|
1. R. L. Shriner SGF, and L. J. Roll: ITACONIC ANHYDRIDE AND ITACONIC ACID. 1943, Organic Syntheses. 2. Robert T, Friebel S: Itaconic acid - a versatile building block for renewable polyesters with enhanced functionality. Green Chem 2016, 18(10):2922-2934. 3. Amina Ahmed El-Imam CD: Fermentative Itaconic Acid Production. Biodiversity, Bioprospecting and Development 2014, 1(1). 4. Betancourt T, Pardo J, Soo K, Peppas NA: Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 2010, 93(1):175-188. 5. Goerz O, Ritter H: Polymers with shape memory effect from renewable resources: crosslinking of polyesters based on isosorbide, itaconic acid and succinic acid. Polym Int 2013, 62(5):709-712. 6. Brannstrom S, Malmstrom E, Johansson M: Biobased UV-curable coatings based on itaconic acid. J Coat Technol Res 2017, 14(4):851-861. 7. Willke T, Vorlop KD: Biotechnological production of itaconic acid. Appl Microbiol Biot 2001, 56(3-4):289-295. 8. Hevekerl A, Kuenz A, Vorlop KD: Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol 2014, 98(24):10005-10012. 9. Saha BC: Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biotechnol 2017, 44(2):303-315. 10. Harder BJ, Bettenbrock K, Klamt S: Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng 2016, 38:29-37. 11. Chang P, Chen GS, Chu HY, Lu KW, Shen CR: Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol 2017, 249:73-81. 12. Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bolker M, Klinner U, Blank LM: Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci 2014, 14(2):129-134. 13. Rae BD, Long BM, Badger MR, Price GD: Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 2013, 77(3):357-379. 14. Zhou J, Zhu T, Cai Z, Li Y: From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Fact 2016, 15:2. 15. Zheng XY, O'Shea EK: Cyanobacteria Maintain Constant Protein Concentration despite Genome Copy-Number Variation. Cell Rep 2017, 19(3):497-504. 16. Shen CR, Liao JC: Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energ Environ Sci 2012, 5(11):9574-9583. 17. The Calvin Cycle [https://www.boundless.com/biology/textbooks/boundless-biology-textbook/photosynthesis-8/the-light-independent-reactions-of-photosynthesis-82/the-calvin-cycle-377-11603/] 18. Dexter J, Armshaw P, Sheahan C, Pembroke JT: The state of autotrophic ethanol production in Cyanobacteria. J Appl Microbiol 2015, 119(1):11-24. 19. Chin T, Sano M, Takahashi T, Ohara H, Aso Y: Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803. J Biotechnol 2015, 195:43-45. 20. Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR: Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 2013, 16:68-77. 21. Jacobsen JH, Frigaard NU: Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 2014, 21:60-70. 22. Lan EI, Wei CT: Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab Eng 2016. 23. Sasikaran J, Ziemski M, Zadora PK, Fleig A, Berg IA: Bacterial itaconate degradation promotes pathogenicity. Nat Chem Biol 2014, 10(5):371-377. 24. Luan HH, Medzhitov R: Food Fight: Role of Itaconate and Other Metabolites in Antimicrobial Defense. Cell Metab 2016, 24(3):379-387. 25. Lorenz MC, Fink GR: Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 2002, 1(5):657-662. 26. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A et al: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 2013, 110(19):7820-7825. 27. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476(7360):355-359. 28. Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M: Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng 2002, 94(1):29-33. 29. Vuoristo KS, Mars AE, van Loon S, Orsi E, Eggink G, Sanders JP, Weusthuis RA: Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production. Front Microbiol 2015, 6:849. 30. Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bolker M: Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb Biotechnol 2016, 9(1):116-126. 31. Barrangou R, Marraffini LA: CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 2014, 54(2):234-244. 32. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337(6096):816-821. 33. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152(5):1173-1183. 34. Flamholz A, Noor E, Bar-Even A, Milo R: eQuilibrator--the biochemical thermodynamics calculator. Nucleic Acids Res 2012, 40(Database issue):D770-775. 35. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30. 36. Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D: BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci 2002, 27(1):54-56. 37. Horswill AR, Escalante-Semerena JC: In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase Enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry 2001, 40(15):4703-4713. 38. Blank L, Green J, Guest JR: AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology 2002, 148(Pt 1):133-146. 39. Jeon HG, Cheong DE, Han Y, Song JJ, Choi JH: Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5'-coding region variant of the cadA gene. Biotechnol Bioeng 2016, 113(7):1504-1510. 40. Beinert H, Kennedy MC: Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J 1993, 7(15):1442-1449. 41. Williams CH, Stillman TJ, Barynin VV, Sedelnikova SE, Tang Y, Green J, Guest JR, Artymiuk PJ: E. coli aconitase B structure reveals a HEAT-like domain with implications for protein-protein recognition. Nat Struct Biol 2002, 9(6):447-452. 42. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006, 2:2006 0008. 43. Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97(12):6640-6645. 44. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO: Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009, 6(5):343-345. 45. Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC: CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Fact 2016, 15(1):196. 46. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H: Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 2005, 12(5):291-299. 47. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y et al: BLAST: a more efficient report with usability improvements. Nucleic Acids Res 2013, 41(Web Server issue):W29-33. 48. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL: NCBI BLAST: a better web interface. Nucleic Acids Res 2008, 36(Web Server issue):W5-9. 49. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK: Protein database searches using compositionally adjusted substitution matrices. FEBS J 2005, 272(20):5101-5109. 50. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402. 51. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F et al: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413(6858):852-856. 52. Kronen M, Sasikaran J, Berg IA: Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans. Appl Environ Microbiol 2015, 81(16):5632-5638. 53. Zarzycki J, Kerfeld CA: The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases. BMC Struct Biol 2013, 13:28. 54. Kovacic F, Granzin J, Wilhelm S, Kojic-Prodic B, Batra-Safferling R, Jaeger KE: Structural and functional characterisation of TesA - a novel lysophospholipase A from Pseudomonas aeruginosa. PLoS One 2013, 8(7):e69125. 55. Cantu DC, Chen Y, Reilly PJ: Thioesterases: a new perspective based on their primary and tertiary structures. Protein Sci 2010, 19(7):1281-1295. 56. Erb TJ, Frerichs-Revermann L, Fuchs G, Alber BE: The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-Malyl-coenzyme A (CoA)/{beta}-methylmalyl-CoA lyase and (3S)- Malyl-CoA thioesterase. J Bacteriol 2010, 192(5):1249-1258. 57. Cantu DC, Chen Y, Lemons ML, Reilly PJ: ThYme: a database for thioester-active enzymes. Nucleic Acids Res 2011, 39(Database issue):D342-346. 58. Lee LC, Lee YL, Leu RJ, Shaw JF: Functional role of catalytic triad and oxyanion hole-forming residues on enzyme activity of Escherichia coli thioesterase I/protease I/phospholipase L1. Biochem J 2006, 397(1):69-76. 59. Strauss E: Comprehensive Natural Products II, vol. 7; 2010.
|