|
[1] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications, wiley New York 1980. [2] D.R. Crow, Principles and applications of electrochemistry, CRC Press1994. [3] 胡啟章,電化學原理與方法,五南圖書,2012. [4] 田福助,電化學理論與應用,8 ed.,新科技,2001. [5] B.E. Conway,電化學超級電容器-科學原理與技術應用,化工工業,2005. [6] 吳宇平、萬春榮、姜長印等,鋰離子二次電池,北京化學工業,2002. [7] 郭炳琨、徐徽、王先友等,鋰離子電池,長沙中南大學,2002. [8] 張國輝,循環伏安法置備含水釕銥氧化物於電化學電容器的應用,化學工程學系,國立中正大學,2000. [9] E. Heitz, D. Pletcher, F.C. Walsh: Industrial Electrochemistry, Chapmann and Hall, London, New York, 1990, ISBN 0‐7514‐0148x, 2. Aufl., 653 Seiten, 268 Abb., 74 Tab., Paperback, $19.95, Berichte der Bunsengesellschaft für physikalische Chemie 99(4) (1995) 693-694. [10] A.M. Couper, D. Pletcher, F.C. Walsh, Electrode materials for electrosynthesis, Chemical Reviews 90(5) (1990) 837-865. [11] D. Galizzioli, F. Tantardini, S. Trasatti, Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions, Journal of Applied Electrochemistry 5(3) (1975) 203-214. [12] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica acta 45(15) (2000) 2483-2498. [13] S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, H. Yoneda, Advanced capacitors and their application, Journal of power sources 97 (2001) 807-811. [14] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews 38(9) (2009) 2520-2531. [15] P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon–electrolyte systems, Accounts of chemical research 46(5) (2012) 1094-1103. [16] T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger, Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, Journal of The Electrochemical Society 153(12) (2006) A2171-A2180. [17] G.E. Box, W.G. Hunter, J.S. Hunter, Statistics for experimenters, 1978, 374-433. [18] D.C. Montgomery, Design and analysis of experiments, 4 ed., John Wiley & Sons2008. [19] H. Wendt, Electrocatalysis in organic electrochemistry, Electrochimica Acta 29(11) (1984) 1513-1525. [20] S. Trasatti, Physical electrochemistry of ceramic oxides, Electrochimica Acta 36(2) (1991) 225-241. [21] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews 41(2) (2012) 797-828. [22] H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte, Journal of Solid State Chemistry 144(1) (1999) 220-223. [23] J.W. Long, K.E. Swider‐Lyons, R.M. Stroud, D.R. Rolison, Design of Pore and Matter Architectures in Manganese Oxide Charge‐Storage Materials, Electrochemical and Solid-State Letters 3(10) (2000) 453-456. [24] R.N. Reddy, R.G. Reddy, Sol–gel MnO2 as an electrode material for electrochemical capacitors, Journal of Power Sources 124(1) (2003) 330-337. [25] J.K. Chang, M.T. Lee, W.T. Tsai, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, Journal of Power Sources 166(2) (2007) 590-594. [26] C.C. Hu, C.C. Wang, Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, Journal of the Electrochemical Society 150(8) (2003) A1079-A1084. [27] K.R. Prasad, N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors, Electrochemistry Communications 6(10) (2004) 1004-1008. [28] T. Shinomiya, V. Gupta, N. Miura, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochimica acta 51(21) (2006) 4412-4419. [29] K.R. Prasad, N. Miura, Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors, Journal of Power Sources 135(1) (2004) 354-360. [30] H.Y. Lee, V. Manivannan, J. Goodenough, Electrochemical capacitors with KCl electrolyte, Comptes rendus de l'Academie des sciences-Series IIC-Chemistry 2(11-13) (1999) 565-577. [31] C. Yu, L. Zhang, J. Shi, J. Zhao, J. Gao, D. Yan, A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties, Advanced Functional Materials 18(10) (2008) 1544-1554. [32] V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures, The Journal of Physical Chemistry B 109(43) (2005) 20207-20214. [33] V. Subramanian, H. Zhu, B. Wei, Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material, Journal of Power Sources 159(1) (2006) 361-364. [34] S.C. Pang, M.A. Anderson, T.W. Chapman, Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide, Journal of the Electrochemical Society 147(2) (2000) 444-450. [35] S.F. Chin, S.C. Pang, M.A. Anderson, Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, Journal of the Electrochemical Society 149(4) (2002) A379-A384. [36] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, The Journal of Physical Chemistry C 112(11) (2008) 4406-4417. [37] H.Y. Lee, S. Kim, H.Y. Lee, Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode, Electrochemical and Solid-State Letters 4(3) (2001) A19-A22. [38] S. Devaraj, N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent, Electrochemical and Solid-State Letters 8(7) (2005) A373-A377. [39] S. Devaraj, N. Munichandraiah, The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties, Journal of The Electrochemical Society 154(10) (2007) A901-A909. [40] M.S. Wu, P.C.J. Chiang, Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors, Electrochemical and solid-state letters 7(6) (2004) A123-A126. [41] J.Y. Luo, Y.Y. Xia, Effect of pore structure on the electrochemical capacitive performance of MnO2, Journal of the Electrochemical Society 154(11) (2007) A987-A992. [42] F. Tian, Y. Xie, Preparation and capacitive properties of lithium manganese oxide intercalation compound, Journal of Nanoparticle Research 17(12) (2015) 481. [43] M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.S. Kolekar, J.Y. Chang, A.V. Ghule, Comparative Study of Individual and Mixed Aqueous Electrolytes with ZnFe2O4 Nano–flakes Thin Film as an Electrode for Supercapacitor Application, ChemistrySelect 1(5) (2016) 959-966. [44] Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, The Journal of Physical Chemistry C 113(31) (2009) 14020-14027. [45] A. Jänes, J. Eskusson, L. Mattisen, E. Lust, Electrochemical behaviour of hybrid devices based on Na2SO4 and Rb2SO4 neutral aqueous electrolytes and carbon electrodes within wide cell potential region, Journal of Solid State Electrochemistry 19(3) (2015) 769-783. [46] Y. Munaiah, B.G.S. Raj, T.P. Kumar, P. Ragupathy, Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior, Journal of Materials Chemistry A 1(13) (2013) 4300-4306. [47] Y.S. Yun, S. Lee, N.R. Kim, M. Kang, C. Leal, K.Y. Park, K. Kang, H.J. Jin, High and rapid alkali cation storage in ultramicroporous carbonaceous materials, Journal of Power Sources 313 (2016) 142-151. [48] S. Wen, J.W. Lee, I.H. Yeo, J. Park, S.I. Mho, The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2, Electrochimica acta 50(2) (2004) 849-855. [49] R.N. Reddy, R.G. Reddy, Sol–gel MnO2 as an electrode material for electrochemical capacitors, Journal of Power Sources 124(1) (2003) 330-337. [50] L. Coustan, P. Lannelongue, P. Arcidiacono, F. Favier, Faradaic contributions in the supercapacitive charge storage mechanisms of manganese dioxides, Electrochimica Acta 206 (2016) 479-489. [51] J. Gu, X. Fan, X. Liu, S. Li, Z. Wang, S. Tang, D. Yuan, Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability, Chemical Engineering Journal 324 (2017) 35-43. [52] Y. Li, C. Zhang, Y. Jiang, T.-J. Wang, H. Wang, Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization, Desalination 399 (2016) 171-177. [53] C.J. Gabelich, T.D. Tran, I.M. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environmental science & technology 36(13) (2002) 3010-3019. [54] C.H. Hou, C.Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination 314 (2013) 124-129. [55] R. Zhao, M. Van Soestbergen, H. Rijnaarts, A. Van der Wal, M. Bazant, P. Biesheuvel, Time-dependent ion selectivity in capacitive charging of porous electrodes, Journal of colloid and interface science 384(1) (2012) 38-44. [56] S.B. Ma, Y.H. Lee, K.Y. Ahn, C.M. Kim, K.H. Oh, K.B. Kim, Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution, Journal of The Electrochemical Society 153(1) (2006) C27-C32. [57] J. Zhang, X. Zhao, A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons, Carbon 52 (2013) 1-9. [58] Z. Zhou, N. Cai, Y. Zhou, Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon, Materials Chemistry and Physics 94(2) (2005) 371-375. [59] R. Liu, S.B. Lee, MnO2/poly (3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, Journal of the American Chemical Society 130(10) (2008) 2942-2943. [60] P.Y. Chuang, C.C. Hu, The electrochemical characteristics of binary manganese–cobalt oxides prepared by anodic deposition, Materials chemistry and physics 92(1) (2005) 138-145. [61] K.C. Liu, M.A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, Journal of the Electrochemical Society 143(1) (1996) 124-130. [62] V. Srinivasan, J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors, Journal of the Electrochemical Society 144(8) (1997) L210-L213. [63] Y.S. Chen, C.C. Hu, Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition, Electrochemical and Solid-State Letters 6(10) (2003) A210-A213. [64] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature materials 7(11) (2008) 845-854. [65] Q. Feng, H. Kanoh, K. Ooi, Manganese oxide porous crystals, J. Mater. Chem. 9(2) (1999) 319-333. [66] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341(6153) (2013) 1502-1505. [67] S.L. Brock, N. Duan, Z.R. Tian, O. Giraldo, H. Zhou, S.L. Suib, A review of porous manganese oxide materials, Chemistry of Materials 10(10) (1998) 2619-2628. [68] K. Kuratani, K. Tatsumi, N. Kuriyama, Manganese oxide nanorod with 2× 4 tunnel structure: synthesis and electrochemical properties, Crystal growth & design 7(8) (2007) 1375-1377. [69] L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse, Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, The Journal of Physical Chemistry C 112(18) (2008) 7270-7277. [70] Q. Qu, Y. Shi, S. Tian, Y. Chen, Y. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, Journal of Power Sources 194(2) (2009) 1222-1225. [71] J. Whitacre, A. Tevar, S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device, Electrochemistry Communications 12(3) (2010) 463-466. [72] Y.G. Wang, Y.Y. Xia, A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system, Electrochemistry Communications 7(11) (2005) 1138-1142. [73] Q. Qu, L. Li, S. Tian, W. Guo, Y. Wu, R. Holze, A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O, Journal of Power Sources 195(9) (2010) 2789-2794. [74] T.M. Ou, C.T. Hsu, C.C. Hu, Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application, Journal of The Electrochemical Society 162(5) (2015) A5124-A5132. [75] A. Adomkevicius, L. Cabo-Fernandez, T.H. Wu, T.M. Ou, M.G. Chen, Y. Andreev, C.C. Hu, L.J. Hardwick, Na0.35MnO2 as an ionic conductor with randomly distributed nano-sized layers, Journal of Materials Chemistry A 5(20) (2017) 10021-10026. [76] M.G. Huang, A study on anions intercalation into carbon for asymmetric supercapacitors, National Tsing Hua University, 2015. [77] K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry 57(4) (1985) 603-619. [78] M. Thommes, Physical adsorption characterization of nanoporous materials, Chem. Ing. Tech 82(7) (2010) 1059-1073. [79] B.C. Lippens, J. De Boer, Studies on pore systems in catalysts: V. The t method, Journal of Catalysis 4(3) (1965) 319-323. [80] T.H. Wu, D. Hesp, V. Dhanak, C. Collins, F. Braga, L.J. Hardwick, C.C. Hu, Charge storage mechanism of activated manganese oxide composites for pseudocapacitors, Journal of Materials Chemistry A 3(24) (2015) 12786-12795. [81] T. Gao, H. Fjellvåg, P. Norby, A comparison study on Raman scattering properties of α-and β-MnO2, Analytica chimica acta 648(2) (2009) 235-239. [82] J. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization, Electrochimica Acta 47(15) (2002) 2381-2386. [83] 高濂、鄭珊、張青紅,奈米光觸媒,初版ed.,五南圖書,2004. [84] T.M. Ou, Na-intercalation manganese oxide for the supercapacitor application, National Tsing Hua University, 2014. [85] A. Adomkevicius, Controlling Transition Metal Oxides Nanostructures for Energy Storage System, University of Liverpool and National Tsing Hua University, 2017. [86] C. Wei, C. Xu, B. Li, H. Du, D. Nan, F. Kang, Anomalous effect of K ion on crystallinity and capacitance of the manganese dioxide, Journal of Power Sources 225 (2013) 226-230. [87] A. Radhiyah, M.I. Izwan, V. Baiju, C.K. Feng, I. Jamil, R. Jose, Doubling of electrochemical parameters via the pre-intercalation of Na+ in layered MnO 2 nanoflakes compared to α-MnO2 nanorods, RSC Advances 5(13) (2015) 9667-9673. [88] S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, T.H. You, Y.S. Wang, C.W. Lin, C.C.M. Ma, C.C. Hu, Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density, Journal of Power Sources 362 (2017) 258-269. [89] J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes, Carbon 48(13) (2010) 3825-3833. [90] V. Di Castro, G. Polzonetti, XPS study of MnO oxidation, Journal of Electron Spectroscopy and Related Phenomena 48(1) (1989) 117-123. [91] Z. Ye, B. Wang, G. Liu, Y. Dong, X. Cui, X. Peng, A. Zou, D. Li, Micropore-Dominant Vanadium and Iron Co-Doped MnO2 Hybrid Film Electrodes for High-Performance Supercapacitors, Journal of The Electrochemical Society 163(13) (2016) A2725-A2732. [92] H. Nesbitt, D. Banerjee, Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation, American Mineralogist 83(3-4) (1998) 305-315. [93] J.M. Cerrato, M.F. Hochella Jr, W.R. Knocke, A.M. Dietrich, T.F. Cromer, Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants, Environmental science & technology 44(15) (2010) 5881-5886. [94] C. Zhang, C. Feng, P. Zhang, Z. Guo, Z. Chen, S. Li, H. Liu, K0.25Mn2O4 nanofiber microclusters as high power cathode materials for rechargeable lithium batteries, RSC Advances 2(4) (2012) 1643-1649. [95] M. Chigane, M. Ishikawa, M. Izaki, Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism, Journal of the Electrochemical Society 148(7) (2001) D96-D101. [96] M. Chigane, M. Ishikawa, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, Journal of the electrochemical society 147(6) (2000) 2246-2251. [97] A. Dias, R.G. Sá, M.C. Spitale, M. Athayde, V.S. Ciminelli, Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic (III) oxidation, Materials Research Bulletin 43(6) (2008) 1528-1538. [98] E. Nightingale Jr, Phenomenological theory of ion solvation. Effective radii of hydrated ions, The Journal of Physical Chemistry 63(9) (1959) 1381-1387. [99] Y. Marcus, Ionic radii in aqueous solutions, Chemical Reviews 88(8) (1988) 1475-1498. [100] S. Komaba, A. Ogata, T. Tsuchikawa, Enhanced supercapacitive behaviors of birnessite, Electrochemistry communications 10(10) (2008) 1435-1437. [101] Y.H. Chu, C.C. Hu, K.H. Chang, Electrochemical quartz crystal microbalance study of amorphous MnO2 prepared by anodic deposition, Electrochimica Acta 61 (2012) 124-131. [102] Q. Qu, Y. Shi, S. Tian, Y. Chen, Y. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, Journal of Power Sources 194(2) (2009) 1222-1225. [103] M. Huang, Y. Zhang, F. Li, L. Zhang, R.S. Ruoff, Z. Wen, Q. Liu, Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors, Scientific reports 4 (2014) 3878. [104] S. Shivakumara, N. Munichandraiah, Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte, Solid State Communications 260 (2017) 34-39. [105] V. Subramanian, H. Zhu, B. Wei, Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte, Chemical Physics Letters 453(4-6) (2008) 242-249.
|