帳號:guest(3.144.252.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭翔文
作者(外文):Siao, Siang-Wun
論文名稱(中文):開發衣康酸生產之代謝途徑與宿主
論文名稱(外文):Exploring alternative pathway and host for itaconic acid production
指導教授(中文):沈若樸
指導教授(外文):Shen, Claire Roa-Pu
口試委員(中文):蘭宜錚
黃煒智
口試委員(外文):Lan, Ethan I.
Huang, Wei-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032534
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:68
中文關鍵詞:代謝工程衣康酸生產藍綠菌大腸桿菌代謝途徑開發基因重組
外文關鍵詞:itaconic acid productionmetabolic engineeringSynechococcus elongatus PCC7942Escherichia colipathway explorationgene recombination
相關次數:
  • 推薦推薦:0
  • 點閱點閱:343
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
衣康酸為一多用途之合成前驅物,主要由生物方式生產,因其成本接近由石化生產之類似功能前驅物-丙烯酸,故期待其取代丙烯酸之市場。再者,因應全球暖化,探討轉化二氧化碳之研究備受矚目,因此本研究的第一部份主要利用藍綠菌作為轉化平台,嘗試利用代謝工程,將二氧化碳轉化為衣康酸;然而,經過13天的生產,僅得到2.3 mg/L之衣康酸,我們猜測此現象乃歸因於前驅物的不足;因此,吾人更進一步放入CRISRPi基因組合以抑制基因icd的表現,藉此累積前驅物的量。另一方面,我們懷疑AcnB蛋白的結構,會造成前驅物烏頭酸(cis-aconitate)無法累積,因此,我們嘗試利用無法轉換烏頭酸的蛋白PrpD代替AcnB。先在大腸桿菌裡測試PrpD酵素對衣康酸生產的影響,結果顯示,相較於表現原生基因acnB生產衣康酸的5.39 mg/L,表現prpD 者產量可達前者之40倍(232 mg/L)。然而,此組合並未在藍綠菌中有類似的表現。在未來工作裡,我們將利用酵素分析,測試CRISPRi的抑制效果和CAD酵素在藍綠菌中的表現。
第二部份為衣康酸生產途徑之開發,檸檬酸循環對細菌的生長扮演重要角色,因此吾人欲開發獨立於檸檬酸循環之代謝途徑,以避免影響其生長之重要因子。在計算逆分解衣康酸代謝途徑之熱力學上可行後 (∆G0 = -1.4 kJ/mol),吾人首先設計6組用酵素菌外生產衣康酸的實驗,最高30分鐘內得到10.4 mg/L之衣康酸。並且根據過量酵素實驗的結果,將基因PaIch-YpCcl-YpIct依序設計於質體上,表現於大腸桿菌中;經過48小時的生產,分別在添加與不添加琥珀酸的培養液中,得到濃度7.7 mg/L 和 2.07 mg/L的衣康酸。另外,為了降低總反應的自由能,我們希望找到衣康酸輔酶A脫酯酶。因此,首先我們先利用最佳組合做酵素測試,然而,僅得到1.4 mg/L衣康酸。在未來工作裡,我們可以利用測試酵素Mcl2或是利用論文中的篩選平台來篩選出衣康酸輔酶A脫酯酶。

Itaconic acid (IA) is a promising bio-based precursor which is expected to take place of functional similar but petroleum-based precursor, acrylic acid. On the other hand, in face of global warming, many scientists put their effort to convert CO2 into valuable product. To combine those two ideas together, in the first part of this study, we engineered cyanobacteria to turn CO2 into IA. After 13-day production, we got 2.3 mg/L IA. The low titer led us to hypothesize that the native isocitrate dehydrogenase activity (Icd) is pulling away the essential precursor. Hence, we further inserted various CRISPRi icd-knockdown systems into PCC7942. Another possibility of low IA production may be the reversibility of aconitase B (AcnB), which has trouble accumulating the key intermediate cis-aconitate. As an alternative, 2-methylcitrate dehydratase (PrpD) has high specificity toward citrate and led to 232 mg/L of IA in the E. coli production test compared to the 5.4 mg/L achieved with AcnB. However, overexpressing prpD in cyano did not help increase the production efficiency. In our future work, we are going to examine the repression level of Icd in each CRISPRi strains and confirm the activity of heterologous CAD by using in vitro enzyme assay.
The second part of this study is to reverse the IA degradation pathway. Since TCA cycle is strongly related to growth, we aim to develop a pathway that is orthogonal to TCA cycle. Hence, we sought for the possibility to reverse the IA degradation pathway. After some simple calculation, we found it should be thermodynamically favorable (∆G0 =-1.4 kJ/mol). Therefore, we bioprospected various heterologous enzymes for each step and designed in-vitro IA production experiments to first demonstrate the pathway feasibility. The best enzyme combination achieved 10.4 mg/L IA within 30 minutes. Thus we further conducted excess-enzyme experiment and based on the result, we cloned the genes in the order of PaIch-YpCcl-YpIct. After 48-hour production, 7.7 mg/L and 2.07 mg/L IA was produced in the medium with and without succinate supplied individually. To make the pathway more thermodynamic favorable (∆G0 = -26 kJ/mol), we tried exploring itaconyl-CoA thioesterase with previous best combination, and got 1.4 mg/L IA after 18 hours. In our future work, we will keep working on it by trying Mcl2 or trying our designed selection method to explore the itaconyl-CoA thioesterase.
論文指導教授推薦書、學位考試委員會審定書
Abstract
摘要
Outline
I. Literature Review
1. Introduction to itaconic acid 8
2. Introduction to alternative IA production platform
2.1 Synechococcus elongatus PCC7942
2.2.1 Biological characteristics 10
2.2.2 Cyanofactories 12
2.2 Reversed IA degradation pathway 13
3. Natural IA production pathway
3.1 IA production through Cad 15
3.2 IA production through Irg1 15
3.1 IA production through Adi + Tad1 16
4. CRISPRi system 17
5. Biochemical thermodynamics calculator-eQuilibrator 18
6. Broad substrate specificity of PrpD 19
II. Motivation and Strategies
1. Cyanobacterial IA 21
2. Reversed IA degradation pathway 23
III. Material and Methods
1. Cyanobacterial IA 24
2. Reversed IA degradation pathway 32
IV. Result and Discussion Part 1- Cyanobacterial IA
1. TCA cycle intermediates feeding test 36
2. CRISPRi (NSI) + CAD (NSII) 38
3. Cad test 42
4. PrpD test (in E.coli) 45
5. PrpD test (in PCC7942) 47
IV. Result and Discussion Part 2- Reversed IA degradation pathway
1. Thermodynamic analysis 48
2. In vitro study for IA production 49
3. In vivo study for IA production 56
V. Conclusion 57
VI. Future work Part 1-Cyanobacterial IA
1. Test of SSW067, SSW068 58
2. Enzyme assay 58
3. Further research on proposed reaction 59
VI. Future work Part 1-Reversed IA degradation pathway
1. Trying Mcl2 as itaconyl-CoA thioesterase 60
2. Selection platform for itaconyl-CoA thioesterase exploration 61
VII. Reference 64




1. R. L. Shriner SGF, and L. J. Roll: ITACONIC ANHYDRIDE AND ITACONIC ACID. 1943, Organic Syntheses.
2. Robert T, Friebel S: Itaconic acid - a versatile building block for renewable polyesters with enhanced functionality. Green Chem 2016, 18(10):2922-2934.
3. Amina Ahmed El-Imam CD: Fermentative Itaconic Acid Production. Biodiversity, Bioprospecting and Development 2014, 1(1).
4. Betancourt T, Pardo J, Soo K, Peppas NA: Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 2010, 93(1):175-188.
5. Goerz O, Ritter H: Polymers with shape memory effect from renewable resources: crosslinking of polyesters based on isosorbide, itaconic acid and succinic acid. Polym Int 2013, 62(5):709-712.
6. Brannstrom S, Malmstrom E, Johansson M: Biobased UV-curable coatings based on itaconic acid. J Coat Technol Res 2017, 14(4):851-861.
7. Willke T, Vorlop KD: Biotechnological production of itaconic acid. Appl Microbiol Biot 2001, 56(3-4):289-295.
8. Hevekerl A, Kuenz A, Vorlop KD: Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 2014, 98(24):10005-10012.
9. Saha BC: Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biotechnol 2017, 44(2):303-315.
10. Harder BJ, Bettenbrock K, Klamt S: Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 2016, 38:29-37.
11. Chang P, Chen GS, Chu HY, Lu KW, Shen CR: Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol 2017, 249:73-81.
12. Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bolker M, Klinner U, Blank LM: Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 2014, 14(2):129-134.
13. Rae BD, Long BM, Badger MR, Price GD: Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 2013, 77(3):357-379.
14. Zhou J, Zhu T, Cai Z, Li Y: From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Fact 2016, 15:2.
15. Zheng XY, O'Shea EK: Cyanobacteria Maintain Constant Protein Concentration despite Genome Copy-Number Variation. Cell Rep 2017, 19(3):497-504.
16. Shen CR, Liao JC: Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energ Environ Sci 2012, 5(11):9574-9583.
17. The Calvin Cycle [https://www.boundless.com/biology/textbooks/boundless-biology-textbook/photosynthesis-8/the-light-independent-reactions-of-photosynthesis-82/the-calvin-cycle-377-11603/]
18. Dexter J, Armshaw P, Sheahan C, Pembroke JT: The state of autotrophic ethanol production in Cyanobacteria. J Appl Microbiol 2015, 119(1):11-24.
19. Chin T, Sano M, Takahashi T, Ohara H, Aso Y: Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803. J Biotechnol 2015, 195:43-45.
20. Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR: Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 2013, 16:68-77.
21. Jacobsen JH, Frigaard NU: Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 2014, 21:60-70.
22. Lan EI, Wei CT: Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab Eng 2016.
23. Sasikaran J, Ziemski M, Zadora PK, Fleig A, Berg IA: Bacterial itaconate degradation promotes pathogenicity. Nat Chem Biol 2014, 10(5):371-377.
24. Luan HH, Medzhitov R: Food Fight: Role of Itaconate and Other Metabolites in Antimicrobial Defense. Cell Metab 2016, 24(3):379-387.
25. Lorenz MC, Fink GR: Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 2002, 1(5):657-662.
26. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A et al: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 2013, 110(19):7820-7825.
27. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476(7360):355-359.
28. Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M: Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng 2002, 94(1):29-33.
29. Vuoristo KS, Mars AE, van Loon S, Orsi E, Eggink G, Sanders JP, Weusthuis RA: Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production. Front Microbiol 2015, 6:849.
30. Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bolker M: Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb Biotechnol 2016, 9(1):116-126.
31. Barrangou R, Marraffini LA: CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 2014, 54(2):234-244.
32. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337(6096):816-821.
33. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152(5):1173-1183.
34. Flamholz A, Noor E, Bar-Even A, Milo R: eQuilibrator--the biochemical thermodynamics calculator. Nucleic Acids Res 2012, 40(Database issue):D770-775.
35. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
36. Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D: BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci 2002, 27(1):54-56.
37. Horswill AR, Escalante-Semerena JC: In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase Enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry 2001, 40(15):4703-4713.
38. Blank L, Green J, Guest JR: AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology 2002, 148(Pt 1):133-146.
39. Jeon HG, Cheong DE, Han Y, Song JJ, Choi JH: Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5'-coding region variant of the cadA gene. Biotechnol Bioeng 2016, 113(7):1504-1510.
40. Beinert H, Kennedy MC: Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J 1993, 7(15):1442-1449.
41. Williams CH, Stillman TJ, Barynin VV, Sedelnikova SE, Tang Y, Green J, Guest JR, Artymiuk PJ: E. coli aconitase B structure reveals a HEAT-like domain with implications for protein-protein recognition. Nat Struct Biol 2002, 9(6):447-452.
42. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006, 2:2006 0008.
43. Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97(12):6640-6645.
44. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO: Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009, 6(5):343-345.
45. Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC: CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Fact 2016, 15(1):196.
46. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H: Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 2005, 12(5):291-299.
47. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y et al: BLAST: a more efficient report with usability improvements. Nucleic Acids Res 2013, 41(Web Server issue):W29-33.
48. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL: NCBI BLAST: a better web interface. Nucleic Acids Res 2008, 36(Web Server issue):W5-9.
49. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK: Protein database searches using compositionally adjusted substitution matrices. FEBS J 2005, 272(20):5101-5109.
50. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
51. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F et al: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413(6858):852-856.
52. Kronen M, Sasikaran J, Berg IA: Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans. Appl Environ Microbiol 2015, 81(16):5632-5638.
53. Zarzycki J, Kerfeld CA: The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases. BMC Struct Biol 2013, 13:28.
54. Kovacic F, Granzin J, Wilhelm S, Kojic-Prodic B, Batra-Safferling R, Jaeger KE: Structural and functional characterisation of TesA - a novel lysophospholipase A from Pseudomonas aeruginosa. PLoS One 2013, 8(7):e69125.
55. Cantu DC, Chen Y, Reilly PJ: Thioesterases: a new perspective based on their primary and tertiary structures. Protein Sci 2010, 19(7):1281-1295.
56. Erb TJ, Frerichs-Revermann L, Fuchs G, Alber BE: The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-Malyl-coenzyme A (CoA)/{beta}-methylmalyl-CoA lyase and (3S)- Malyl-CoA thioesterase. J Bacteriol 2010, 192(5):1249-1258.
57. Cantu DC, Chen Y, Lemons ML, Reilly PJ: ThYme: a database for thioester-active enzymes. Nucleic Acids Res 2011, 39(Database issue):D342-346.
58. Lee LC, Lee YL, Leu RJ, Shaw JF: Functional role of catalytic triad and oxyanion hole-forming residues on enzyme activity of Escherichia coli thioesterase I/protease I/phospholipase L1. Biochem J 2006, 397(1):69-76.
59. Strauss E: Comprehensive Natural Products II, vol. 7; 2010.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *