帳號:guest(3.15.198.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃楷倫
作者(外文):Huang, Kai-Lun
論文名稱(中文):利用CRISPRa混成桿狀病毒改質幹細胞修復大範圍骨缺陷
論文名稱(外文):CRISPR activation for stem cell engineering and enhanced calvarial bone healing
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):賴伯亮
林進裕
口試委員(外文):Lai, Po-Liang
Lin, Chin-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032535
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:66
中文關鍵詞:骨髓間葉幹細胞頭蓋骨修復Wnt信號通路骨分化CRISPRa
外文關鍵詞:CRISPRaCalvarial bone-defectBMSCWnt pathwayOsteogenesis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:538
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
大範圍的骨缺陷在目前臨床骨科醫學上是一個難以克服的難題。先前研究常在具有多分化能力的間葉幹細胞中過表達一些骨修復生長因子去進行大範圍骨缺陷的修復。近幾年發展的CRISPR技術受到相當多人的關注,使用CRISPR系統的優點在於我們只需建構小片段的sgRNA便可以同時調控許多不同的基因,然而目前尚未有人應用CRISPR系統在組織工程中,因此本篇研究希望驗證CRISPR系統在組織工程的應用。先前文獻指出,活化經典Wnt訊息傳遞路徑(Wnt pathway)能夠抑制細胞往脂肪細胞分化,間接促進其往骨分化進行,因此本篇研究,我們運用CRISPRa (SAM)系統活化Wnt pathway,希望藉由抑制ASC/BMSC往脂肪方化的趨勢,提升細胞往硬骨分化的能力。
實驗結果證實,一般桿狀病毒搭載CRISPRa系統搭配Cre/loxP長效表現系統能能夠成功在大鼠(Sprague-Dawley rats) ASC和BMSC中提升Wnt10b mRNA 表現量(339倍及510倍),然而CRISPRa系統對於β-catenin卻沒有顯著的活化效果。另外,活化Wnt10b可以進一步抑制脂肪相關基因FABP4、PPARγ、CEBPα的表現,並提升骨分化相關基因Runx2、ALP及OPN的表現,然而提升量並不顯著,因此後續實驗我們決定使用較易往骨分化的BMSC,並搭配同樣能激活Wnt pathway 的Foxc2和Wnt10b,發現共表現Foxc2和Wnt10b相較於單一表現Wnt10b在BMSC中有更多的鈣沉積,因此在動物實驗中我們共轉導Bac-Foxc2和Bac-W10b在BMSC中,後將轉導的BMSC植入大鼠頭蓋骨缺陷模型,並看到共同表現Foxc2與Wnt10b的BMSC在術後第12周不管是在骨體積或是骨密度都相對於假性轉導組有明顯提升,約能修復大鼠頭蓋骨缺陷≈17.5%的骨面積。
本研究證實CRISPRa系統可成功的在ASC/BMSC中運作,且藉由調控Wnt pathway可成功抑制細胞往脂肪分化並誘導細胞往骨分化,因此未來可嘗試調控更多基因,增加CRISPR系統在骨組織工程臨床上的應用。
Today critical-sized calvarial bone-defect repair remains a challenging task. CRISPR activation (CRISPRa) is an emerging technology that exploits deactivated Cas9 protein and single guide RNA for programmable activation of endogenous gene expression. Here we developed a hybrid baculovirus vector to express the CRISPRa SAM system for simultaneously activation of multiple genes to modulate both canonical and non-canoical Wnt signaling pathway.
We demonstrated that the expression of CRISPRa system in the rat bone marrow-derived mesenchymal stem cells (rBMSC) and rat adipose-derived mesenchymal stem cells (rASC) enabled the activation of Wnt10b and Foxc2 for several hundred fold.
In particular, the activation of Wnt10b inhibited adipogenesis in rASC by suppressing adipogenic transcription factors PPARγ and C/EBPα.
We also verify that CRISPRa-mediated activation of Wnt10b stimulated the expression of osteogenic differentiation markers such as Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and Osteopontin (OPN) in rBMSC and successfully drove rBMSC fate towards the osteoblast . Implantation of the baculovirus-CRISPRa system-engineered rBMSC successfully accelerated and improved calvarial critical-sized defect (6 mm) healing at 4 weeks after implantation These results show that the CRISPRa system can activate endogenous gene expression either in rBMSC or rASC and potentiate the ability of both to differentiate towards osteogenic pathway and repair calvarial bone defects.
摘要...................2
Abstract...................3
第一章 文獻回顧...................6
1-1骨組織工程介紹...................6
1-1-1骨骼的組成...................6
1-1-2骨細胞與骨修復重建機制...................7
1-1-3骨骼系統常見傷害...................9
1-1-4骨組織工程背景與國內外研究情況...................10
1-1-5骨組織工程的發展...................10
1-2幹細胞在組織工程上的應用...................12
1-3經典Wnt信號通路在骨組織工程上的應用...................13
1-4 基因治療...................15
1-5桿狀病毒表現系統...................16
1-6 重組酶系統...................18
1-7 桿狀病毒在骨組織工程的應用...................19
1-8 CRISPR/CRISPRa系統...................20
第二章 材料與方法...................32
2-1重組桿狀病毒之建構與製備...................32
2-1-1昆蟲細胞培養...................32
2-1-2 DNA引子黏合反應(primer annealing)...................32
2-1-3限制酶(DNA restriction enzyme)反應及接合酶(DNA ligase)反應..32
2-1-4建構重組表現載體(donor plasmid)................33
2-1-5 重組表現載體之轉置反應(transposition) (Bac-to-Bac系統)....34
2-1-7 重組bacmid之轉染反應(transfection) (製備P0病毒).....36
2-1-8 基因重組桿狀病毒放大培養...................36
2-1-9超高速離心濃縮桿狀病毒...................37
2-1-10桿狀病毒效價測定...................37
2-2大鼠脂肪間葉幹細胞之分離與培養...................38
2-3大鼠骨髓間葉幹細胞之分離與培養...................38
2-4桿狀病毒轉導幹細胞之策略...................39
2-5即時偵測同步定量聚合酶連鎖反應分析(qRT-PCR)...................40
2-6茜紅素(Alizarin Red)染色分析...................42
2-7鈣沉積定量分析...................42
2-8 動物頭蓋骨缺陷植入所需之細胞轉導與載體製備...................43
2-9 大鼠頭蓋骨手術植入程序...................43
2-10 電腦斷層掃描分析...................43
第三章 結果與討論...................45
3-1 CRISPRa系統之建構...................45
3-2 Wnt10b、β-catenin在脂肪間葉幹細胞(ASCs)中表現量之分析..45
3-3 Wnt10b、β-catenin在骨髓間葉幹細胞(BMSCs)中表現量之分析..47
3-4 Wnt10b對BMSC成骨分化之分析...................48
3-5 搭配Foxc2和Wnt10b對BMSC成骨分化之分析...................49
3-6 以Gelatin支架搭配BMSC修復大鼠頭蓋骨缺陷之分析...................50
3-7電腦斷層掃描分析...................50
3-8討論..51
第四章 參考文獻..61



[1] A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: state of the art and future trends, Macromol. Biosci. 4(8) (2004) 743-765.
[2] B. Chen, H. Lin, J. Wang, Y. Zhao, B. Wang, W. Zhao, W. Sun, J. Dai, Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2, Biomaterials 28(6) (2007) 1027-35.
[3] M.M. Martino, P.S. Briquez, A. Ranga, M.P. Lutolf, J.A. Hubbell, Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix, Proc Natl Acad Sci U S A 110(12) (2013) 4563-8.
[4] M. Kisiel, A.S. Klar, M. Ventura, J. Buijs, M.K. Mafina, S.M. Cool, J. Hilborn, Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation, PLoS One 8(10) (2013) e78551.
[5] Y.H. Liao, Y.H. Chang, L.Y. Sung, K.C. Li, C.L. Yeh, T.C. Yen, S.M. Hwang, K.J. Lin, Y.C. Hu, Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b, Biomaterials 35(18) (2014) 4901-10.
[6] J. Yan, C. Zhang, Y. Zhao, C. Cao, K. Wu, L. Zhao, Y. Zhang, Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis, Biomaterials 35(27) (2014) 7734-49.
[7] H.G. Schmoekel, F.E. Weber, J.C. Schense, K.W. Gratz, P. Schawalder, J.A. Hubbell, Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices, Biotechnol Bioeng 89(3) (2005) 253-62.
[8] M.L. Yeung, Y. Bennasser, S.Y. Le, K.T. Jeang, siRNA, miRNA and HIV: promises and challenges, Cell Res 15(11-12) (2005) 935-46.
[9] E.J. Carragee, G. Chu, R. Rohatgi, E.L. Hurwitz, B.K. Weiner, S.T. Yoon, G. Comer, B. Kopjar, Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis, J Bone Joint Surg Am 95(17) (2013) 1537-45.
[10] J.G. Devine, J.R. Dettori, J.C. France, E. Brodt, R.A. McGuire, The use of rhBMP in spine surgery: is there a cancer risk?, Evid Based Spine Care J 3(2) (2012) 35-41.
[11] C.Y. Lin, Y.H. Chang, K.C. Li, C.H. Lu, L.Y. Sung, C.L. Yeh, K.J. Lin, S.F. Huang, T.C. Yen, Y.C. Hu, The use of ASCs engineered to express BMP2 or TGF-beta3 within scaffold constructs to promote calvarial bone repair, Biomaterials 34(37) (2013) 9401-12.
[12] H. Mizuno, M. Tobita, A.C. Uysal, Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine, Stem Cells 30(5) (2012) 804-10.
[13] W. Zhang, C. Zhu, Y. Wu, D. Ye, S. Wang, D. Zou, X. Zhang, D.L. Kaplan, X. Jiang, VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation, Eur Cell Mater 27 (2014) 1-11; discussion 11-2.
[14] Y. Wang, N.Z. Mostafa, C.Y. Hsu, L. Rose, C. Kucharki, J. Yan, H. Jiang, H. Uludag, Modification of human BMSC with nanoparticles of polymeric biomaterials and plasmid DNA for BMP-2 secretion, J Surg Res 183(1) (2013) 8-17.
[15] O. Mizrahi, D. Sheyn, W. Tawackoli, I. Kallai, A. Oh, S. Su, X. Da, P. Zarrini, G. Cook-Wiens, D. Gazit, Z. Gazit, BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells, Gene Ther 20(4) (2013) 370-7.
[16] H. Xie, Z. Cui, L. Wang, Z. Xia, Y. Hu, L. Xian, C. Li, L. Xie, J. Crane, M. Wan, G. Zhen, Q. Bian, B. Yu, W. Chang, T. Qiu, M. Pickarski, T. Duong le, J.J. Windle, X. Luo, E. Liao, X. Cao, PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis, Nat Med 20(11) (2014) 1270-8.
[17] M.R. Urist, Bone: formation by autoinduction, Science 150(3698) (1965) 893-9.
[18] D. Chen, M. Zhao, G.R. Mundy, Bone morphogenetic proteins, Growth Factors 22(4) (2004) 233-41.
[19] G.B. Bishop, T.A. Einhorn, Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery, Int Orthop 31(6) (2007) 721-7.
[20] V. Krishnan, H.U. Bryant, O.A. MacDougald, Regulation of bone mass by Wnt signaling, J. Clin. Invest. 116(5) (2006) 1202.
[21] R. Nusse, Wnt signaling in disease and in development, Cell Res. 15(1) (2005) 28.
[22] S. Kang, C.N. Bennett, I. Gerin, L.A. Rapp, K.D. Hankenson, O.A. MacDougald, Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ, J. Biol. Chem. 282(19) (2007) 14515-14524.
[23] S.E. Ross, N. Hemati, K.A. Longo, C.N. Bennett, P.C. Lucas, R.L. Erickson, O.A. MacDougald, Inhibition of adipogenesis by Wnt signaling, Science 289(5481) (2000) 950-953.
[24] C.N. Bennett, S.E. Ross, K.A. Longo, L. Bajnok, N. Hemati, K.W. Johnson, S.D. Harrison, O.A. MacDougald, Regulation of Wnt signaling during adipogenesis, J. Biol. Chem. 277(34) (2002) 30998-31004.
[25] D.A. Glass, P. Bialek, J.D. Ahn, M. Starbuck, M.S. Patel, H. Clevers, M.M. Taketo, F. Long, A.P. McMahon, R.A. Lang, Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation, Dev. Cell 8(5) (2005) 751-764.
[26] D.G. Monroe, M.E. McGee-Lawrence, M.J. Oursler, J.J. Westendorf, Update on Wnt signaling in bone cell biology and bone disease, Gene 492(1) (2012) 1-18.
[27] W. Liu, A. Konermann, T. Guo, A. Jäger, L. Zhang, Y. Jin, Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions, Biochimica et Biophysica Acta (BBA)-General Subjects 1840(3) (2014) 1125-1134.
[28] R.M. Blaese, K.W. Culver, A.D. Miller, C.S. Carter, T. Fleisher, M. Clerici, G. Shearer, L. Chang, Y. Chiang, P. Tolstoshev, T Lymphocyte-Directed Gene Therapy for ADA ^- SCID: Initial Trial Results After 4 Years, Science (1995) 475-480.
[29] C. Bordignon, L.D. Notarangelo, N. Nobili, G. Ferrari, Gene therapy in peripheral blood lymphocytes and bone marrow for ADAnegative immunodeficient patients, Science 270(5235) (1995) 470.
[30] N. Somia, I.M. Verma, Gene therapy: trials and tribulations, Nat. Rev. Genet. 1(2) (2000) 91.
[31] M. Pang, A.W. Woodward, V. Agarwal, X. Guan, M. Ha, V. Ramachandran, X. Chen, B.A. Triplett, D.M. Stelly, Z.J. Chen, Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.), Genome Biol 10(11) (2009) R122.
[32] S. Somiari, J. Glasspool-Malone, J.J. Drabick, R.A. Gilbert, R. Heller, M.J. Jaroszeski, R.W. Malone, Theory and in vivo application of electroporative gene delivery, Mol Ther 2(3) (2000) 178-87.
[33] S.D. Li, L. Huang, Gene therapy progress and prospects: non-viral gene therapy by systemic delivery, Gene Ther 13(18) (2006) 1313-9.
[34] P.L. Sinn, S.L. Sauter, P.B. McCray, Jr., Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production, Gene Ther 12(14) (2005) 1089-98.
[35] Y. Jung, G. Bauer, J.A. Nolta, Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products, Stem Cells 30(1) (2012) 42-7.
[36] M. Nonnenmacher, T. Weber, Intracellular transport of recombinant adeno-associated virus vectors, Gene Ther 19(6) (2012) 649-58.
[37] M.A. Kotterman, D.V. Schaffer, Engineering adeno-associated viruses for clinical gene therapy, Nat Rev Genet 15(7) (2014) 445-51.
[38] K.J. Airenne, K.E. Makkonen, A.J. Mahonen, S. Yla-Herttuala, In vivo application and tracking of baculovirus, Curr Gene Ther 10(3) (2010) 187-94.
[39] S. Wang, G. Balasundaram, Potential cancer gene therapy by baculoviral transduction, Curr Gene Ther 10(3) (2010) 214-25.
[40] Y.C. Ho, Y.C. Chung, S.M. Hwang, K.C. Wang, Y.C. Hu, Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells, J Gene Med 7(7) (2005) 860-8.
[41] C.Y. Lin, K.J. Lin, C.Y. Kao, M.C. Chen, W.H. Lo, T.C. Yen, Y.H. Chang, Y.C. Hu, The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects, Biomaterials 32(27) (2011) 6505-14.
[42] H.C. Chen, L.Y. Sung, W.H. Lo, C.K. Chuang, Y.H. Wang, J.L. Lin, Y.C. Hu, Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation, Gene Ther 15(4) (2008) 309-17.
[43] Y.C. Hu, K. Yao, T.Y. Wu, Baculovirus as an expression and/or delivery vehicle for vaccine antigens, Expert Rev Vaccines 7(3) (2008) 363-71.
[44] N. Cheshenko, N. Krougliak, R.C. Eisensmith, V.A. Krougliak, A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus, Gene Ther 8(11) (2001) 846-54.
[45] S. Turan, M. Galla, E. Ernst, J. Qiao, C. Voelkel, B. Schiedlmeier, C. Zehe, J. Bode, Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges, J Mol Biol 407(2) (2011) 193-221.
[46] S. Turan, C. Zehe, J. Kuehle, J. Qiao, J. Bode, Recombinase-mediated cassette exchange (RMCE) - a rapidly-expanding toolbox for targeted genomic modifications, Gene 515(1) (2013) 1-27.
[47] M. Nakano, K. Odaka, Y. Takahashi, M. Ishimura, I. Saito, Y. Kanegae, Production of viral vectors using recombinase-mediated cassette exchange, Nucleic Acids Res 33(8) (2005) e76.
[48] L.Y. Sung, C.L. Chen, S.Y. Lin, S.M. Hwang, C.H. Lu, K.C. Li, A.S. Lan, Y.C. Hu, Enhanced and prolonged baculovirus-mediated expression by incorporating recombinase system and in cis elements: a comparative study, Nucleic Acids Res 41(14) (2013) e139.
[49] Y.C. Ho, Y.C. Chung, S.M. Hwang, K.C. Wang, Y.C. Hu, Transgene expression and differentiation of baculovirus‐transduced human mesenchymal stem cells, The journal of gene medicine 7(7) (2005) 860-868.
[50] A.L. Ponte, E. Marais, N. Gallay, A. Langonne, B. Delorme, O. Herault, P. Charbord, J. Domenech, The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities, Stem Cells 25(7) (2007) 1737-45.
[51] Z. Cheng, L. Ou, X. Zhou, F. Li, X. Jia, Y. Zhang, X. Liu, Y. Li, C.A. Ward, L.G. Melo, D. Kong, Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance, Mol Ther 16(3) (2008) 571-9.
[52] J. Gong, H.B. Meng, J. Hua, Z.S. Song, Z.G. He, B. Zhou, M.P. Qian, The SDF-1/CXCR4 axis regulates migration of transplanted bone marrow mesenchymal stem cells towards the pancreas in rats with acute pancreatitis, Mol Med Rep 9(5) (2014) 1575-82.
[53] T. Lapidot, O. Kollet, The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice, Leukemia 16(10) (2002) 1992-2003.
[54] L.A. Marquez-Curtis, A. Janowska-Wieczorek, Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis, Biomed Res Int 2013 (2013) 561098.
[55] P. Horvath, R. Barrangou, CRISPR/Cas, the immune system of bacteria and archaea, Science 327(5962) (2010) 167-70.
[56] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, E. Charpentier, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science 337(6096) (2012) 816-21.
[57] E. Deltcheva, K. Chylinski, C.M. Sharma, K. Gonzales, Y. Chao, Z.A. Pirzada, M.R. Eckert, J. Vogel, E. Charpentier, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature 471(7340) (2011) 602-7.
[58] M.F. Copeland, M.C. Politz, B.F. Pfleger, Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes, Current opinion in biotechnology 29 (2014) 46-54.
[59] P. Mali, K.M. Esvelt, G.M. Church, Cas9 as a versatile tool for engineering biology, Nature methods 10(10) (2013) 957-63.
[60] P. Mali, L. Yang, K.M. Esvelt, J. Aach, M. Guell, J.E. DiCarlo, J.E. Norville, G.M. Church, RNA-guided human genome engineering via Cas9, Science 339(6121) (2013) 823-6.
[61] W.Y. Hwang, Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai, J.D. Sander, R.T. Peterson, J.R. Yeh, J.K. Joung, Efficient genome editing in zebrafish using a CRISPR-Cas system, Nature biotechnology 31(3) (2013) 227-9.
[62] Y. Jiang, B. Chen, C. Duan, B. Sun, J. Yang, S. Yang, Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Applied and environmental microbiology 81(7) (2015) 2506-14.
[63] L. Cong, F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini, F. Zhang, Multiplex genome engineering using CRISPR/Cas systems, Science 339(6121) (2013) 819-23.
[64] T. Sakuma, A. Nishikawa, S. Kume, K. Chayama, T. Yamamoto, Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system, Scientific reports 4 (2014) 5400.
[65] C.N. Bennett, K.A. Longo, W.S. Wright, L.J. Suva, T.F. Lane, K.D. Hankenson, O.A. MacDougald, Regulation of osteoblastogenesis and bone mass by Wnt10b, PNAS 102(9) (2005) 3324-3329.
[66] C.N. Bennett, H. Ouyang, Y.L. Ma, Q. Zeng, I. Gerin, K.M. Sousa, T.F. Lane, V. Krishnan, K.D. Hankenson, O.A. MacDougald, Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation, J. Bone Miner. Res. 22(12) (2007) 1924-1932.
[67] W.P. Cawthorn, A.J. Bree, Y. Yao, B. Du, N. Hemati, G. Martinez-Santibañez, O.A. MacDougald, Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism, Bone 50(2) (2012) 477-489.
[68] K.C. Li, Y.H. Chang, C.L. Yeh, Y.C. Hu, Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges, Biomaterials 74 (2016) 155-66.
[69] A. Radzisheuskaya, D. Shlyueva, I. Müller, K. Helin, Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression, Nucleic Acids Res. 44(18) (2016) e141-e141.
[70] A. Radzisheuskaya, D. Shlyueva, I. Muller, K. Helin, Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression, Nucleic acids research 44(18) (2016) e141.
[71] C. Szpalski, J. Barr, M. Wetterau, P.B. Saadeh, S.M. Warren, Cranial bone defects: current and future strategies, Neurosurg Focus 29(6) (2010) E8.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *