|
1 Besson, M., Gallezot, P. & Pinel, C. Conversion of Biomass into Chemicals over Metal Catalysts. Chem. Rev. 114, 1827-1870, (2014). 2 Peng, B. X., Yao, Y., Zhao, C. & Lercher, J. A. Towards Quantitative Conversion of Microalgae Oil to Diesel-Range Alkanes with Bifunctional Catalysts. Angewandte Chemie-International Edition 51, 2072-2075, (2012). 3 Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559-U182, (2010). 4 Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41, 1538-1558, (2012). 5 Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 106, 4044-4098, (2006). 6 Melero, J. A., Iglesias, J. & Garcia, A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy & Environmental Science 5, 7393-7420, (2012). 7 Tuck, C. O., Perez, E., Horvath, I. T., Sheldon, R. A. & Poliakoff, M. Valorization of Biomass: Deriving More Value from Waste. Science 337, 695-699, (2012). 8 Amidon, T. E. & Liu, S. Water-based woody biorefinery. Biotechnol. Adv. 27, 542-550, (2009). 9 Carpenter, D., Westover, T. L., Czernik, S. & Jablonski, W. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 16, 384-406, (2014). 10 Akhtari, S., Sowlati, T. & Day, K. Economic feasibility of utilizing forest biomass in district energy systems - A review. Renew. Sust. Energ. Rev. 33, 117-127, (2014). 11 Dutta, S., De, S., Saha, B. & Alam, M. I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catalysis Science & Technology 2, 2025-2036, (2012). 12 Ruppert, A. M., Weinberg, K. & Palkovits, R. Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals. Angewandte Chemie-International Edition 51, 2564-2601, (2012). 13 Achyuthan, K. E. et al. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin's Barrier to Cost-Effective Lignocellulosic Biofuels. Molecules 15, 8641-8688, (2010). 14 Key, R. E. & Bozell, J. J. Progress toward Lignin Valorization via Selective Catalytic Technologies and the Tailoring of Biosynthetic Pathways. Acs Sustainable Chemistry & Engineering 4, 5123-5135, (2016). 15 Li, C. Z., Zhao, X. C., Wang, A. Q., Huber, G. W. & Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 115, 11559-11624, (2015). 16 Behling, R., Valange, S. & Chatel, G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 18, 1839-1854, (2016). 17 De, S., Dutta, S. & Saha, B. Critical design of heterogeneous catalysts for biomass valorization: current thrust and emerging prospects. Catalysis Science & Technology 6, 7364-7385 (2016). 18 Stewart, D. Lignin as a base material for materials applications: Chemistry, application and economics. Ind. Crop. Prod. 27, 202-207, (2008). 19 Calvo-Flores, F. G. & Dobado, J. A. Lignin as Renewable Raw Material. ChemSusChem 3, 1227-1235, (2010). 20 Pandey, M. P. & Kim, C. S. Lignin depolymerization and conversion: a review of thermochemical methods. Chemical Engineering & Technology 34, 29-41 (2011). 21 Deepa, A. K. & Dhepe, P. L. Lignin Depolymerization into Aromatic Monomers over Solid Acid Catalysts. ACS Catal. 5, 365-379, (2015). 22 Das, L., Kolar, P. & Sharma-Shivappa, R. Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels 3, 155-166 (2012). 23 Ma, R., Guo, M. & Zhang, X. Recent advances in oxidative valorization of lignin. Catalysis Today 302, 50-60 (2018). 24 Cheng, C. et al. Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: A review. Polymers 9, 240 (2017). 25 Colmenares, J. C., Varma, R. S. & Nair, V. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev. 46, 6675-6686 (2017). 26 Li, S.-H., Liu, S., Colmenares, J. C. & Xu, Y.-J. A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem. 18, 594-607 (2016). 27 Ensing, B., Buda, F. & Baerends, E. J. Fenton-like chemistry in water: Oxidation catalysis by Fe(III) and H2O2. J. Phys. Chem. A 107, 5722-5731, (2003). 28 Kuang, Y., Wang, Q. P., Chen, Z. L., Megharaj, M. & Naidu, R. Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J. Colloid Interface Sci. 410, 67-73, (2013). 29 Nogueira, A. E., Castro, I. A., Giroto, A. S. & Magriotis, Z. M. Heterogeneous Fenton-like catalytic removal of methylene blue dye in water using magnetic nanocomposite (MCM-41/magnetite). Journal of Catalysts 2014 (2014). 30 Kakavandi, B. & Babaei, A. A. Heterogeneous Fenton-like oxidation of petrochemical wastewater using a magnetically separable catalyst (MNPs@ C): process optimization, reaction kinetics and degradation mechanisms. RSC Advances 6, 84999-85011 (2016). 31 Xu, H.-Y. et al. Heterogeneous Fenton-like discoloration of methyl orange using Fe 3 O 4/MWCNTs as catalyst: process optimization by response surface methodology. Frontiers of Materials Science 10, 45-55 (2016). 32 Do, M. H. et al. Activated carbon/Fe3O4 nanoparticle composite: Fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere 85, 1269-1276 (2011). 33 Deng, J. et al. FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Applied Catalysis B: Environmental 84, 468-473 (2008). 34 Luo, W. et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental science & technology 44, 1786-1791 (2010). 35 Rusevova, K. et al. LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chemical Engineering Journal 239, 322-331, (2014). 36 Zhang, Z., Guo, Y., Wang, Q., Louis, B. & Qi, F. Heterogeneous Fenton-like reactions with a novel hybrid Cu–Mn–O catalyst for the degradation of benzophenone-3 in aqueous media. Comptes Rendus Chimie 20, 87-95 (2017). 37 Ahmed, Y., Yaakob, Z. & Akhtar, P. Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catalysis Science & Technology 6, 1222-1232 (2016). 38 Qian, X. et al. Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environmental Science & Technology 51, 3993-4000 (2017). 39 Lee, K. T. & Lu, S. Y. A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe2O4 nanocrystals from a carrier solvent assisted interfacial reaction process. Journal of Materials Chemistry A 3, 12259-12267, (2015). 40 Liu, S.-Q. et al. Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation. Carbon 64, 197-206 (2013). 41 Banerjee, S., Benjwal, P., Singh, M. & Kar, K. K. Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the removal of methylene blue. Appl. Surf. Sci. 439, 560-568 (2018). 42 Kamwilaisak, K. & Wright, P. C. Investigating laccase and titanium dioxide for lignin degradation. Energy & Fuels 26, 2400-2406 (2012). 43 Zhang, J., Deng, H. & Lin, L. Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1-xCuxO3 (x= 0, 0.1, 0.2). Molecules 14, 2747-2757 (2009). 44 Deng, W. P. et al. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem. 17, 5009-5018, (2015). 45 Hou, T. et al. Yin and Yang Dual Characters of CuO x Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catal. 7, 3850-3859 (2017). 46 Blandez, J. F., Navalón, S., Alvaro, M. & Garcia, H. Graphenes as Metal‐free Catalysts for the Oxidative Depolymerization of Lignin Models. ChemCatChem 7, 3020-3026 (2015). 47 Lee, K. T., Chuah, X. F., Cheng, Y. C. & Lu, S. Y. Pt coupled ZnFe2O4 nanocrystals as a breakthrough photocatalyst for Fenton-like processes - photodegradation treatments from hours to seconds. Journal of Materials Chemistry A 3, 18578-18585, (2015). 48 Lee, K.-T., Wai, K.-P. & Lu, S.-Y. CuO nanorods from carrier solvent assisted interfacial reaction processes: An unexpected extraordinary Fe-free photocatalyst in sunlight assisted Fenton-like processes. Journal of the Taiwan Institute of Chemical Engineers 70, 244-251 (2017). 49 Shebanova, O. N. & Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. Journal of Solid State Chemistry 174, 424-430, (2003). 50 Akhavan, O., Meidanchi, A., Ghaderi, E. & Khoei, S. Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer. Journal of Materials Chemistry B 2, 3306-3314, (2014). 51 Raut, S. S. & Sankapal, B. R. First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction: Approach towards solid-state symmetric supercapacitor device. Electrochimica Acta 198, 203-211, (2016). 52 Silva, M. D. P. et al. The effect of cobalt substitution in crystal structure and vibrational modes of CuFe2O4 powders obtained by polymeric precursor method. J. Alloy. Compd. 584, 573-580, (2014). 53 Mohammed, K. A. et al. Infrared and structural studies of Mg1-xZnxFe2O4 ferrites. Physica B 407, 795-804, (2012). 54 Pradeep, A. & Chandrasekaran, G. FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4. Mater. Lett. 60, 371-374, (2006). 55 Amer, M. A., Meaz, T., Hashhash, A., Attalah, S. & Fakhry, F. Structural phase transformations of as-synthesized Cu-nanoferrites by annealing process. J. Alloy. Compd. 649, 712-720, (2015). 56 Kanagaraj, M., Sathishkumar, P., Selvan, G. K., Kokila, I. P. & Arumugam, S. Structural and magnetic properties of CuFe2O4 as-prepared and thermally treated spinel nanoferrites. Indian J. Pure Appl. Phys. 52, 124-130 (2014). 57 Kurian, J. & Mathew, M. J. Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. Journal of Magnetism and Magnetic Materials 451, 121-130, (2018). 58 Bogusz, K. et al. Synthesis of potential theranostic system consisting of methotrexate-immobilized (3-aminopropyl) trimethoxysilane coated α-Bi 2 O 3 nanoparticles for cancer treatment. RSC Advances 4, 24412-24419 (2014). 59 Aneja, K. S., Bohm, S., Khanna, A. S. & Bohm, H. L. M. Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 7, 17879-17888, (2015). 60 Majoul, N., Aouida, S. & Bessais, B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 331, 388-391, (2015). 61 Gupta, S., Ramamurthy, P. C. & Madras, G. Synthesis and characterization of flexible epoxy nanocomposites reinforced with amine functionalized alumina nanoparticles: a potential encapsulant for organic devices. Polymer Chemistry 2, 221-228 (2011). 62 Ossonon, B. D. & Bélanger, D. Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Advances 7, 27224-27234 (2017). 63 Xie, G. et al. A facile chemical method to produce superparamagnetic graphene oxide–Fe 3 O 4 hybrid composite and its application in the removal of dyes from aqueous solution. Journal of Materials Chemistry 22, 1033-1039 (2012). 64 Selvan, R. K. et al. Synthesis and characterization of CuFe2O4/CeO2 nanocomposites. Materials Chemistry and Physics 112, 373-380 (2008). 65 Chen, J., Liu, W., Song, Z., Wang, H. & Xie, Y. Photocatalytic Degradation of β-O-4 Lignin Model Compound by In 2 S 3 Nanoparticles Under Visible Light Irradiation. BioEnergy Research 11, 166-173 (2018). 66 Kim, S. et al. Computational study of bond dissociation enthalpies for a large range of native and modified lignins. The Journal of Physical Chemistry Letters 2, 2846-2852 (2011). 67 Younker, J. M., Beste, A. & Buchanan III, A. Computational Study of Bond Dissociation Enthalpies for Substituted β‐O‐4 Lignin Model Compounds. ChemPhysChem 12, 3556-3565 (2011). 68 Huang, J. et al. Density functional theory study on bond dissociation enthalpies for lignin dimer model compounds. Journal of Renewable and Sustainable Energy 6, 033116 (2014). 69 Friedrich, L. C., Zanta, C., Machulek, A., Silva, V. D. & Quina, F. H. Interference of inorganic ions on phenol degradation by the Fenton reaction. Scientia Agricola 69, 347-351, (2012). 70 Allen, S. E., Walvoord, R. R., Padilla-Salinas, R. & Kozlowski, M. C. Aerobic Copper-Catalyzed Organic Reactions. Chem. Rev. 113, 6234-6458, (2013). 71 Bokare, A. D. & Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275, 121-135, (2014). 72 Xiang, Q. J., Yu, J. G. & Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782-796, (2012). 73 Yang, M. Q., Zhang, N., Pagliaro, M. & Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 43, 8240-8254, (2014). 74 Zhang, N. & Xu, Y. J. The endeavour to advance graphene-semiconductor composite-based photocatalysis. Crystengcomm 18, 24-37, (2016). 75 Espinosa, J. C. et al. Graphenes as Efficient Metal-Free Fenton Catalysts. Chem.-Eur. J. 21, 11966-11971, (2015). 76 Espinosa, J. C., Navalon, S., Alvaro, M. & Garcia, H. Reduced Graphene Oxide as a Metal-Free Catalyst for the Light-Assisted Fenton-Like Reaction. Chemcatchem 8, 2642-2648, (2016). 77 Dreyer, D. R., Jia, H. P., Todd, A. D., Geng, J. X. & Bielawski, C. W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem. 9, 7292-7295, (2011). 78 Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M. & Garcia, H. Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chem.-Eur. J. 19, 7547-7554, (2013).
|