|
1. M.polak, A.E.B.a.J., Lungs, in Principles of Tissue Engineering, 3rd Edition, L. Lanza, and Vacanti, Editor. 2007. 2. Loira-Pastoriza, C., J. Todoroff, and R. Vanbever, Delivery strategies for sustained drug release in the lungs. Advanced drug delivery reviews, 2014. 75: p. 81-91. 3. Bajaj, P., et al., Advances and challenges in recapitulating human pulmonary systems: at the cusp of biology and materials. ACS Biomaterials Science & Engineering, 2016. 2(4): p. 473-488. 4. Weibel, E.R., B. Sapoval, and M. Filoche, Design of peripheral airways for efficient gas exchange. Respiratory physiology & neurobiology, 2005. 148(1-2): p. 3-21. 5. Horsfield, K. and G. Cumming, Morphology of the bronchial tree in man. Journal of applied physiology, 1968. 24(3): p. 373-383. 6. Hussain, M., P. Madl, and A. Khan, Lung deposition predictions of airborne particles and the emergence of contemporary diseases, Part-I. Health, 2011. 2(2): p. 51-59. 7. Seaton, A., et al., Particulate air pollution and acute health effects. The lancet, 1995. 345(8943): p. 176-178. 8. Ruge, C.A., J. Kirch, and C.-M. Lehr, Pulmonary drug delivery: from generating aerosols to overcoming biological barriers—therapeutic possibilities and technological challenges. The Lancet Respiratory Medicine, 2013. 1(5): p. 402-413. 9. Wanner, A., The role of mucus in chronic obstructive pulmonary disease. Chest, 1990. 97(2): p. 11s-15s. 10. Geiser, M., Update on macrophage clearance of inhaled micro-and nanoparticles. Journal of aerosol medicine and pulmonary drug delivery, 2010. 23(4): p. 207-217. 11. Lam, J.K.-W., W. Liang, and H.-K. Chan, Pulmonary delivery of therapeutic siRNA. Advanced drug delivery reviews, 2012. 64(1): p. 1-15. 12. Monteiro, A. and R.L. Smith, Bronchial tree Architecture in Mammals of Diverse Body Mass. International Journal of Morphology, 2014. 32(1). 13. Beebe, D.J., G.A. Mensing, and G.M. Walker, Physics and applications of microfluidics in biology. Annual review of biomedical engineering, 2002. 4(1): p. 261-286. 14. Pamula, V.K. and K. Chakrabarty. Cooling of integrated circuits using droplet-based microfluidics. in Proceedings of the 13th ACM Great Lakes symposium on VLSI. 2003. ACM. 15. Yeo, L.Y. and J.R. Friend, Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics, 2009. 3(1): p. 012002. 16. Esch, E.W., A. Bahinski, and D. Huh, Organs-on-chips at the frontiers of drug discovery. Nature reviews Drug discovery, 2015. 14(4): p. 248. 17. Frangos, J., L. McIntire, and S. Eskin, Shear stress induced stimulation of mammalian cell metabolism. Biotechnology and bioengineering, 1988. 32(8): p. 1053-1060. 18. Nollert, M., S. Diamond, and L. McIntire, Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism. Biotechnology and Bioengineering, 1991. 38(6): p. 588-602. 19. Halldorsson, S., et al., Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics, 2015. 63: p. 218-231. 20. Bhise, N.S., et al., Organ-on-a-chip platforms for studying drug delivery systems. Journal of Controlled Release, 2014. 190: p. 82-93. 21. Maschmeyer, I., et al., A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab on a Chip, 2015. 15(12): p. 2688-2699. 22. Benam, K.H., et al., Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nature methods, 2016. 13(2): p. 151. 23. Trieu, D., T.K. Waddell, and A.P. McGuigan, A microfluidic device to apply shear stresses to polarizing ciliated airway epithelium using air flow. Biomicrofluidics, 2014. 8(6): p. 064104. 24. Bousse, L., et al., Electrokinetically controlled microfluidic analysis systems. Annual review of biophysics and biomolecular structure, 2000. 29(1): p. 155-181. 25. Skafte-Pedersen, P., et al., Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay. Lab on a Chip, 2009. 9(20): p. 3003-3006. 26. Grass, B., et al., A new PMMA-microchip device for isotachophoresis with integrated conductivity detector. Sensors and Actuators B: Chemical, 2001. 72(3): p. 249-258. 27. Shin, Y.S., et al., PDMS-based micro PCR chip with parylene coating. Journal of Micromechanics and Microengineering, 2003. 13(5): p. 768. 28. Unger, M.A., et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000. 288(5463): p. 113-116. 29. Whitesides, G.M. and A.D. Stroock, Flexible methods for microfluidics. Phys. Today, 2001. 54(6): p. 42-48. 30. Klank, H., J.P. Kutter, and O. Geschke, CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip, 2002. 2(4): p. 242-246. 31. Velden, V. and H. Versnel, Bronchial epithelium: morphology, function and pathophysiology in asthma. European cytokine network, 1998. 9(4): p. 585-597. 32. Kikuchi, T., et al., Differentiation-dependent responsiveness of bronchial epithelial cells to IL-4/13 stimulation. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2004. 287(1): p. L119-L126. 33. Grainger, C.I., et al., Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharmaceutical research, 2006. 23(7): p. 1482-1490. 34. Fanning, A.S., et al., The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. Journal of Biological Chemistry, 1998. 273(45): p. 29745-29753. 35. Schneeberger, E.E. and R.D. Lynch, The tight junction: a multifunctional complex. American Journal of Physiology-Cell Physiology, 2004. 286(6): p. C1213-C1228. 36. Ostrowski, L.E., et al., A Proteomic Analysis of Human Cilia Identification of Novel Components. Molecular & Cellular Proteomics, 2002. 1(6): p. 451-465. 37. Blank, F., et al., An optimized in vitro model of the respiratory tract wall to study particle cell interactions. Journal of aerosol medicine, 2006. 19(3): p. 392-405.
|