帳號:guest(18.226.88.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳韶恩
作者(外文):Wu, Shao-En
論文名稱(中文):醋酸乙烯酯乳化聚合反應槽流體力學模擬
論文名稱(外文):The Computational Fluid Dynamics Simulation of Reactor for Vinyl Acetate Emulsion Polymerization
指導教授(中文):鄭西顯
指導教授(外文):Jang, Shi-Shang
口試委員(中文):汪上曉
張玨庭
康嘉麟
口試委員(外文):Wong, Shan-Hill
Chang, Chuei-Tin
Kang, Jia-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032545
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:45
中文關鍵詞:乳化聚合粒徑分析攪拌反應器聚醋酸乙烯酯計算流體動力學
外文關鍵詞:EmulsionPolymerizationPSDPVAcCFD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:331
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
聚醋酸乙烯酯製造程序當中,攪拌反應器是最重要的一步,然而,在乳化階段,反應器的規格及操作條件影響乳液的粒徑大小,而乳液的粒徑大小對於後續的聚合反應,有著重要的影響。本研究將以CFD軟體模擬乳液的狀況,建立粒徑分布,並藉由實驗驗證準確性。為建立完整的模型與驗證方法,建立界面活性劑PVA與VAM乳化攪拌模擬,同時利用雷射粒徑分析儀(Mastersizer 2000)分析乳化液粒徑大小及分布比對模擬結果,研究成果顯示CFD乳化攪拌模擬可依反應器規格預測粒徑分布。在聚合階段已建立模型,並架設實驗裝置,進行PVAc乳化聚合實驗,藉以交叉比對模擬及實驗數據。起始劑分佈對於聚合物粒徑特徵有密切關聯,本研究亦模擬前導工廠反應器改變攪拌葉間距,以持續入料起始劑的方式,進行反應聚合,觀測起始劑分佈。
Stirring the reactor is the most important step in the polyvinyl acetate manufacturing process. However, in the emulsification stage, the reactor specifications and operating conditions affect the particle size of the emulsion, which has important influence on the subsequent polymerization. In this study, the particle size distribution was established by CFD software, and the accuracy was verified by experiments.In order to establish a complete model and verification method, the surfactant (PVA) and VAM emulsification and stirring simulation were established. At the same time, the particle size distribution of the emulsion were analyzed by laser particle size analyzer (Mastersizer 2000). The research results showed that CFD simulations can predict particle size distribution according to reactor specifications.
Models have been established on the polymerization stage, and experimental devices have been set up to conduct PVAc emulsion polymerization experiments to cross-compare simulations and experimental data. The initiator distribution is closely related to the particle size distribution of the polymer. In this study, the pilot reactor was also simulated to change the pitch of stirring blade, and the emulsion polymerization was carried out by continuously feeding the initiator to observe the initiator distribution.
摘要 I
Abstract II
誌謝辭 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
1.3文獻回顧 2
1.3.1 乳化聚合反應機制 2
1.3.2 群體平衡模型 5
1.3.3 CFD模擬乳化聚合反應 6
第二章 建模方法 8
2.1質量守恆方程式 10
2.2動量守恆方程式 11
2.3紊流方程式 11
2.4群體平衡模型(PBE) 12
2.4 1破裂方程式(Breakage Equation) 13
2.4.2 臨界韋柏數(Critical Weber Number) 13
2.4.3 成核速率(Nucleation rate) 16
2.4.4 成長速率(Growth rate) 18
2.5 乳化聚合反應動力學 19
2.6 流場幾何結構 19
第三章 實驗方法 23
3.1乳化實驗簡介 23
3.1.1實驗儀器 24
3.1.2實驗藥品 25
3.1.3實驗方法 25
3.2 PVAc乳化聚合實驗簡介 26
3.2.1實驗儀器 26
3.2.2實驗藥品 27
3.2.3實驗方法 28
第四章 研究結果 29
4.1乳化模擬結果 29
4.1.1實驗室級反應器 30
4.1.2前導工廠反應器 31
4.1.3工廠現場反應器 31
4.2聚合模擬結果 33
4.3聚合實驗結果 34
4.3.1粒徑分析 34
4.3.2固型份 36
4.4起始劑分佈結果 37
4.4.1攪拌葉間距90mm前導工廠反應器 37
4.4.2攪拌葉間距63mm前導工廠反應器 39
第五章結論 41
參考文獻 42

[1] J. Bałdyga, J. Bourne, and S. Hearn, "Interaction between chemical reactions and mixing on various scales," Chemical Engineering Science, vol. 52, pp. 457-466, 1997.
[2] J. R. Bourne, O. M. Kut, and J. Lenzner, "An improved reaction system to investigate micromixing in high-intensity mixers," Industrial & engineering chemistry research, vol. 31, pp. 949-958, 1992.
[3] A. Bakker, J. B. Fqsano, and D. E. Leng, "PINPOINT MIXING POBLEMS."
[4] J. Baldyga and J. Bourne, "Interactions between mixing on various scales in stirred tank reactors," Chemical Engineering Science, vol. 47, pp. 1839-1848, 1992.
[5] S. Kim and H.-J. Kim, "Effect of addition of polyvinyl acetate to melamine-formaldehyde resin on the adhesion and formaldehyde emission in engineered flooring," International Journal of Adhesion and Adhesives, vol. 25, pp. 456-461, 2005.
[6] 吳明修, "乙酸乙烯酯/乙烯共聚乳膠乳化反應槽流體力學模擬及聚乙烯醇品質分析," 碩士論文, 國立清華大學化學工程系, 2017.
[7] H. De Bruyn, R. G. Gilbert, and M. J. Ballard, "Exit in the emulsion polymerization of vinyl acetate," Macromolecules, vol. 29, pp. 8666-8669, 1996.
[8] H. B. Yamak, "Emulsion polymerization: effects of polymerization variables on the properties of vinyl acetate based emulsion polymers," in Polymer Science, ed: InTech, 2013.
[9] J. Sjoblom, Encyclopedic handbook of emulsion technology: CRC Press, 2001.
[10] H. Luo and H. F. Svendsen, "Theoretical model for drop and bubble breakup in turbulent dispersions," AIChE Journal, vol. 42, pp. 1225-1233, 1996.
[11] M. Larson and A. Randolph, "Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization," ed: Academic press, 1971.
[12] M. Hounslow, R. Ryall, and V. Marshall, "A discretized population balance for nucleation, growth, and aggregation," AIChE Journal, vol. 34, pp. 1821-1832, 1988.
[13] S. F. Roudsari, G. Turcotte, R. Dhib, and F. Ein-Mozaffari, "CFD modeling of the mixing of water in oil emulsions," Computers & Chemical Engineering, vol. 45, pp. 124-136, 2012.
[14] D. Ramkrishna, Population balances: Theory and applications to particulate systems in engineering: Elsevier, 2000.
[15] R. O. Fox, "Optimal moment sets for multivariate direct quadrature method of moments," Industrial & Engineering Chemistry Research, vol. 48, pp. 9686-9696, 2008.
[16] S. Kumar and D. Ramkrishna, "On the solution of population balance equations by discretization—I. A fixed pivot technique," Chemical Engineering Science, vol. 51, pp. 1311-1332, 1996.
[17] J. Lister, D. Smit, and M. Hounslow, "Adjustable discretized population balance for growth and aggregation," AIChE Journal, vol. 41, pp. 591-603, 1995.
[18] M. Kostoglou, S. Dovas, and A. Karabelas, "On the steady-state size distribution of dispersions in breakage processes," Chemical Engineering Science, vol. 52, pp. 1285-1299, 1997.
[19] C. Chern, "Emulsion polymerization mechanisms and kinetics," Progress in polymer science, vol. 31, pp. 443-486, 2006.
[20] M. Kemmere, J. Meuldijk, A. Drinkenburg, and A. German, "Emulsification in batch emulsion polymerization," Journal of applied polymer science, vol. 74, pp. 3225-3241, 1999.
[21] N. H. Kolhapure and R. O. Fox, "CFD analysis of micromixing effects on polymerization in tubular low-density polyethylene reactors," Chemical Engineering Science, vol. 54, pp. 3233-3242, 1999.
[22] S. F. Roudsari, F. Ein-Mozaffari, and R. Dhib, "Use of CFD in modeling MMA solution polymerization in a CSTR," Chemical engineering journal, vol. 219, pp. 429-442, 2013.
[23] H. Patel, F. Ein-Mozaffari, and R. Dhib, "CFD analysis of mixing in thermal polymerization of styrene," Computers & chemical engineering, vol. 34, pp. 421-429, 2010.
[24] D. Maggioris, A. Goulas, A. Alexopoulos, E. Chatzi, and C. Kiparissides, "Prediction of particle size distribution in suspension polymerization reactors: effect of turbulence nonhomogeneity," Chemical Engineering Science, vol. 55, pp. 4611-4627, 2000.
[25] S. Fathi Roudsari, R. Dhib, and F. Ein‐Mozaffari, "Using a novel CFD model to assess the effect of mixing parameters on emulsion polymerization," Macromolecular Reaction Engineering, vol. 10, pp. 108-122, 2016.
[26] M. Harada, M. Nomura, H. Kojima, W. Eguchi, and S. Nagata, "Rate of emulsion polymerization of styrene," Journal of Applied Polymer Science, vol. 16, pp. 811-833, 1972.
[27] A. Omidvar and H. Khaleghi, "An analytical approach for calculation of critical weber number of droplet breakup in turbulent gaseous flows," Arabian Journal for Science and Engineering, vol. 37, pp. 2311-2321, 2012.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *