帳號:guest(18.117.73.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂 維
作者(外文):Lu, Wei
論文名稱(中文):建立與內源alpha-酮戊二酸合成分離之衣康酸 生產菌株
論文名稱(外文):Decoupling itaconate production from alpha-ketoglutarate biosynthesis in E.coli
指導教授(中文):沈若樸
指導教授(外文):Shen, Roa-Pu
口試委員(中文):蘭宜錚
黃煒智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032530
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:49
中文關鍵詞:衣康酸大腸桿菌穀胺酸營養缺陷icd基因剔除代謝工程
外文關鍵詞:Itaconic acidE. coliglutamate auxotrophicd knockoutmetabolic engineering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:202
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近來透過轉化生質原料而成的可再生材料愈來愈受到注意。衣康酸具有雙官能基以及ㄧ個不飽和雙鍵使其在高分子合成領域有相當多的應用。因為結構的相似性,衣康酸也被視為由石油衍生而來之丙烯酸之替代平台化合物。
大腸桿菌能夠有效生產衣康酸,其中檸檬酸循環的抑制被視為關鍵之代謝調控策略之一。然而,伴隨而來的是大腸桿菌會喪失內源合成穀胺酸(glutamate)之能力,導致在基礎培養基中需要額外補充穀胺酸。藉由引入Burkholderia xenovorans之非磷酸化代謝途徑於大腸桿菌中,使菌株能夠自行轉化合成alpha酮戊二酸,在不額外補充營養源的情況下,營養缺陷株能夠於36小時生長至細胞濃度達OD600 nm 0.296。透過基因組合的優化,更能將細胞生長情形優化至OD600 nm 1.62。同時利用甘油及木糖能夠提升衣康酸產量以及優化細胞生長。藉由剔除非磷酸化代謝途徑之競爭途徑,衣康酸產量可以在24小時達1.2 g/L。降低木糖於培養基中之起始濃度,能夠提升衣康酸產量在24小時達2.2 g/L IA。利用1公升生物反應器進行發酵製程放大,在基礎培養基中可以於85小時達到20.01 g/L IA、0.62 (g IA/ g glycerol) 轉化率以及0.24 g/L/hr產率。
Nowadays, increasing attention is being focused on the conversion of biomass into renewable products such as itaconic acid (IA). IA serves as a renewable alternative for petroleum-based acrylic acid, is an unsaturated dicarboxylic acid which can be utilized as a platform chemical to further synthesize various value-added chemicals and material in polymer industry.
TCA cycle disruption is essential for efficient IA production in E. coli following by the additional nutrient supply which accounting for glutamate auxotrophy. Recruiting nonphosphorylative pathway to efficiently convert xylose into α-ketoglutarate (α-KG), hence, became an alternative to circumvent additional production cost. Via applying nonphosphorylative pathway genes from Burkholderia xenovorans, we rescued the auxotroph growth to OD600 nm 0.296 (36 hrs) and further optimized it to OD600 nm 1.62 (36 hrs). Co-utilizing glycerol and xylose enhances both IA titers and cell growth. Supplement of ammonium salts prolonged IA production and achieved higher cell density. By deletion of competing pathways of nonphosphorylative metabolism, we achieved 1.2 g/L IA production (24 hrs). Lowering initial xylose concentration could increase IA production to 2.2 g/L IA (24 hrs). Scaling up IA production in a 1L fed-batch bioreactor fermentation, we achieved 20.01 g/L IA (85 hrs) with yield 0.62 (g IA/ g glycerol) and productivity 0.24 g/L/hr in minimal media .
Outline

I. Introduction 1
1. Introduction of itaconic acid 1
2. Bio-based itaconic acid production 3
3. IA production by recombinant E. coli 4
4. Solutions to glutamate auxotrophy 7
5. Lignocellulosic Biomass utilization 9
II. Motivation and strategy 13
III. Materials and methods 14
1. Chemicals and reagents 14
2. DNA manipulation 14
3. Culture medium and conditions 14
4. Chemicals analysis 16
5. IA production using 1L fed-batch bioreactor 17
6. Strains and primers table 18
IV. Results and Discussion 21
1. Proposed pathway which decoupling IA production from α-KG
biosynthesis 21
2. IA production pathway optimized in icd inactivated E. coli 23
3. Constructing nonphosphorylative pathway in Δ icd E. coli 25
4. Determination of IA production cultivation condition 28
5. Preliminary IA production in 1 L Bioreactor 31
6. Strategies for directing carbon flux into IA production 37
7. Scaling up IA production in 1 L bioreactor 40
V. Conclusion 42
VI. Reference 44

VI. Reference
1. Bafana, R. and R.A. Pandey, New approaches for itaconic acid production: bottlenecks and possible remedies. Crit Rev Biotechnol, 2018. 38(1): p. 68-82.
2. Corma, A., S. Iborra, and A. Velty, Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 2007. 107(6): p. 2411-2502.
3. Kuenz, A. and S. Krull, Biotechnological production of itaconic acid-things you have to know. Applied Microbiology and Biotechnology, 2018. 102(9): p. 3901-3914.
4. Okabe, M., et al., Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Applied Microbiology and Biotechnology, 2009. 84(4): p. 597-606.
5. Willke, T. and K.D. Vorlop, Biotechnological production of itaconic acid. Appl Microbiol Biotechnol, 2001. 56(3-4): p. 289-95.
6. Calam, C.T., A.E. Oxford, and H. Raistrick, Studies in the biochemistry of micro-organisms: Itaconic acid, a metabolic product of a strain of Aspergillus terreus Thom. Biochem J, 1939. 33(9): p. 1488-95.
7. Haskins, R.H., J.A. Thorn, and B. Boothroyd, Biochemistry of the Ustilaginales. XI. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol, 1955. 1(9): p. 749-56.
8. Strelko, C.L., et al., Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc, 2011. 133(41): p. 16386-9.
9. Steiger, M.G., et al., Biochemistry of microbial itaconic acid production. Front Microbiol, 2013. 4: p. 23.
10. Kuenz, A., et al., Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol, 2012. 96(5): p. 1209-16.
11. Hevekerl, A., A. Kuenz, and K.D. Vorlop, Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl Microbiol Biotechnol, 2014. 98(24): p. 10005-12.
12. Eimhjellen, K.E. and H. Larsen, The mechanism of itaconic acid formation by Aspergillus terreus. 2. The effect of substrates and inhibitors. Biochem J, 1955. 60(1): p. 139-47.
13. Otten, A., M. Brocker, and M. Bott, Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng, 2015. 30: p. 156-65.
14. Chang, P., et al., Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol, 2017. 249: p. 73-81.
15. Vuoristo, K.S., et al., Metabolic engineering of itaconate production in Escherichia coli. Appl Microbiol Biotechnol, 2015. 99(1): p. 221-8.
16. Harder, B.J., K. Bettenbrock, and S. Klamt, Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metab Eng, 2016. 38: p. 29-37.
17. Blazeck, J., et al., Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol, 2014. 98(19): p. 8155-64.
18. Blazeck, J., et al., Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng, 2015. 32: p. 66-73.
19. Angermayr, S.A., A.G. Rovira, and K.J. Hellingwerf, Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends in Biotechnology, 2015. 33(6): p. 352-361.
20. Yu, C., et al., Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol, 2011. 89(3): p. 573-83.
21. Becker, J. and C. Wittmann, Systems metabolic engineering of Escherichia coli for the heterologous production of high value molecules - a veteran at new shores. Current Opinion in Biotechnology, 2016. 42: p. 178-188.
22. Kanamasa, S., et al., Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol, 2008. 80(2): p. 223-9.
23. Okamoto, S., et al., Production of itaconic acid using metabolically engineered Escherichia coli. J Gen Appl Microbiol, 2014. 60(5): p. 191-7.
24. Martinez-Gomez, K., et al., New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact, 2012. 11: p. 46.
25. Jeon, H.G., et al., Itaconic acid production from glycerol using Escherichia coli harboring a random synonymous codon-substituted 5 '-coding region variant of the cadA gene. Biotechnology and Bioengineering, 2016. 113(7): p. 1504-1510.
26. Harder, B.J., K. Bettenbrock, and S. Klamt, Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol Bioeng, 2018. 115(1): p. 156-164.
27. Reddy, C.S. and R.P. Singh, Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol, 2002. 85(1): p. 69-71.
28. Juranyiova, E. and E. Matisova, Fermentative Production of Itaconic and Kojic Acid. Biologia, 1991. 46(4): p. 355-365.
29. Holms, W.H., The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Regul, 1986. 28: p. 69-105.
30. McClintock, M.K., J. Wang, and K. Zhang, Application of Nonphosphorylative Metabolism as an Alternative for Utilization of Lignocellulosic Biomass. Front Microbiol, 2017. 8: p. 2310.
31. Liu, H., et al., Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals. Biotechnol Adv, 2014. 32(2): p. 382-9.
32. Weimberg, R., Pentose oxidation by Pseudomonas fragi. J Biol Chem, 1961. 236: p. 629-35.
33. Weimberg, R. and M. Doudoroff, The oxidation of L-arabinose by Pseudomonas saccharophila. J Biol Chem, 1955. 217(2): p. 607-24.
34. Dahms, A.S., 3-Deoxy-D-pentulosonic acid aldolase and its role in a new pathway of D-xylose degradation. Biochem Biophys Res Commun, 1974. 60(4): p. 1433-9.
35. Dahms, A.S. and R.L. Anderson, 2-keto-3-deoxyl-L-arabonate aldolase and its role in a new pathway of L-arabinose degradation. Biochem Biophys Res Commun, 1969. 36(5): p. 809-14.
36. Bai, W., et al., Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metab Eng, 2016. 38: p. 285-292.
37. Liu, H. and T. Lu, Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng, 2015. 29: p. 135-141.
38. Wang, J., et al., Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli. Metab Eng, 2017. 41: p. 39-45.
39. Tai, Y.S., et al., Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol, 2016. 12(4): p. 247-53.
40. Gibson, D.G., et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009. 6(5): p. 343-5.
41. Baba, T., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2006. 2: p. 2006 0008.
42. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6640-5.
43. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A., 2000. 97(12): p. 6640-5.
44. Hamelinck, C.N., G. van Hooijdonk, and A.P.C. Faaij, Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass & Bioenergy, 2005. 28(4): p. 384-410.
45. Lan, E.I. and C.T. Wei, Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab Eng, 2016. 38: p. 483-493.
46. De Mey, M., et al., Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol, 2007. 34(11): p. 689-700.
47. Kabir, M.M. and K. Shimizu, Metabolic regulation analysis of icd-gene knockout Escherichia coli based on 2D electrophoresis with MALDI-TOF mass spectrometry and enzyme activity measurements. Appl Microbiol Biotechnol, 2004. 65(1): p. 84-96.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *