帳號:guest(18.188.146.12)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林玉韻
作者(外文):Lin, Yu-Yun
論文名稱(中文):以金屬氧化物修飾部分還原態氧化石墨烯作為光助異質芬頓觸媒應用於解聚木質素之探討
論文名稱(外文):Applications of Metal Oxide Decorated on Partially Reduced Graphene Oxide as Sunlight-Assisted Heterogeneous Fenton Catalyst in Lignin Depolymerization
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):蔡德豪
林義峯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032525
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:93
中文關鍵詞:木質素模型化合物光助異質芬頓氧化程序銅鐵氧化物部分還原態氧化石墨烯尖晶石結構
外文關鍵詞:Lignin model compoundSunlight-Assisted Heterogeneous Fenton processCopper ferritePartially Reduced Graphene OxideSpinel structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:350
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於能源的短缺,因此尋找乾淨的替代性能源成為各國科學家紛紛發展的目標。而生質能源的出現,替再生能源的發展開啟一道曙光。其中以澱粉與含糖量高的經濟作物為能量來源ㄧ直飽受批評,因此近期主要以農業廢棄物,例如:稻桿等在自然界中含量豐富的木質素纖維素為發展方向。植物體主要由纖維素、半纖維素及木質素所構成,然而由苯酚類所組成,可作為有機碳來源的木質素大多以燃燒產生熱能的方式處理,至今仍無法有效的得到利用。有鑑於此,如何有效的利用木質素使其解聚,從聚合物轉變為小分子化學品逐漸受到許多研究的重視。為了更了解木質素解聚斷鍵的機理以及找到適當的操作條件,近年來的相關研究多以小分子的木質素模型化合物(lignin model compounds)為基礎著手。
本研究藉由簡單易操作的界面合成法,藉由酒精同時可與有機溶液及水溶液相容之雙重特性,攜帶金屬離子前驅物由有機相往上通過界面,與氫氧化鈉發生反應,製備出尖晶石結構的錫鐵、鋅鐵及銅鐵氧化物的奈米粒子,相對於水熱法,具有簡單、可在室溫下操作且不需外加能量的優點。
在模擬太陽光的照射下,以雙氧水為氧化劑,木質素β-O-4模型化合物為反應物的光助異質芬頓法催化氧化斷鍵,產生具有苯環結構的產物:癒創木酚及2-氧甲基-4丙基-苯酚,表示觸媒成功催化斷裂β-O-4醚鍵。其中又以含銅鐵氧化物的催化效果最好,表示銅元素對於雙氧水產生自由基與氧氣具有正向的幫助,因此進而催化氧化木質素β-O-4模型化合物鍵結的斷裂。
而還原態的氧化石墨烯因為其特殊的結構與其上的含氧官能基,與木質素β-O-4模型化合物之間因π-π stacking及氫鍵的作用,更有利於反應的進行。此外,對於光電子傳輸效率的提升借以降低電子電洞再結合速度,亦有利於後續催化效能的提升。最後,還可解決奈米級的觸媒容易流失,不易回收再利用的窘境。綜合上述特點,將銅鐵氧化物搭載於部分還原態的氧化石墨烯上,討論時間對於消耗率及產率的影響。
以銅鐵氧化物修飾所得之複合材料為觸媒時,消耗率達100%所需要的時間可以大幅縮短,帶苯環結構產物的產量相較於單純部分還原態的氧化石墨烯少許多,推測由於自由基數量過多導致過度氧化產生開環酸類產品,甚至礦化(mineralization)所造成。透過調整不同比例,在最適化的條件下,當銅鐵氧化物搭載在150℃部分還原態氧化石墨烯的比例為1:3時,於60分鐘內木質素β-O-4模型化合物消耗率達100%,癒創木酚及2-氧甲基-4丙基-苯酚的產率分別為72.6% 與52.5%。
相較於以往的研究,催化氧化主要都是以氧氣為氧化劑,在高溫高壓嚴苛的環境下催化木質素解聚,促使斷鏈鍵結。而光助異質芬頓氧化法,容易發生過度氧化,無法使的大部分的產物停留在含有苯環結構的階段。此研究透過觸媒材料的設計、調控與搭配,在常溫常壓的條件下,以光線為能量來源,雙氧水為氧化劑,針對木質素β-O-4模型化合物氧化斷裂,產生具有經濟價值的苯環小分子化學品,替木質素的再利用提供另一種有善環境選擇。
With the worsening depletion of fossil resources, exploring renewable energy sources has become an urgent issue of the world. One such renewable energy source is biomass, which is expected to be able to make a significant contribution to alternative clean energy. Unlike corn and starch, plant-derived lignocellulose biomass is inedible, hence, application of which will not bring any negative impact to the food supply chain. Therefore, it has long been recognized as a promising alternative to fossil-based fuels and chemicals. There are three major components in lignocellulosic materials: hemicellulose, cellulose, and lignin. Among them, hemicellulose and cellulose have been studied extensively and intensively, and widely applied in the production of biofuels and chemicals in the industry. In comparison with hemicellulose and cellulose, lignin, the most abundant biomass component composed of aromatic monomers in nature, however, is under-utilized. Hence, if lignin can be efficiently depolymerized, it can decrease the energy demand for chemical production. In order to further understand the mechanism of depolymerization of lignin, lignin model compounds have received great research attention in recent years.
This study develops a simple method, one-step carrier solvent assisted interfacial reaction process, to synthesize binary metal oxide nanocrystals as sunlight-assisted heterogeneous Fenton catalysts for lignin depolymerization. The lignin β–O-4 model compound is converted, with the aid of an oxidant, hydrogen peroxide, under illumination of simulated sunlight, to yield guaiacol and 2-methoxy-4-propylphenol as the main products. Among three iron based spinel oxides developed, CuFe2O4 nanoparticles exhibited the highest catalytic activity, indicating that copper is capable in assisting decomposition of hydrogen peroxide for free radical production to cleave the β–O-4 ether bond of the model compound for generation of guaiacol and 2-methoxy-4-propylphenol.
CuFe2O4 nanoparticles were further decorated on partially reduced graphene oxide to investigate the generation of guaiacol and 2-methoxy-4-propylphenol from the lignin β–O-4 model compound. Although the time needed to achieve 100% model compound consumption is substantially shorten, the yield of the aromatic products decreases in contrary to the case of taking partially reduced graphene oxides as the photocatalyst. This is mainly because of the production of an excessive amount of free radicals by the CuFe2O4 nanoparticles, leading to ring-opening reactions.
To overcome the difficulty, the proportion of CuFe2O4 to the partially reduced graphene oxide is adjusted. When the ratio of CuFe2O4 vs. partially reduced graphene oxide is 1:3, the 100% model compound consumption can be achieved within 60 minutes, whereas the yields of guaiacol and 2-methoxy-4-propylphenol reach high levels of 72.6 and 52.6%, respectively.
Traditionally, oxygen is used as the oxidant under high pressures and high temperatures to catalyze the breaking of the interlinkage, β–O-4 ether bonds, to produce value-added aromatic chemicals. As for traditional sunlight-assisted heterogeneous Fenton oxidation processes, because of the issue of over-oxidation, ring-opening products, instead of valuable aromatic chemicals, are obtained. In this thesis, through proper catalytic design and regulation, a simple process, with sunlight as the energy source and hydrogen peroxide as the oxidant, to catalyze the cleavage of the ether bonds under ambient conditions for aromatic compound production is developed to provide a promising energy-efficient alternative route for biomass valorization.
摘要 I
Abstract III
致謝 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2木質素 2
1.3 木質素解聚 4
1.3.1催化熱裂解 4
1.3.2催化水解 4
1.3.3催化氫解 4
1.3.4催化氧化 5
1.4 芬頓氧化法(Fenton process) 6
2.1異質芬頓氧化觸媒之合成 9
2.1.1 以鐵基之催化劑 9
2.1.2添加不同元素於鐵基之催化劑 13
2.1.3非鐵基之催化劑 16
2.2 光助異質芬頓氧化觸媒之合成 19
2.3以氧化石墨烯做為光助異質芬頓氧化觸媒之合成 28
2.4 以氧氣作為氧化劑解聚木質素 37
2.4.1以金屬氧化物作為觸媒應用於木質素解聚 37
2.4.2氧化石墨烯及其還原態為觸媒應用於木質素解聚 43
2.5研究動機 45
第三章 實驗方法與儀器原理 47
3.1實驗藥品 47
3.2實驗器材 50
3.3分析儀器 51
3.4實驗步驟 55
3.4.1以界面反應法製備觸媒金屬氧化物 55
3.4.2製備氧化石墨烯 55
3.4.3 製備觸媒氧化物及部分還原態氧化石墨烯之複合材料 56
3.4.4 利用不同觸媒催化氧化木質素解聚 56
第四章 結果與討論 57
4.1 觸媒材料鑑定分析 57
4.1.1使用界面反應法製備不同金屬氧化物觸媒結構之XRD繞射圖譜 57
4.1.2不同金屬氧化物觸媒之Raman光譜分析 60
4.1.3金屬氧化物搭載在部分還原態的氧化石墨烯之複合材料之FT-IR分析 61
4.1.4不同觸媒結構之形貌分析 63
4.1.5不同觸媒結構之UV-Vis光譜分析 65
4.2探討不同反應條件對於木質素β-O-4模型化合物解聚產生具苯環產物之效果 66
4.2.1探討不同金屬氧化物觸媒對於木質素β-O-4模型化合物解聚之影響 66
4.2.2探討不同溫度下部分還原態氧化石墨烯對於木質素β-O-4模型化合物解聚之影響 70
4.2.3 探討不同比例之銅鐵氧化物與150C部分還原氧化石墨烯與時間之關係對於木質素β-O-4模型化合物解聚之影響 73
4.2.4 探討木質素β-O-4模型化合物與銅鐵氧化物搭載在150℃部分還原氧化石墨烯催化劑上之間的比例對於解聚之影響 84
第五章 結論 86
第六章 參考文獻 88

1 Besson, M., Gallezot, P. & Pinel, C. Conversion of Biomass into Chemicals over Metal Catalysts. Chem. Rev. 114, 1827-1870, (2014).
2 Peng, B. X., Yao, Y., Zhao, C. & Lercher, J. A. Towards Quantitative Conversion of Microalgae Oil to Diesel-Range Alkanes with Bifunctional Catalysts. Angewandte Chemie-International Edition 51, 2072-2075, (2012).
3 Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559-U182, (2010).
4 Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41, 1538-1558, (2012).
5 Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 106, 4044-4098, (2006).
6 Melero, J. A., Iglesias, J. & Garcia, A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy & Environmental Science 5, 7393-7420, (2012).
7 Tuck, C. O., Perez, E., Horvath, I. T., Sheldon, R. A. & Poliakoff, M. Valorization of Biomass: Deriving More Value from Waste. Science 337, 695-699, (2012).
8 Amidon, T. E. & Liu, S. Water-based woody biorefinery. Biotechnol. Adv. 27, 542-550, (2009).
9 Carpenter, D., Westover, T. L., Czernik, S. & Jablonski, W. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 16, 384-406, (2014).
10 Akhtari, S., Sowlati, T. & Day, K. Economic feasibility of utilizing forest biomass in district energy systems - A review. Renew. Sust. Energ. Rev. 33, 117-127, (2014).
11 Dutta, S., De, S., Saha, B. & Alam, M. I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catalysis Science & Technology 2, 2025-2036, (2012).
12 Ruppert, A. M., Weinberg, K. & Palkovits, R. Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals. Angewandte Chemie-International Edition 51, 2564-2601, (2012).
13 Achyuthan, K. E. et al. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin's Barrier to Cost-Effective Lignocellulosic Biofuels. Molecules 15, 8641-8688, (2010).
14 Key, R. E. & Bozell, J. J. Progress toward Lignin Valorization via Selective Catalytic Technologies and the Tailoring of Biosynthetic Pathways. Acs Sustainable Chemistry & Engineering 4, 5123-5135, (2016).
15 Li, C. Z., Zhao, X. C., Wang, A. Q., Huber, G. W. & Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 115, 11559-11624, (2015).
16 Behling, R., Valange, S. & Chatel, G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 18, 1839-1854, (2016).
17 De, S., Dutta, S. & Saha, B. Critical design of heterogeneous catalysts for biomass valorization: current thrust and emerging prospects. Catalysis Science & Technology 6, 7364-7385 (2016).
18 Stewart, D. Lignin as a base material for materials applications: Chemistry, application and economics. Ind. Crop. Prod. 27, 202-207, (2008).
19 Calvo-Flores, F. G. & Dobado, J. A. Lignin as Renewable Raw Material. ChemSusChem 3, 1227-1235, (2010).
20 Pandey, M. P. & Kim, C. S. Lignin depolymerization and conversion: a review of thermochemical methods. Chemical Engineering & Technology 34, 29-41 (2011).
21 Deepa, A. K. & Dhepe, P. L. Lignin Depolymerization into Aromatic Monomers over Solid Acid Catalysts. ACS Catal. 5, 365-379, (2015).
22 Das, L., Kolar, P. & Sharma-Shivappa, R. Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels 3, 155-166 (2012).
23 Ma, R., Guo, M. & Zhang, X. Recent advances in oxidative valorization of lignin. Catalysis Today 302, 50-60 (2018).
24 Cheng, C. et al. Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: A review. Polymers 9, 240 (2017).
25 Colmenares, J. C., Varma, R. S. & Nair, V. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev. 46, 6675-6686 (2017).
26 Li, S.-H., Liu, S., Colmenares, J. C. & Xu, Y.-J. A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem. 18, 594-607 (2016).
27 Ensing, B., Buda, F. & Baerends, E. J. Fenton-like chemistry in water: Oxidation catalysis by Fe(III) and H2O2. J. Phys. Chem. A 107, 5722-5731, (2003).
28 Kuang, Y., Wang, Q. P., Chen, Z. L., Megharaj, M. & Naidu, R. Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J. Colloid Interface Sci. 410, 67-73, (2013).
29 Nogueira, A. E., Castro, I. A., Giroto, A. S. & Magriotis, Z. M. Heterogeneous Fenton-like catalytic removal of methylene blue dye in water using magnetic nanocomposite (MCM-41/magnetite). Journal of Catalysts 2014 (2014).
30 Kakavandi, B. & Babaei, A. A. Heterogeneous Fenton-like oxidation of petrochemical wastewater using a magnetically separable catalyst (MNPs@ C): process optimization, reaction kinetics and degradation mechanisms. RSC Advances 6, 84999-85011 (2016).
31 Xu, H.-Y. et al. Heterogeneous Fenton-like discoloration of methyl orange using Fe 3 O 4/MWCNTs as catalyst: process optimization by response surface methodology. Frontiers of Materials Science 10, 45-55 (2016).
32 Do, M. H. et al. Activated carbon/Fe3O4 nanoparticle composite: Fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere 85, 1269-1276 (2011).
33 Deng, J. et al. FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Applied Catalysis B: Environmental 84, 468-473 (2008).
34 Luo, W. et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental science & technology 44, 1786-1791 (2010).
35 Rusevova, K. et al. LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chemical Engineering Journal 239, 322-331, (2014).
36 Zhang, Z., Guo, Y., Wang, Q., Louis, B. & Qi, F. Heterogeneous Fenton-like reactions with a novel hybrid Cu–Mn–O catalyst for the degradation of benzophenone-3 in aqueous media. Comptes Rendus Chimie 20, 87-95 (2017).
37 Ahmed, Y., Yaakob, Z. & Akhtar, P. Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catalysis Science & Technology 6, 1222-1232 (2016).
38 Qian, X. et al. Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environmental Science & Technology 51, 3993-4000 (2017).
39 Lee, K. T. & Lu, S. Y. A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe2O4 nanocrystals from a carrier solvent assisted interfacial reaction process. Journal of Materials Chemistry A 3, 12259-12267, (2015).
40 Liu, S.-Q. et al. Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation. Carbon 64, 197-206 (2013).
41 Banerjee, S., Benjwal, P., Singh, M. & Kar, K. K. Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the removal of methylene blue. Appl. Surf. Sci. 439, 560-568 (2018).
42 Kamwilaisak, K. & Wright, P. C. Investigating laccase and titanium dioxide for lignin degradation. Energy & Fuels 26, 2400-2406 (2012).
43 Zhang, J., Deng, H. & Lin, L. Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1-xCuxO3 (x= 0, 0.1, 0.2). Molecules 14, 2747-2757 (2009).
44 Deng, W. P. et al. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem. 17, 5009-5018, (2015).
45 Hou, T. et al. Yin and Yang Dual Characters of CuO x Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catal. 7, 3850-3859 (2017).
46 Blandez, J. F., Navalón, S., Alvaro, M. & Garcia, H. Graphenes as Metal‐free Catalysts for the Oxidative Depolymerization of Lignin Models. ChemCatChem 7, 3020-3026 (2015).
47 Lee, K. T., Chuah, X. F., Cheng, Y. C. & Lu, S. Y. Pt coupled ZnFe2O4 nanocrystals as a breakthrough photocatalyst for Fenton-like processes - photodegradation treatments from hours to seconds. Journal of Materials Chemistry A 3, 18578-18585, (2015).
48 Lee, K.-T., Wai, K.-P. & Lu, S.-Y. CuO nanorods from carrier solvent assisted interfacial reaction processes: An unexpected extraordinary Fe-free photocatalyst in sunlight assisted Fenton-like processes. Journal of the Taiwan Institute of Chemical Engineers 70, 244-251 (2017).
49 Shebanova, O. N. & Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. Journal of Solid State Chemistry 174, 424-430, (2003).
50 Akhavan, O., Meidanchi, A., Ghaderi, E. & Khoei, S. Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer. Journal of Materials Chemistry B 2, 3306-3314, (2014).
51 Raut, S. S. & Sankapal, B. R. First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction: Approach towards solid-state symmetric supercapacitor device. Electrochimica Acta 198, 203-211, (2016).
52 Silva, M. D. P. et al. The effect of cobalt substitution in crystal structure and vibrational modes of CuFe2O4 powders obtained by polymeric precursor method. J. Alloy. Compd. 584, 573-580, (2014).
53 Mohammed, K. A. et al. Infrared and structural studies of Mg1-xZnxFe2O4 ferrites. Physica B 407, 795-804, (2012).
54 Pradeep, A. & Chandrasekaran, G. FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4. Mater. Lett. 60, 371-374, (2006).
55 Amer, M. A., Meaz, T., Hashhash, A., Attalah, S. & Fakhry, F. Structural phase transformations of as-synthesized Cu-nanoferrites by annealing process. J. Alloy. Compd. 649, 712-720, (2015).
56 Kanagaraj, M., Sathishkumar, P., Selvan, G. K., Kokila, I. P. & Arumugam, S. Structural and magnetic properties of CuFe2O4 as-prepared and thermally treated spinel nanoferrites. Indian J. Pure Appl. Phys. 52, 124-130 (2014).
57 Kurian, J. & Mathew, M. J. Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. Journal of Magnetism and Magnetic Materials 451, 121-130, (2018).
58 Bogusz, K. et al. Synthesis of potential theranostic system consisting of methotrexate-immobilized (3-aminopropyl) trimethoxysilane coated α-Bi 2 O 3 nanoparticles for cancer treatment. RSC Advances 4, 24412-24419 (2014).
59 Aneja, K. S., Bohm, S., Khanna, A. S. & Bohm, H. L. M. Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 7, 17879-17888, (2015).
60 Majoul, N., Aouida, S. & Bessais, B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 331, 388-391, (2015).
61 Gupta, S., Ramamurthy, P. C. & Madras, G. Synthesis and characterization of flexible epoxy nanocomposites reinforced with amine functionalized alumina nanoparticles: a potential encapsulant for organic devices. Polymer Chemistry 2, 221-228 (2011).
62 Ossonon, B. D. & Bélanger, D. Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Advances 7, 27224-27234 (2017).
63 Xie, G. et al. A facile chemical method to produce superparamagnetic graphene oxide–Fe 3 O 4 hybrid composite and its application in the removal of dyes from aqueous solution. Journal of Materials Chemistry 22, 1033-1039 (2012).
64 Selvan, R. K. et al. Synthesis and characterization of CuFe2O4/CeO2 nanocomposites. Materials Chemistry and Physics 112, 373-380 (2008).
65 Chen, J., Liu, W., Song, Z., Wang, H. & Xie, Y. Photocatalytic Degradation of β-O-4 Lignin Model Compound by In 2 S 3 Nanoparticles Under Visible Light Irradiation. BioEnergy Research 11, 166-173 (2018).
66 Kim, S. et al. Computational study of bond dissociation enthalpies for a large range of native and modified lignins. The Journal of Physical Chemistry Letters 2, 2846-2852 (2011).
67 Younker, J. M., Beste, A. & Buchanan III, A. Computational Study of Bond Dissociation Enthalpies for Substituted β‐O‐4 Lignin Model Compounds. ChemPhysChem 12, 3556-3565 (2011).
68 Huang, J. et al. Density functional theory study on bond dissociation enthalpies for lignin dimer model compounds. Journal of Renewable and Sustainable Energy 6, 033116 (2014).
69 Friedrich, L. C., Zanta, C., Machulek, A., Silva, V. D. & Quina, F. H. Interference of inorganic ions on phenol degradation by the Fenton reaction. Scientia Agricola 69, 347-351, (2012).
70 Allen, S. E., Walvoord, R. R., Padilla-Salinas, R. & Kozlowski, M. C. Aerobic Copper-Catalyzed Organic Reactions. Chem. Rev. 113, 6234-6458, (2013).
71 Bokare, A. D. & Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275, 121-135, (2014).
72 Xiang, Q. J., Yu, J. G. & Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782-796, (2012).
73 Yang, M. Q., Zhang, N., Pagliaro, M. & Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 43, 8240-8254, (2014).
74 Zhang, N. & Xu, Y. J. The endeavour to advance graphene-semiconductor composite-based photocatalysis. Crystengcomm 18, 24-37, (2016).
75 Espinosa, J. C. et al. Graphenes as Efficient Metal-Free Fenton Catalysts. Chem.-Eur. J. 21, 11966-11971, (2015).
76 Espinosa, J. C., Navalon, S., Alvaro, M. & Garcia, H. Reduced Graphene Oxide as a Metal-Free Catalyst for the Light-Assisted Fenton-Like Reaction. Chemcatchem 8, 2642-2648, (2016).
77 Dreyer, D. R., Jia, H. P., Todd, A. D., Geng, J. X. & Bielawski, C. W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem. 9, 7292-7295, (2011).
78 Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M. & Garcia, H. Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chem.-Eur. J. 19, 7547-7554, (2013).

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *