帳號:guest(18.226.104.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高育祥
作者(外文):Kao, Yu-Hsiang
論文名稱(中文):玻璃基板上高附著濕製程金屬化之研究
論文名稱(外文):A Study on Wet-Processed Metallization on Glass Substrate with High Adhesion
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):王潔
吳茂松
口試委員(外文):Wang, Jane
Wu, Mao-Sung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032526
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:109
中文關鍵詞:玻璃金屬化無電鍍反應析镀技術鈀觸媒
外文關鍵詞:glass metallizationelectroless depositionPd catalyst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:280
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本研究目的為改善濕式製程金屬化製程來增加玻璃上金屬鍍層的附著力。濕製程金屬化部份為無電鍍鎳磷層加上其後之電鍍銅增厚層之複合金屬鍍層,為增加此金屬鍍層的附著力,使用二氧化鈦(TiO2)薄層作為玻璃與金屬間的強化附著層。除此之外,在無電鍍鎳磷之觸媒部分則是以自行研發之矽烷化合物改良之自吸附奈米鈀觸媒,以增加與金屬鍍層的附著力。
本論文中共有三個研究主題,第一部份探討自行研發之自吸附鈀觸媒,從實驗室沿襲使用含有三個胺基的矽烷化合物(3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane, ETAS)提供電子對吸附聚乙烯醇(polyvinyl alcohol, PVA)包覆的奈米鈀(PVA-Pd)的兩步驟活化技術,加以改良透過將ETAS與PVA-Pd溶液以適當比例混合,合成出具自吸附功能之ETAS-PVA-Pd觸媒,此ETAS-PVA-Pd能直接與玻璃表面形成Si-O-Si共價鍵,達到一步驟改質且活化的雙重功效。以穿透式電子顯微鏡(TEM)、原子力顯微鏡(AFM)、水滴接觸角(W.C.A)進行粒徑及吸附於玻璃基板的性質探討,以X射線光電子能譜儀(XPS)解釋ETAS-PVA-Pd觸媒於玻璃基板上吸附機制;利用ETAS-PVA-Pd觸媒進行無電鍍鎳沉積其鎳層平均附著力為9.4 MPa,與使用先以ETAS表面改質再吸附PVA-Pd的兩步驟製程的附著力相近,且不論是一步驟製程或兩步驟製程在無電鍍鎳層的附著力皆高於使用商用錫鈀膠體及離子鈀觸媒系統催化的無電鍍鎳層附著力,但仍與實用目標相距甚遠。
第二部分是以第一部分的成果為基礎,在玻璃基板上先施作一層TiO2作為強化附著層,並探討退火製程存在與否對裂面的影響。以掃描式電子顯微鏡(SEM)及AFM說明退火後裂面從玻璃及TiO2界面轉移至TiO2與鎳銅層間的界面,並探討TiO2粗糙度變化及TiO2薄膜結構對金屬鍍層附著力影響,說明將TiO2前驅物(TTDB)加入TiO2漿料分散液中能製作出緻密且具粗糙度的金屬氧化物薄膜,大幅提升金屬鍍層平均附著力至305 gf/cm。為了解釋附著力大增的原因,我們以TEM證實TiO2結構及玻璃界面的晶格條紋說明界面緊密結合,並利用歐傑電子能譜儀(AES)對裂面結構進行化學元素分析,顯示高附著力鍍層的裂面位於TiO2上層結構與無電鍍鎳層間。
最後一部分為將上述之研究成果實際應用於含通孔之玻璃中介層上濕式金屬化製程的先導性測試,並提出未來改良方針以符合商業生產的目標。
The purpose of the study is to increase the adhesion of the metal films on glass substrates by a wet metallization process. The process of the wet metallization uses the electroless Ni deposition (ELD) on glass substrates followed by electroplating (EP) Cu. To improve the adhesion of the metal films, titanium oxide is used as an adhesion promoter. Besides, in the part of electroless Ni deposition (ELD), the Pd nanoparticles are also modified with silane compound to improve the interaction between glass and Ni seed layer.
There are three research parts in the study. The discussions of the first part of the study are about the analysis of the self-attaching Pd catalyst. In the lab, the amino silane compound surface treatment is used for long time. 3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane (ETAS) compound donates electrons to interact Pd catalyst capped with polyvinyl alcohol (PVA-Pd). In this study, we further integrate the silane compound to the Pd nanoparticles by adding ETAS to PVA-Pd aqueous solution. The ETAS contained PVA-Pd (ETAS-PVA-Pd) is capable to attach on glass surface by forming the Si-O covalent bond. The particles size of ETAS-PVA-Pd and the adsorption of the Pd catalyst on the glass are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), water contact angle (W.C.A). The configuration of ETAS-PVA-Pd nanostructure as well as the effect of modification is explained by X-ray photoelectron spectroscopy (XPS). The average adhesion of ELD Ni-P film prepared by ETAS-PVA-Pd is 9.4 MPa, which is identical to the one using to separate ETAS treatment and then PVA-Pd adsorption. The adhesion of both processes has significantly outperformed the Ni-P film adhesion using commercial Sn/Pd or Ion-Pd system. However, the adhesion is still not high enough to the goal.
The second part based on the first part focuses on using the TiO2 film as adhesion promoter. For the annealing effect, the graphs of scanning electron microscope(SEM) and AFM indicate the fracture changes from the interface of glass and TiO2 to the interface of TiO2 and Ni-Cu layer. On the other hand, the surface roughness and the structure of TiO2 factors corresponding to the adhesion are discussed. The adhesion of metal films increases to 305 gf/cm by adding the precursor titanium diisopropoxide bis (acetylacetonate) (TTDB) to the TiO2 suspension. The fracture of high adhesion of metal film is between the upper TiO2 structure and ELD Ni layer, which is proved by TEM and auger electron spectroscopy (AES) chemical analysis.
In the last part of this study, we combine the above results and apply them on TGV interposer with wet metallization procedure for prospective study, and we propose some advice to achieve the goal of mass production.
第一章 緒 論 1
1.1 前言 1
1.2 研究目的與動機 7
第二章 文獻回顧 9
2.1 中介層電氣特性 9
2.2 玻璃基板沉積高附著金屬鍍層的方法 12
2.2.1 濺鍍金屬法 13
2.2.2 以金屬氧化物為強化附著層 14
2.3 無電鍍鎳沉積 28
2.3.1 無電鍍沉積基本原理 28
2.3.2 無電鍍鎳的反應機制 29
2.3.3 無電鍍鎳鍍液的組成及特性 30
2.4無電鍍鎳觸媒 32
2.4.1 錫鈀膠體觸媒(Sn/Pd Colloid) 33
2.4.2 離子鈀觸媒(Ion-Pd) 34
2.4.3 奈米鈀觸媒 35
2.5矽烷化合物表面改質 41
2.5.1矽烷化合物表面改質之機制 41
2.5.2 矽烷化合物的特性 42
第三章 實驗 47
3.1 藥品與材料 47
3.2 儀器列表 48
3.3分析方法及儀器原理 48
3.3.1 接觸角量測 48
3.3.2 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 49
3.3.3 原子力顯微鏡(Atomic Force Microscope, AFM) 50
3.3.4 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 51
3.3.5 雙束型聚焦離子束顯微鏡(Dual-Beam Focused Ion Beam Microscope, DB-FIB) 52
3.3.6 附著力測試方法 52
3.3.7 掃描式電子顯微鏡(Scanning electron microscope, SEM) 54
3.3.8 歐傑電子能譜儀(Auger electron spectroscopy, AES) 57
3.3.9 可分析樣品中元素組成之儀器原理整理 58
3.4實驗方法 59
3.4.1 ETAS-PVA-Pd觸媒製備及性質比較 60
3.4.2 以TiO2為強化附著層之製程 64
3.4.3 應用ETAS-PVA-Pd及TiO2於通孔玻璃中 66
第四章 結果與討論 69
4.1 ETAS-PVA-Pd觸媒製備及性質比較 69
4.1.1 奈米粒徑分析 69
4.1.2 表面親水性及形貌分析 69
4.1.3 ETAS-PVA-Pd之XPS分析 71
4.1.4 無電鍍鎳層附著力分析 74
4.2 以TiO2為強化附著層之製程 75
4.2.1 TiO2強化附著層形貌 75
4.2.2 未進行電鍍銅後退火之TiO2製程分析 77
4.2.3 退火製程對電鍍銅層附著力影響 81
4.2.4 電鍍銅後退火之TiO2製程附著力結果分析 84
4.3 以ETAS-PVA-Pd觸媒及TiO2製程應用於通孔玻璃基板 91
4.3.1 通孔玻璃性質檢測 91
4.3.2 以ETAS-PVA-Pd觸媒進行無電鍍銅製程之分析 91
4.3.3 ETAS-PVA-Pd搭配TiO2薄膜之無電鍍銅製程分析 95
第五章 結論 101
第六章 參考資料 103
[1] V. Sukumaran, Q. Chen, F. Liu, N. Kumbhat, T. Bandyopadhyay, H. Chan, et al., "Through-package-via formation and metallization of glass interposers," in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010, pp. 557-563.
[2] B. K. Wang, Y.-A. Chen, A. Shorey, and G. Piech, "Thin glass substrates development and integration for through glass vias (TGV) with copper (Cu) interconnects," in 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012, pp. 247-250.
[3] A. B. Shorey and R. Lu, "Progress and application of through glass via (TGV) technology," in Pan Pacific Microelectronics Symposium (Pan Pacific), 2016, pp. 1-6.
[4] A. Pizzagall. (2013). "Glass wafer market will reach more than 15M 8” EQ WSPY by 2018,” estimates Yole Développement. Available: http://www.yole.fr/iso_upload/News/2013/PR_Glass%20Substrates_YOLE%20DEVELOPPEMENT_April2013.pdf
[5] 濺鍍技術原理. Available:
http://mems.mt.ntnu.edu.tw/document/class/97%E4%B8%8A%E5%AD%B8%E6%9C%9F/%E6%A9%9F%E9%9B%BB%E6%95%B4%E5%90%88%E6%8A%80%E8%A1%93(%E4%B8%80)/%E5%AF%A6%E4%BD%9C%E6%8A%80%E8%A1%93%E8%A3%9C%E5%85%85%E8%B3%87%E6%96%99/%E6%BF%BA%E9%8D%8D%E6%8A%80%E8%A1%93.pdf
[6] P. Ogutu, E. Fey, P. Borgesen, and N. Dimitrov, "Hybrid Method for Metallization of Glass Interposers," Journal of The Electrochemical Society, vol. 160, 2013, pp. D3228-D3236.
[7] T.-C. Pan, Application of Nano Palladium Catalyst for Electroless Nickel Deposition on Silane-compound Modified Silicon Wafer: National Tsing Hua University, 2014.
[8] E. Delamarche, J. Vichiconti, S. A. Hall, M. Geissler, W. Graham, B. Michel, et al., "Electroless deposition of Cu on glass and patterning with microcontact printing," Langmuir, vol. 19, 2003, pp. 6567-6569.
[9] M. T. Bohr, "Interconnect scaling-the real limiter to high performance ULSI," in International Electron Devices Meeting, 1995, pp. 241-244.
[10] H. S. R. a. D.Nguyen, "Effect of Scaling of Interconnection," Copper metallization for Sub-Mircron Integrated, May 1998.
[11] 鍾朝安, "銀導體連線技術," 國家奈米元件實驗室奈米通訊, vol. 20, 2013, pp. 26-33.
[12] H. A. Wheeler, "Formulas for the Skin Effect," Proc. IRE, vol. 30, 1942, pp. 412-426.
[13] E. Liew, M. C. F. Malaysia, S. A. Malaysia, T.-a. Okubo, T. Sudo, T. Hosoi, et al., "Signal transmission loss due to copper surface roughness in high-frequency region," in IPC-Association Connecting Electronics Industries, 2014.
[14] M. Schneider, "Dielectric loss in integrated microwave circuits," Bell Labs Technical Journal, vol. 48, 1969, pp. 2325-2332.
[15] J. D. Welch, "Losses in Microstrip Transmission System for Integrated Microwave Circuits," NEREM RECORD, 1966, pp. 100-101.
[16] M. Yamaguchi, S. Kuramochi, and Y. Fukuoka, "High Frequency Transmission Property Evaluation of Fine Wiring Substrates," Transactions of The Japan Institute of Electronics Packaging, vol. 1, 2008, pp. 29-35.
[17] T. Huang, V. Sundaram, P. M. Raj, H. Sharma, and R. Tummala, "Adhesion and reliability of direct Cu metallization of through-package vias in glass interposers," in Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, 2014, pp. 2266-2270.
[18] X. Cui, D. A. Hutt, and P. P. Conway, "An investigation of electroless copper films deposited on glass," in Electronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd, 2008, pp. 105-110.
[19] P. Benjamin and C. Weaver, "The adhesion of evaporated metal films on glass," in Proc. R. Soc. Lond. A, 1962, pp. 516-531.
[20] A. T. Miller, "Direct Electroless Copper Plating on Glass Mediated by Solution-phase Deposition of Nucleation and Adhesion Promoters," Case Western Reserve University, 2015.
[21] N. Jiang and J. Silcox, "Observations of reaction zones at chromium/oxide glass interfaces," Journal of Applied Physics, vol. 87, 2000, pp. 3768-3776.
[22] J. Koike and M. Wada, "Self-forming diffusion barrier layer in Cu–Mn alloy metallization," Applied Physics Letters, vol. 87, 2005, p. 041911.
[23] H. Yoshiki, K. Hashimoto, and A. Fujishima, "Adhesion mechanism of electroless copper film formed on ceramic substrates using ZnO thin film as an intermediate layer," Journal of the Electrochemical Society, vol. 145, 1998, pp. 1430-1434.
[24] R. Sun, D. Tryk, K. Hashimoto, and A. Fujishima, "Formation of catalytic Pd on ZnO thin films for electroless metal deposition," Journal of the Electrochemical Society, vol. 145, 1998, pp. 3378-3382.
[25] C.-W. Cheng, P.-F. Chan, and W.-P. Dow, "Direct Copper Pattern Plating on Glass and Ceramic Substrates Using an Al-Doped ZnO as an Adhesive and Conducting Layer," Journal of The Electrochemical Society, vol. 164, 2017, pp. D687-D693.
[26] Z. Liu, F. Hailuo, S. Hunegnaw, and L. Brandt, "Novel adhesion promoting process for metallisation of substrate surfaces," ed: Google Patents, 2016.
[27] A. Miller, L. Yu, J. Blickensderfer, and R. Akolkar, "Electrochemical Copper Metallization of Glass Substrates Mediated by Solution-Phase Deposition of Adhesion-Promoting Layers," Journal of The Electrochemical Society, vol. 162, 2015, pp. D630-D634.
[28] 付. 刘志明, 色拉·汉格那, 卢茨·勃兰特, 塔发瓦·马格亚, "用于衬底表面金属化的新颖粘着促进剂 " 中華人民共和國 Patent, 2016.
[29] S. Hunegnaw, Z. Liu, H. Fu, J. Wang, M. Merschky, K. Mukai, et al., "VitroCoat GI-Ultra-thin adhesive layer for metallization of glass interposer," in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2015 10th International, 2015, pp. 149-152.
[30] Z. Liu, S. Hunegnaw, H. Fu, J. Wang, T. Magaya, M. Merschky, et al., "A metal oxide adhesion layer prepared with water based coating solution for wet Cu metallization of glass interposer," in International Symposium on Microelectronics, 2015, pp. 000365-000369.
[31] K. Mukai, T. Magaya, L. Brandt, Z. Liu, H. Fu, and S. Hunegnaw, "Adhesive enabling technology for directly plating copper onto glass," in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2014 9th International, 2014, pp. 170-173.
[32] Z. Liu, H. Fu, S. Hunegnaw, J. Wang, M. Merschky, T. Magaya, et al., "Electroless and electrolytic copper plating of glass interposer combined with metal oxide adhesion layer for manufacturing 3D RF devices," in Electronic Components and Technology Conference (ECTC), 2016 IEEE 66th, 2016, pp. 62-67.
[33] F. M. Michael Merschky, Martin Thoms, Robin Taylor, Diego Reinoso-Cocina, Stephan Hotz, Tobias Bernhard, Anna Peter, Sebastian Zarwell, Frank Bruening, Patrick Brooks, "VitroCoat® GI - Employing Metal Oxide Adhesion Layer and Wet Chemical Cu Metallization for Fine Line Pattern Formation on Glass," presented at the IMPACT 2017, 2017.
[34] H. Fu, S. Hunegnaw, Z. Liu, L. Brandt, and T. Magaya, "Adhesive enabling technology for directly plating copper onto glass/ceramic substrates," in Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, 2014, pp. 1652-1655.
[35] F. M. Michael Merschky, Martin Thoms, Robin Taylor, Diego Reinoso-Cocina, Stephan Hotz, Tobias Bernhard, Anna Peter, Sebastian Zarwell, Frank Bruening, Patrick Brooks, "VitroCoat® GI - Employing Metal Oxide Adhesion Layer and Wet Chemical Cu Metallization for Fine Line Pattern Formation on Glass," presented at the Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2017.
[36] C. E. Cordonier, K. Okabe, Y. Horiuchi, A. Nakamura, K. Ishikawa, S. Seino, et al., "Formation of Micrometer Scale Metal Structures on Glass by Selective Electroless Plating on Photopatterned Titanium and Copper Containing Films," Langmuir, vol. 33, 2017, pp. 14571-14579.
[37] R. D. Sun, D. A. Tryk, K. Hashimoto, and A. Fujishima, "Adhesion of Electroless Deposited Cu on ZnO‐Coated Glass Substrates: The Effect of the ZnO Surface Morphology," Journal of the Electrochemical Society, vol. 146, pp. 2117-2122, 1999.
[38] G. Schmid and L. F. Chi, "Metal clusters and colloids," Advanced Materials, vol. 10, 1998, pp. 515-526.
[39] A. Brenner and G. E. Riddell, "Nickel plating on steel by chemical reduction," Plating and surface finishing, vol. 85, 1998, pp. 54-55.
[40] A. Brenner, "Nickel plating by chemical reduction," ed: Google Patents, 1950.
[41] T. Yonezawa, K. Imamura, and N. Kimizuka, "Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands," Langmuir, vol. 17, 2001, pp. 4701-4703.
[42] H. Hsu, C. Tsai, C. Lee, and H. Wu, "Mechanism of immersion deposition of Ni–P films on Si (100) in an aqueous alkaline solution containing sodium hypophosphite," Thin Solid Films, vol. 517, 2009, pp. 4786-4791.
[43] M. E. Touhami, E. Chassaing, and M. Cherkaoui, "Modelisation of Ni–P electroless deposition in ammoniacal solutions," Electrochimica acta, vol. 48, 2003, pp. 3651-3658.
[44] X. Liu, W. Richtering, and R. Akolkar, "Investigation of the Kinetics and Mass Transport Aspects of Hydrogen Evolution during Electroless Deposition of Nickel–Phosphorus," Journal of The Electrochemical Society, vol. 164, 2017, pp. D498-D504.
[45] G. O. Mallory and J. B. Hajdu, Electroless plating: fundamentals and applications: William Andrew, 1990.
[46] K.-C. Lai, P.-Y. Wu, C.-M. Chen, T.-C. Wei, C.-H. Wu, and S.-P. Feng, "Interfacial Characterizations of a Nickel-Phosphorus Layer Electrolessly Deposited on a Silane Compound-Modified Silicon Wafer Under Thermal Annealing," Journal of Electronic Materials, vol. 45, 2016, pp. 4813-4822.
[47] R. Guo, S. Jiang, Y. Zheng, and J. Lan, "Electroless nickel deposition of a palladium‐activated self‐assembled monolayer on polyester fabric," Journal of Applied Polymer Science, vol. 127, 2013, pp. 4186-4193.
[48] I. Baskaran, T. S. Narayanan, and A. Stephen, "Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni–P deposits," Materials chemistry and physics, vol. 99, 2006, pp. 117-126.
[49] Y. Huang and F. Cui, "Effect of complexing agent on the morphology and microstructure of electroless deposited Ni–P alloy," Surface and Coatings Technology, vol. 201, 2007, pp. 5416-5418.
[50] M. V. Sullivan and J. H. Eigler, "Electroless nickel plating for making ohmic contacts to silicon," Journal of the electrochemical Society, vol. 104, 1957, pp. 226-230.
[51] Y. Okinaka and T. Osaka, "Electroless deposition processes: fundamentals and applications," Advances in electrochemical science and engineering, vol. 2, 2008, pp. 55-116.
[52] 謝俊明, "二甲胺硼烷(DMAB)檢測方法研發與勞工暴露研究," 行政院勞工委員會勞工安全衛生研究所2008.
[53] Y. Jin, H. Yu, D. Yang, and D. Sun, "Effects of complexing agents on acidic electroless nickel deposition," Rare metals, vol. 29, 2010, pp. 401-406.
[54] A. Vaškelis, A. Jagminien, and A. Prokoptchik, "Surface layer pH in electroless nickel plating in hypophosphite solutions," Surface and Coatings Technology, vol. 27, 1986, pp. 301-310.
[55] C. R. S. Jr., U.S Patent, 1961.
[56] C. De Minjer and P. vd Boom, "The Nucleation with SnCl2‐PdCl2 Solutions of Glass Before Electroless Plating," Journal of The Electrochemical Society, vol. 120, 1973, pp. 1644-1650.
[57] M. Khattak and R. J. Magee, "Tin (II) chloride complexes of platinum metals: the palladium (II)–tin (II) system," Chemical Communications (London) , 1965, pp. 400a-400a.
[58] 彭超, "奈米鈀金屬活化液之製備及其在化學鍍銅製程之應用," 2006.
[59] L. J. Chen, "Preparation of Pd Nanoparticles and its Application to Electroless Copper Deposition," master, Chemical Engineering, National Tsing Hua University 2004.
[60] J. Cookson, "The preparation of palladium nanoparticles," Platinum Metals Review, vol. 56, 2012, pp. 83-98.
[61] B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y. R. De Miguel, et al., "Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens," Science and technology of advanced materials, vol. 14, 2013., p. 023001
[62] L. Lu, H. Wang, S. Xi, and H. Zhang, "Improved size control of large palladium nanoparticles by a seeding growth method," Journal of Materials Chemistry, vol. 12, 2002, pp. 156-158.
[63] I. Quiros, M. Yamada, K. Kubo, J. Mizutani, M. Kurihara, and H. Nishihara, "Preparation of alkanethiolate-protected palladium nanoparticles and their size dependence on synthetic conditions," Langmuir, vol. 18, 2002, pp. 1413-1418.
[64] H. Hirai, N. Yakura, Y. Seta, and S. Hodoshima, "Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst," Reactive and Functional Polymers, vol. 37, 1998, pp. 121-131.
[65] H. PengáChoo and K. YongáLiew, "Factors affecting the size of polymer stabilized Pd nanoparticles," Journal of Materials Chemistry, vol. 12, 2002, pp. 934-937.
[66] R. De Palma, S. Peeters, M. Van Bael, H. Van den Rul, K. Bonroy, W. Laureyn, et al., "Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible," Chemistry of Materials, vol. 19, 2007, pp. 1821-1831.
[67] Y.-Y. Nian, M.-J. Youh, C.-P. Chang, Y.-C. Chen, and M.-D. Ger, "Preparation of styrene-γ-methacryloxypropyltrimethoxysilane/Pd nanoparticles as ink for ink-jet printing technology and electroless nickel plating on glass," Journal of the Taiwan Institute of Chemical Engineers, vol. 68, 2016, pp. 423-430.
[68] L. F. da Silva, A. Öchsner, and R. D. Adams, Handbook of adhesion technology: Springer Science & Business Media, 2011.
[69] B. Arkles, "and Silanes," Gelest Inc., Morrisville, PA, 2006.
[70] B. Arkles, "Tailoring surfaces with silanes," Chemtech, vol. 7, 1977, pp. 766-778.
[71] K.-i. Iimura, Y. Nakajima, and T. Kato, "A study on structures and formation mechanisms of self-assembled monolayers of n-alkyltrichlorosilanes using infrared spectroscopy and atomic force microscopy," Thin Solid Films, vol. 379, 2000, pp. 230-239.
[72] M. Zhu, M. Z. Lerum, and W. Chen, "How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica," Langmuir, vol. 28, 2011, pp. 416-423.
[73] G. L. Witucki, "A silane primer: chemistry and applications of alkoxy silanes," Journal of coatings technology, vol. 65, 1993, pp. 57-57.
[74] E. Asenath Smith and W. Chen, "How to prevent the loss of surface functionality derived from aminosilanes," Langmuir, vol. 24, 2008, pp. 12405-12409.
[75] C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, "Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling," Journal of the American Chemical Society, vol. 130, 2008, pp. 824-826.
[76] C.-W. Hsu, W.-Y. Wang, S.-H. Wang, Y.-H. Kao, and T.-C. Wei, "Adhesive nickel-phosphorous electroless plating on silanized silicon wafer catalyzed by reactive palladium nanoparticles," in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2015 10th International, 2015, pp. 245-249.
[77] J. Cras, C. Rowe-Taitt, D. Nivens, and F. Ligler, "Comparison of chemical cleaning methods of glass in preparation for silanization," Biosensors and Bioelectronics, vol. 14, 1999, pp. 683-688.
[78] B. Arkles, "Hydrophobicity, Hydrophilicity and Silanes," Paint & Coatings Industry magazine, vol. 22, 2006.
[79] S. M. Kanan, W. T. Tze, and C. P. Tripp, "Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl) dimethylethoxysilane on silica powders and glass slides," Langmuir, vol. 18, 2002, pp. 6623-6627.
[80] E. T. Vandenberg, L. Bertilsson, B. Liedberg, K. Uvdal, R. Erlandsson, H. Elwing, et al., "Structure of 3-aminopropyl triethoxy silane on silicon oxide," Journal of colloid and interface science, vol. 147, 1991, pp. 103-118.
[81] 林智仁 and 羅聖全, "場發射穿透式電子顯微鏡簡介," 工業材料雜誌, vol. 201, 2003, pp. 90-98.
[82] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, 1986, p. 930.
[83] 原子力顯微鏡量測原理. Available:
https://lot-qd.it/it/prodotti/life-science/microscopi-a-forza-atomica-afm/
[84] 張立信, "表面化學分析技術," 國家奈米元件實驗室奈米通訊, vol. 19, 2012, pp. 17-23.
[85] Y. Kado, A. Aoki, and T. Miyashita, "Surface modification using polymer Langmuir-Blodgett films," Journal of materials science, vol. 37, 2002, pp. 4839-4843.
[86] 汪建民, 材料分析, 2 ed.: 中國材料科學學會, 2014.
[87] SEM電子作用區域. Available:
http://www.bahens-sem.com/service/260.html
[88] S. Onitake, K. Inoue, M. Takayama, T. Kozuka, S. Kuramochi, and H. Yun, "TGV (thru-glass via) metallization by direct Cu plating on glass," in Electronic Components and Technology Conference (ECTC), 2016 IEEE 66th, 2016, pp. 1316-1321.
[89] T.-C. Wei, T.-C. Pan, C.-M. Chen, K.-C. Lai, and C.-H. Wu, "Annealing-free adhesive electroless deposition of a nickel/phosphorous layer on a silane-compound-modified Si wafer," Electrochemistry Communications, vol. 54, 2015, pp. 6-9.
[90] N. H. Nordin and Z. Ahmad, "Monitoring Chemical Changes on the Surface of Borosilicate Glass Covers during the Silanisation Process," Journal of Physical Science, vol. 26, 2015, p. 11.
[91] C. Tozlu, A. Mutlu, M. Can, A. K. Havare, S. Demic, and S. Icli, "Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell," Applied Surface Science, vol. 422, 2017, pp. 1129-1138.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *