|
1. Messner, S., et al., Multi-cell type human liver microtissues for hepatotoxicity testing. Archives of toxicology, 2013. 87(1): p. 209-213. 2. Xia, L., et al., Laminar-flow immediate-overlay hepatocyte sandwich perfusion system for drug hepatotoxicity testing. Biomaterials, 2009. 30(30): p. 5927-5936. 3. Trépo, C., H.L.Y. Chan, and A. Lok, Hepatitis B virus infection. The Lancet, 2014. 384(9959): p. 2053-2063. 4. Yang, H.-I., et al., Risk calculators for hepatocellular carcinoma in patients affected with chronic hepatitis B in Asia. World Journal of Gastroenterology : WJG, 2014. 20(20): p. 6244-6251. 5. Sussman, N.L. and J.R. Lake, Treatment of hepatic failure—1996: current concepts and progress toward liver dialysis. American journal of kidney diseases, 1996. 27(5): p. 605-621. 6. Mescher, A.L., Junqueira's basic histology: text and atlas. 2013: Mcgraw-hill. 7. Berasain, C. and M.A. Avila, Regulation of hepatocyte identity and quiescence. Cellular and Molecular Life Sciences, 2015. 72(20): p. 3831-3851. 8. van Grunsven, L.A., 3D in vitro models of liver fibrosis. Adv Drug Deliv Rev, 2017. 9. Liu, C.-Y., K.-F. Chen, and P.-J. Chen, Treatment of Liver Cancer. Cold Spring Harbor Perspectives in Medicine, 2015. 5(9): p. a021535. 10. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine, 2008. 359(4): p. 378-390. 11. Escudier, B., et al., Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 2007. 356(2): p. 125-134. 12. Schlachterman, A., et al., Current and future treatments for hepatocellular carcinoma. World Journal of Gastroenterology : WJG, 2015. 21(28): p. 8478-8491. 13. Schuppan, D. and N.H. Afdhal, Liver Cirrhosis. Lancet, 2008. 371(9615): p. 838-851. 14. Slater, T.F., K.H. Cheeseman, and K.U. Ingold, Carbon tetrachloride toxicity as a model for studying free-radical mediated liver injury. Philos Trans R Soc Lond B Biol Sci, 1985. 311(1152): p. 633-45. 15. Symeonidis, A. and E.G. Trams, Morphologic and functional changes in the livers of rats after ligation or excision of the common bile duct. Am J Pathol, 1957. 33(1): p. 13-27. 16. Li, Y. and K.A. Kilian, Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices. Advanced healthcare materials, 2015. 4(18): p. 2780-2796. 17. Gospodarowicz, D., G. Greenburg, and C.R. Birdwell, Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res, 1978. 38(11 Pt 2): p. 4155-71. 18. Roca-Cusachs, P., et al., Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J, 2008. 94(12): p. 4984-95. 19. Costa, P., J.E. Gautrot, and J.T. Connelly, Directing cell migration using micropatterned and dynamically adhesive polymer brushes. Acta Biomater, 2014. 10(6): p. 2415-22. 20. Kim, M.C., et al., Dynamic modeling of cell migration and spreading behaviors on fibronectin coated planar substrates and micropatterned geometries. PLoS Comput Biol, 2013. 9(2): p. e1002926. 21. Park, S.A., et al., Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected to mechanical stimuli. J Biosci Bioeng, 2006. 102(5): p. 402-12. 22. Hosseinkhani, H., et al., Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials, 2006. 27(22): p. 4079-86. 23. Liu, J., et al., Three-dimensional spheroid cultures of A549 and HepG2 cells exhibit different lipopolysaccharide (LPS) receptor expression and LPS-induced cytokine response compared with monolayer cultures. Innate Immun, 2011. 17(3): p. 245-55. 24. Erickson, I.E., et al., Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng Part A, 2009. 15(5): p. 1041-52. 25. Bercu, M.M., et al., Enhanced survival and neurite network formation of human umbilical cord blood neuronal progenitors in three-dimensional collagen constructs. J Mol Neurosci, 2013. 51(2): p. 249-61. 26. Pampaloni, F., E.H. Stelzer, and A. Masotti, Three-dimensional tissue models for drug discovery and toxicology. Recent Pat Biotechnol, 2009. 3(2): p. 103-17. 27. Nakamura, T., et al., E-cadherin-dependent intercellular adhesion enhances chemoresistance. Int J Mol Med, 2003. 12(5): p. 693-700. 28. Loessner, D., et al., Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials, 2010. 31(32): p. 8494-506. 29. Gaskell, H., et al., Characterization of a functional C3A liver spheroid model. Toxicol Res (Camb), 2016. 5(4): p. 1053-1065. 30. Malik, R., C. Selden, and H. Hodgson, The role of non-parenchymal cells in liver growth. Semin Cell Dev Biol, 2002. 13(6): p. 425-31. 31. Bhatia, S.N., M.L. Yarmush, and M. Toner, Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res, 1997. 34(2): p. 189-99. 32. Friedman, S.L., Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver. Physiological reviews, 2008. 88(1): p. 125-172. 33. Moreira, R.K., Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med, 2007. 131(11): p. 1728-34. 34. Mikula, M., et al., Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol, 2006. 209(2): p. 560-7. 35. Zhao, W., et al., Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer, 2011. 129(11): p. 2651-61. 36. Loreal, O., et al., Cooperation of Ito cells and hepatocytes in the deposition of an extracellular matrix in vitro. Am J Pathol, 1993. 143(2): p. 538-44. 37. Abu-Absi, S.F., L.K. Hansen, and W.S. Hu, Three-dimensional co-culture of hepatocytes and stellate cells. Cytotechnology, 2004. 45(3): p. 125-40. 38. Riccalton-Banks, L., et al., Long-term culture of functional liver tissue: three-dimensional coculture of primary hepatocytes and stellate cells. Tissue Eng, 2003. 9(3): p. 401-10. 39. Thomas, R.J., et al., Hepatic stellate cells on poly(DL-lactic acid) surfaces control the formation of 3D hepatocyte co-culture aggregates in vitro. Eur Cell Mater, 2006. 11: p. 16-26; discussion 26. 40. Wong, S.F., et al., Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials, 2011. 32(32): p. 8087-96. 41. No, D.Y., G.S. Jeong, and S.-H. Lee, Immune-protected xenogeneic bioartificial livers with liver-specific microarchitecture and hydrogel-encapsulated cells. Biomaterials, 2014. 35(32): p. 8983-8991. 42. Gates, B.D., et al., Unconventional nanofabrication. Annu. Rev. Mater. Res., 2004. 34: p. 339-372. 43. Tseng, A.A., Nanofabrication: fundamentals and applications. 2008: World Scientific. 44. Zaouk, R., B.Y. Park, and M.J. Madou, Introduction to Microfabrication Techniques, in Microfluidic Techniques: Reviews and Protocols, S.D. Minteer, Editor. 2006, Humana Press: Totowa, NJ. p. 5-15. 45. Gates, B.D., et al., New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chemical Reviews, 2005. 105(4): p. 1171-1196. 46. Choi, J.S., Y. Piao, and T.S. Seo, Fabrication of various cross-sectional shaped polymer microchannels by a simple PDMS mold based stamping method. Biochip journal, 2012. 6(3): p. 240-246. 47. Wang, G.-J., et al., Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography. Journal of micromechanics and microengineering, 2007. 17(10): p. 2000. 48. Whitesides, G.M., et al., Soft lithography in biology and biochemistry. Annual review of biomedical engineering, 2001. 3(1): p. 335-373. 49. Stampfl, J. and M. Hatzenbichler, Additive Manufacturing Technologies, in CIRP Encyclopedia of Production Engineering. 2014, Springer. p. 20-27. 50. Amt, Standard terminology for additive manufacturing. Coordinate systems and test methodologies. . 2013. 51. Petrovic, V., et al., Additive layered manufacturing: sectors of industrial application shown through case studies. International Journal of Production Research, 2011. 49(4): p. 1061-1079. 52. Teng, C.-L., Liver Regeneration Using 3D Printed Glycerol-Based Biodegradable Scaffold, in Departmeant of Chemical Engineering. 2017, National Tsing Hua University: National Tsing Hua University Library. p. 77. 53. Radisic, M., et al., Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A, 2008. 86(3): p. 713-24. 54. Wang, Y., et al., A tough biodegradable elastomer. Nat Biotechnol, 2002. 20(6): p. 602-6. 55. Radisic, M., et al., Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng, 2006. 12(8): p. 2077-91. 56. Hasan, A., et al., Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromolecular bioscience, 2016. 16(7): p. 958-977. 57. Nijst, C.L., et al., Synthesis and characterization of photocurable elastomers from poly (glycerol-co-sebacate). Biomacromolecules, 2007. 8(10): p. 3067-3073. 58. Li, Y., G.A. Thouas, and Q.-Z. Chen, Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds. RSC Advances, 2012. 2(22): p. 8229-8242. 59. Wang, Y., et al., A tough biodegradable elastomer. Nat Biotech, 2002. 20(6): p. 602-606. 60. Nijst, C.L.E., et al., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate). Biomacromolecules, 2007. 8(10): p. 3067-3073. 61. Hernandez-Gea, V. and S.L. Friedman, Pathogenesis of liver fibrosis. Annual review of pathology: mechanisms of disease, 2011. 6: p. 425-456.
|