the refrain from the rhyme of the ancient mariner and a concern of every modern coatings technologist," Paint Coat. Ind, 2006.
[72] L. A. Chrisey, G. U. Lee, and C. E. O'Ferrall, "Covalent attachment of synthetic DNA to self-assembled monolayer films," Nucleic acids research, vol. 24, pp. 3031-3039, 1996.
[73] H. Kim and J. Jang, "Corrosion protection and adhesion promotion for polyimide/copper system using silane-modified polymeric materials," Polymer, vol. 41, pp. 6553-6561, 2000.
[74] N. Herzer, S. Hoeppener, and U. S. Schubert, "Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates," Chemical Communications, vol. 46, pp. 5634-5652, 2010.
[75] J. Cras, C. Rowe-Taitt, D. Nivens, and F. Ligler, "Comparison of chemical cleaning methods of glass in preparation for silanization," Biosensors and bioelectronics, vol. 14, pp. 683-688, 1999.
[76] Y. Xie, C. A. Hill, Z. Xiao, H. Militz, and C. Mai, "Silane coupling agents used for natural fiber/polymer composites: A review," Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 806-819, 2010.
[77] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, p. 930, 1986.
[78] The schematic diagram of AFM tip. Available: http://newman814.blogspot.com/2006/04/bio-afm.html
[79] Transmission Electron Microscope Instrument Britannica Com. Available: https://humananatomylibrary.co/s/transmission-electron-microscopy.asp
[80] The schematic diagram of analysis process of X-ray Photoelectron Spectroscopy . Available: http://www.toray.cn/trc/kinougenri/hyoumen/hyo_002.html
[81] The photoemission process involved for XPS surface analysis. Available: https://xpssimplified.com/whatisxps-photoemission.php
[82] The schematic diagram of FTIR analysis process. Available: www.mse.ttu.edu.tw/ezfiles/63/1063/img/647/146611620.doc
[83] The schematic diagram of SEM structure. Available: https://www.slideshare.net/kalyanacharjya/electron-microscopy-sem-tem
[84] The schematic diagram of DLS analysis process. Available: http://pssnicomp.cnpowder.com.cn/product_70667.html
[85] 李珠 and 譜儀, "感應耦合電漿質譜儀技術及其在材料分析上的應用," ed: 工業材料雜誌, 2002.
[86] S. Agnihotri, S. Mukherji, and S. Mukherji, "Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy," Rsc Advances, vol. 4, pp. 3974-3983, 2014.
[87] S. Shaunik, T.-Y. Hsiao, C.-Y. Hong, and T.-C. Wei, "The use of polymer rich colloids to enable high adhesion electroless copper plating on FR4 substrates," in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2017 12th International, 2017, pp. 234-236.
[88] A. Mondal and B. Mandal, "CO2 separation using thermally stable crosslinked poly (vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine," Journal of Membrane Science, vol. 460, pp. 126-138, 2014.
[89] P. Chetri and N. Dass, "Preparation of poly (vinyl formal) of high acetalization," Polymer, vol. 38, pp. 3951-3956, 1997.
[90] S. V. Mjakin, M. M. Sychov, N. B. Sheiko, L. L. Ezhenkova, A. G. Rodionov, and I. V. Vasiljeva, "Improvement of vibrodamping properties of polyvinyl acetate–graphite composites by electron beam processing of the filler," SpringerPlus, vol. 5, p. 1539, 2016.
[91] D. C. Bugada and A. Rudin, "Characterization of poly (vinyl alcohol—acetate) by 13C nmr and thermal analyses," Polymer, vol. 25, pp. 1759-1766, 1984.
[92] Y. Pan, W. Wang, C. Peng, K. Shi, Y. Luo, and X. Ji, "Novel hydrophobic polyvinyl alcohol–formaldehyde foams for organic solvents absorption and effective separation," RSC Advances, vol. 4, pp. 660-669, 2014.
[93] Representative 13C Chemical Shifts: http://www.unm.edu/~orgchem/304L%20pages/09%2013C%20shift%20chart%20304.pdf

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *