帳號:guest(13.59.72.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張晉維
作者(外文):Chang, Chin-Wei
論文名稱(中文):建構單一桿狀病毒載體的新型Cre/loxP 基因延長表現系統並驗證其應用
論文名稱(外文):Development And Application of New Cre/loxP-based Long-Term Gene Expression System In Single Recombinant Baculovirus
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):趙裕展
黃振煌
口試委員(外文):Chao, Yu-Chan
Huang, Jen-Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032536
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:桿狀病毒Cre重組酶內含子微小核醣核酸CRISPR基因編輯系統間葉幹細胞
外文關鍵詞:baculovirusCreintronmicroRNACRISPR/Cas9MSC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
桿狀病毒Cre/loxP 基因延長表現系統是一雙病毒系統。在過去此系統需要兩株桿狀病毒。一株攜帶被loxP序列包夾的外源基因表現匣,另一株則含有Cre重組酶表現匣。當兩株病毒同時進入目標哺乳動物細胞中,外源基因表現匣會被Cre重組酶由桿狀病毒基因體上切下,並重組成小環形DNA(episome),此環形DNA可以穩定的存在細胞中,並長效表現外源基因。發展同時攜帶兩表現匣的單病毒Cre/loxP 基因延長表現系統,可使未來在應用時享有更多優點。然而,在生產病毒的過程中,Cre基因會滲漏導致外源基因嚴重缺失,因此為了在生產病毒過程中嚴格地限制Cre 的表現,我們利用專一性RNA剪接機制搭配特異性microRNA來抑制Cre基因於病毒生產流程中的滲漏。我們將四種不同的內含子插入Cre的開放閱讀框(open reading frame),並篩選出在大腸桿菌以及昆蟲細胞中最能有效抑制Cre基因滲漏的內含子。此外為了更進一步的抑制Cre,我們在Cre 基因的3’未轉譯區(3’UTR)插入與MicroRNA bantam 完全互補的序列,透過這樣的策略,可減少Cre 成熟mRNA 99.8%的滲漏(相對於未調控組),此新發展的Cre/loxP系統,在第二代病毒仍可保持93%外源基因,並在多種哺乳動物細胞中有高重組效率。為了證實本策略的泛用性,我們以同樣的方法,開發的單病毒載體的合成開關自切型CRISPR系統,相較於直接將Cas9表現匣與gRNA建構在一起的負對照組,新系統有更好的基因穩定度,第一代病毒含有89% 轉殖基因表現匣而對照組僅75%。在目標位點切割效率測試上,新系統的on target效率達20.4%,與過去共轉染質體所得的結果(23.7%)相近,但因新系統搭載病毒載體,未來可望遞送基因至難以轉染的細胞,更具應用潛力。
Cre/loxP‐based baculovirus(BV) system is a binary gene delivery system. In the past it required the delivery of two baculoviruses, one carrying the transgene cassette flanked by loxP and the other expressing Cre recombinase. Inside a target cell, transgene cassette is excised by the Cre recombinase and recircularizes to form an episomal DNA minicircle(episome). This minicircle can stably exist in target cell and enables long-term transgene expression. Developing a single BV system containing two cassettes may greatly benefit future applications. However, the leakage of cre may cause enormous loss of transgene in general BV production process. For stringently blocking Cre expression during the production of such single BV, we exploited the intron splicing mechanism in combination with specific microRNA to temporally control Cre expression. We tested 4 different introns, each of which was inserted into the cre open reading frame (ORF) and chose the best intron that successfully limited Cre expression in both E.coli and insect cell. To further downregulate Cre expression level, insect specific microRNA bantam complementary sequence was inserted into the 3’ untranslated region (UTR) of cre. These strategies altogether reduced approximately 99.8% of the mature Cre mRNA level in the insect cell comparing with the control group (BV with unmodified Cre expression cassette). This newly developed single Cre/loxP‐based baculovirus vector keeps 93% transgene expression cassette in the second passage, and maintains high recombinant efficiency in different types of mammalian cell.To confirm the applicability of our strategy, we used the same way to develop a single BV system of synthetic switch self-restrict CRISPR system .Comparing with the group which contains an unregulated Cas9 expression cassatte and gRNA cassatte (negative control), the BV genome stability of new single CRISPR system is better. This new single CRISPR system baculovirus keeps 89% transgene expression cassette and the negative control keeps only 75% in first passage. The on-target efficiency of new CRISPR system can achieve 20.4%. This result is similar to the result we got from previous transfection data (23.7%). Because our new single CRISPR system baculovirus can widely deliver gene into the cell which is difficult to transfect, new system will have more potential for gene editing.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖表目錄 VII
第一章 文獻回顧 1
1-1桿狀病毒載體 1
1-2 桿狀病毒Cre/loxp基因延長表現系統 2
1-3 RNA剪接(RNA splicing) 4
1-4 MicroRNA簡介 4
1-4-1 MicroRNA bantam簡介 5
1-5 合成開關自切型CRISPR 系統 6
1-6研究動機 8
第二章 材料與方法 13
2-1 質體建構 13
2-1-1 建構重組酶質體(recombinase plasmid) 13
2-1-2 建構受質質體(substrate plasmid) 14
2-1-3 重組酶質體與受質質體共轉型實驗 15
2-1-4 建構MicoRNA bantam 完全互補序列 15
2-1-5 建構含重組酶與loxP序列的新重組酶系統質體 16
2-1-6 建構重組轉殖質體(recombinant donor plasmid) 17
2-2 製備重組桿狀病毒之相關技術 18
2-2-1 昆蟲細胞的培養與繼代 18
2-2-2 重組表現載體之轉置反應(transposition) 19
2-2-3 抽取重組Bacmid 20
2-2-4 轉染重組Bacmid至昆蟲細胞 20
2-2-5 重組桿狀病毒的生產放大與繼代 21
2-2-6 重組桿狀病毒之濃縮程序 21
2-2-7 桿狀病毒感染效價測定(infectious titer) 22
2-3基因重組桿狀病毒之轉導 22
2-3-1 哺乳動物細胞之培養 22
2-3-2 轉導哺乳動物細胞 23
2-4各種系統檢測分析 24
2-4-1 流式細胞儀分析(flow cytometry) 24
2-4-2即時偵測同步定量聚合酶連鎖反應(qPCR) 24
2-4-3反轉錄聚合酶連鎖反應(RT-PCR) 26
2-4-4即時偵測同步定量反轉錄聚合酶連鎖反應(qRT-PCR) 26
2-4-5西方點墨法分析 27
2-4-6 CRISPR 系統On-Target效率分析 28
2-4-7統計分析 29
第三章 實驗結果與討論 31
3-1 受intron調控的Cre基因在大腸桿菌中滲漏程度 31
3-1-1 CMV啟動子驅動的Cre基因在大腸桿菌中滲漏 31
3-1-2 rEF1-α啟動子驅動的Cre基因在大腸桿菌中滲漏 32
3-2 Cre 成熟mRNA在Sf9中表現量分析 33
3-2-1 以RT-PCR 進行Cre 成熟mRNA 定性分析 34
3-2-2 以qRT-PCR 進行Cre 成熟mRNA 定量分析 34
3-2-3 證實bantam 互補序列之效用 35
3-3 新Cre/loxp基因延長表現系統穩定度分析 36
3-4 哺乳動物細胞中重組效率分析 38
3-4-1 病毒劑量對於重組效率之影響 38
3-4-2 不同種類細胞內的重組效率分析 39
3-5 建構單病毒合成開關自切型CRISPR系統 40
3-5-1 比較經調控與未調控自切型CRISPR系統轉殖質體濃度 41
3-5-2自切型CRISPR系統在昆蟲細胞中的滲漏 41
3-5-3自切型CRISPR系統病毒基因體穩定度 42
3-5-4自切型CRISPR系統病毒on target 效率 42
3-6結論 44
第四章 未來展望 55
第五章 參考文獻 56

Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Yla-Herttuala S. 2013. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 21(4):739-49.
Ausländer S, Fussenegger M. 2017. Synthetic RNA-based switches for mammalian gene expression control. Curr. Opin. Biotechnol. 48:54-60.
Barta T, Peskova L, Hampl A. 2016. miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep 6:36625.
Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K. 2017. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat. Commun. 8(1):1711.
Chen H. 2012. Exploiting the Intron-splicing Mechanism of Insect Cells to Produce Viral Vectors Harboring Toxic Genes for Suicide Gene Therapy. Mol Ther Nucleic Acids 1:e57.
Chen Y, Liu X, Zhang Y, Wang H, Ying H, Liu M, Li D, Lui KO, Ding Q. 2016. A Self-restricted CRISPR System to Reduce Off-target Effects. Molecular Therapy 24(9):1508-1510.
Cho SW, Kim S, Kim JM, Kim JS. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230-2.
Chung ME, Yeh IH, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC. 2017. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol. Bioeng. 114(1):172-183.
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA and others. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819-823.
de Jong SD, Basha G, Wilson KD, Kazem M, Cullis P, Jefferies W, Tam Y. 2010. The immunostimulatory activity of unmethylated and methylated CpG oligodeoxynucleotide is dependent on their ability to colocalize with TLR9 in late endosomes. J Immunol 184(11):6092-102.
Endo K, Stapleton JA, Hayashi K, Saito H, Inoue T. 2013. Quantitative and simultaneous translational control of distinct mammalian mRNAs. Nucleic Acids Res. 41(13):e135-e135.
Esquela-Kerscher A, Slack FJ. 2006. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259-69.
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31(9):822-826.
Ge J, Jin L, Tang X, Gao D, An Q, Ping W. 2014. Optimization of eGFP expression using a modified baculovirus expression system. J Biotechnol 173:41-6.
Gibb B, Gupta K, Ghosh K, Sharp R, Chen J, Van Duyne GD. 2010. Requirements for catalysis in the Cre recombinase active site. Nucleic Acids Res 38(17):5817-32.
Hamilton DL, Abremski K. 1984. Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol 178(2):481-6.
Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit M. 2017. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 45(7):3615-3626.
Hoess R, Abremski K, Sternberg N. 1984. The nature of the interaction of the P1 recombinase Cre with the recombining site loxP. Cold Spring Harb Symp Quant Biol 49:761-8.
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262-78.
Hu YC. 2006. Baculovirus vectors for gene therapy. Adv Virus Res 68:287-320.
Hu YC. 2008. Baculoviral vectors for gene delivery: a review. Curr Gene Ther 8(1):54-65.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816-21.
Kaczmarczyk SJ, Green JE. 2001. A single vector containing modified cre recombinase and LOX recombination sequences for inducible tissue-specific amplification of gene expression. Nucleic Acids Res 29(12):E56-6.
Kaczmarek JC, Kowalski PS, Anderson DG. 2017. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 9(1):60.
Karali M, Manfredi A, Puppo A, Marrocco E, Gargiulo A, Allocca M, Corte MD, Rossi S, Giunti M, Bacci ML and others. 2011. MicroRNA-restricted transgene expression in the retina. PLoS One 6(7):e22166.
Kim S, Kim D, Cho SW, Kim J, Kim J-S. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24(6):1012-1019.
Komor AC, Badran AH, Liu DR. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168(1):20-36.
Kost TA, Condreay JP, Jarvis DL. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23(5):567-75.
Lacy-Hulbert A, Thomas R, Li XP, Lilley CE, Coffin RS, Roes J. 2001. Interruption of coding sequences by heterologous introns can enhance the functional expression of recombinant genes. Gene Ther 8(8):649-53.
Lewin A, Mayer M, Chusainow J, Jacob D, Appel B. 2005. Viral promoters can initiate expression of toxin genes introduced into Escherichia coli. BMC Biotechnol 5:19.
Li H, Shen CR, Huang C-H, Sung L-Y, Wu M-Y, Hu Y-C. 2016a. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab. Eng. 38:293-302.
Li KC, Chang YH, Yeh CL, Hu YC. 2016b. Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials 74:155-66.
Li KC, Lo SC, Sung LY, Liao YH, Chang YH, Hu YC. 2016c. Improved calvarial bone repair by hASCs engineered with Cre/loxP-based baculovirus conferring prolonged BMP-2 and MiR-148b co-expression. J Tissue Eng Regen Med.
Lin CY, Chang YH, Lin KJ, Yen TC, Tai CL, Chen CY, Lo WH, Hsiao IT, Hu YC. 2010. The healing of critical-sized femoral segmental bone defects in rabbits using baculovirus-engineered mesenchymal stem cells. Biomaterials 31(12):3222-30.
Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G. 2014. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res.
LinChia-Wei CM-C, Lin Shih-Yeh, Hung Shi-Hsiao, Jhang Shun-Yu ,Chang Chin-Wei, Chang Poa-Chun, Hu Yu-Chen. 2018. Hybrid baculovirus-mediated prolonged hemagglutinin expression and secretion in vivo enhances the vaccine efficacy. Journal of the Taiwan Institute of Chemical Engineers.
Lo SC, Li KC, Chang YH, Hsu MN, Sung LY, Vu TA, Hu YC. 2017. Enhanced critical-size calvarial bone healing by ASCs engineered with Cre/loxP-based hybrid baculovirus. Biomaterials 124:1-11.
Lo W-H, Hwang S-M, Chuang C-K, Chen C-Y, Hu Y-C. 2009a. Development of a hybrid baculoviral vector for sustained transgene expression. Mol. Ther 17:658-666.
Lo WH, Hwang SM, Chuang CK, Chen CY, Hu YC. 2009b. Development of a hybrid baculoviral vector for sustained transgene expression. Mol Ther 17(4):658-66.
Maeder ML, Gersbach CA. 2016. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 24(3):430-46.
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121):823-826.
Mehrabadi M, Hussain M, Asgari S. 2013. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection. J Gen Virol 94(Pt 6):1385-97.
Mishra SK, Thakran P. 2018. Intron specificity in pre-mRNA splicing. Curr Genet 64(4):777-784.
Muller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C. 2016. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome. Mol Ther 24(3):636-44.
Panicker IS, Browning GF, Markham PF. 2015. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum. PLoS One 10(5):e0127911.
Petris G, Casini A, Montagna C, Lorenzin F, Prandi D, Romanel A, Zasso J, Conti L, Demichelis F, Cereseto A. 2017. Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nature Communications 8:15334.
Rohrmann GF. 2013. Baculovirus Molecular Biology. 3rd ed. Bethesda (MD).
Rossmanith J, Narberhaus F. 2016. Exploring the modular nature of riboswitches and RNA thermometers. Nucleic Acids Res 44(11):5410-23.
Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A. 2017. CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10. Molecular Therapy 25(2):331-341.
Saito H, Fujita Y, Kashida S, Hayashi K, Inoue T. 2011. Synthetic human cell fate regulation by protein-driven RNA switches. Nat. Commun. 2:160.
Saito H, Kobayashi T, Hara T, Fujita Y, Hayashi K, Furushima R, Inoue T. 2010. Synthetic translational regulation by an L7Ae–kink-turn RNP switch. Nat. Chem. Biol. 6(1):71-78.
Salem TZ, Allam WR, Thiem SM. 2014. Verifying the stability of selected genes for normalization in Q PCR experiments of Spodoptera frugiperda cells during AcMNPV infection. PLoS One 9(10):e108516.
Shi X, Ran Z, Li S, Yin J, Zhong J. 2016. The Effect of MicroRNA bantam on Baculovirus AcMNPV Infection in Vitro and in Vivo. Viruses 8(5).
Smole A, Lainšček D, Bezeljak U, Horvat S, Jerala R. 2017. A synthetic mammalian therapeutic gene circuit for sensing and suppressing inflammation. Mol. Ther. 25(1):102-119.
Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A, Doudna JA. 2017. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35(5):431-434.
Stapleton JA, Endo K, Fujita Y, Hayashi K, Takinoue M, Saito H, Inoue T. 2012. Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition. ACS Syn. Biol. 1(3):83-88.
Sung LY, Chen CL, Lin SY, Hwang SM, Lu CH, Li KC, Lan AS, Hu YC. 2013. Enhanced and prolonged baculovirus-mediated expression by incorporating recombinase system and in cis elements: a comparative study. Nucleic Acids Res 41(14):e139.
Sung LY, Chen CL, Lin SY, Li KC, Yeh CL, Chen GY, Lin CY, Hu YC. 2014. Efficient gene delivery into cell lines and stem cells using baculovirus. Nat Protoc 9(8):1882-99.
Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A. 2016. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7:13274.
van Oers MM. 2011. Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 107 Suppl:S3-15.
van Oers MM, Pijlman GP, Vlak JM. 2015. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96(Pt 1):6-23.
Will CL, Luhrmann R. 2011. Spliceosome structure and function. Cold Spring Harb Perspect Biol 3(7).
Wright AV, Nunez JK, Doudna JA. 2016. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164(1-2):29-44.
Xie J, Xie Q, Zhang H, Ameres SL, Hung JH, Su Q, He R, Mu X, Seher Ahmed S, Park S and others. 2011. MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol Ther 19(3):526-35.
Yin H, Song C-Q, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A and others. 2016. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology 34:328.
Zeng J, Du J, Lin J, Bak XY, Wu C, Wang S. 2009. High-efficiency transient transduction of human embryonic stem cell-derived neurons with baculoviral vectors. Mol Ther 17(9):1585-93.
Zeng J, Du J, Zhao Y, Palanisamy N, Wang S. 2007. Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells 25(4):1055-61.
Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7.
Zhong ZA, Sun W, Chen H, Zhang H, Lay YE, Lane NE, Yao W. 2015. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice. Bone 81:614-619.
Zischewski J, Fischer R, Bortesi L. 2017. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35(1):95-104.
Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen Z-Y, Liu DR. 2014. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33:73.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以桿狀病毒轉導老鼠關節軟骨細胞和人類間葉幹細胞以及在軟骨組織工程上之應用
2. 以重組桿狀病毒轉導人類間葉幹細胞及其在骨組織工程上之應用
3. 以桿狀病毒轉導間葉幹細胞後於體外及體內之安全性評估
4. 以桿狀病毒載體表現特異性之microRNA並結合Sleeping Beauty 長效表現系統長期抑制目標基因
5. 以microRNA基因改質人類脂肪幹細胞並應用於頭蓋骨典型缺損修復
6. 桿狀病毒/哺乳動物細胞表現系統轉導條件最適化之研究
7. 結合超過濾系統與固定化金屬親合力層析法以純化昆蟲桿狀病毒
8. 探討軟骨細胞的細胞週期及抗病毒機制對桿狀病毒轉導效率的影響
9. 腸病毒71型類病毒顆粒的表現、特性分析及其應用為抗腸病毒疫苗之評估
10. 以桿狀病毒於新型生物反應器BelloCell500®轉導BHK細胞表現D型肝炎類病毒顆粒:生產與純化程序之最適化
11. SARS-CoV之結構蛋白質在昆蟲細胞內之表現與純化程序之探討
12. 利用桿狀病毒/昆蟲細胞表現系統表現家禽流行性感冒病毒血球凝集素 (HA)蛋白質並以親和性管柱層析法純化
13. 應用於軟骨組織工程的醣胺素/幾丁聚醣材料開發及其調控ECM產生及基因表現機制探討
14. 桿狀病毒結合新型生化反應器在軟骨組織工程之應用
15. 昆蟲桿狀病毒對哺乳動物細胞的轉導能力之測定及影響其轉導能力之因素
 
* *