帳號:guest(3.16.47.86)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏羽
作者(外文):Chen, Po-Yu
論文名稱(中文):鹼金屬嵌入錳氧化物於非對稱超級電容器之最適化探討
論文名稱(外文):Optimization of Alkali ion-intercalated Manganese Oxide for Asymmetric Supercapacitors
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):張家欽
陳彥旭
口試委員(外文):Chang, Chia-Chin
Chen, Yan-Shi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032522
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:194
中文關鍵詞:超級電容器水相電解質陽離子摻雜二氧化錳陽離子嵌入/嵌出
外文關鍵詞:supercapacitoraqueous electrolytecation-doped manganese oxidescation intercalation/de-intercalation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要是針對不同陽離子預嵌入錳氧化物之製備,並將其應用在超級電容器上。論文結果主要分為兩部分,第一部分為鈉預嵌入錳氧化物探討特定鈉離子添加量、高溫溫度及恆溫時間下改變不同pH值造成錳氧化物的差異,再進一步以不同電解液(0.5M Li2SO4、0.5M Na2SO4、0.5M K2SO4、0.375M MgSO4和0.1M Al2(SO4)3)分析電化學上之差異。第二部分以實驗設計法探討鉀預嵌入錳氧化物於不同鉀離子添加量、pH值、高溫溫度及恆溫時間之最適化條件,再進一步以不同電解液(0.5M Na2SO4和0.5M K2SO4)分析電化學差異並與鈉嵌入錳氧化物進行比較。以下簡要地探討各章所包含的內容:
第一部分先利用水熱法於添加15 mmole Na2SO4、高溫溫度120oC及恆溫時間12小時之條件固定下改變pH值於不同電解液中進行循環伏安掃描法(CV)及計時電位分析法(CP)找出最適化條件。此部分材料分析為X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X光電子能譜儀(XPS)、感應耦合電漿質譜分析儀(ICP-MS)、拉曼散射光譜儀(Raman)及比表面積與孔徑分析儀(BET)。
綜合以上分析結果發現,當改變參數pH值為12.3時具有最佳電化學表現(0.5M Na2SO4: 1000mV/s, 194 F/g; 200A/g, 203 F/g)。原因在於其結晶性差及擁有良好的水合特性。最後,將最佳條件之鈉嵌入錳氧化物與活性碳組裝成非對稱超級電容器後得知,其在含有少許碳酸氫鈉之硫酸鈉電解液可從0 V 充電到2.4 V,且在1到20 A/g下擁有32.2到18.1 Wh/kg的能量密度和1.2到24 kW/kg之功率密度。
第二部分則是利用實驗設計於水熱(熱液)法改變不同鉀離子添加量、pH、高溫溫度及恆溫時間,並利用計時電位分析法(CP)找出最適化條件。另外,在此實驗中發現10 mmole K2SO4、pH=8、高溫溫度75oC及恆溫時間7小時之1A/g電容值高達207 F/g。經過上述一系列材料分析發現其結晶性差、結構鬆散及擁有良好的水合特性。
綜合第一部分鈉嵌入錳氧化物與第二部分鉀嵌入錳氧化物於不同電解液中之比較得知,在低掃描速率或低電流密度下,影響電容值大小的因素依序為陽離子之價態 > 陽離子之次要水合半徑、陽離子與硫酸根之靜電吸引力、電解液導電度 ≥ 陽離子主要水合半徑、離子半徑;在高掃描速率或高電流密度下,影響電容值大小的因素依序為電解液導電度、陽離子與硫酸根之靜電吸引力 > 陽離子之次要水合半徑 ≥ 陽離子之主要水合半徑、離子半徑。
This thesis investigates the preparation and characterization of alkali cation pre-intercalated manganese oxides for the asymmetric super- capacitor application. In the first part of this study, effects of the pH value in the precursor solution on the textural and electrochemical characteristics of Na-intercalated manganese oxides are investigated. The textural characteristics are examined by the X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscope (XPS), inductively coupled plasma-mass spectrometer (ICP-MS), and Raman spectroscope (Raman). The N2 adsorption/desorption isotherms are employed to obtain the specific surface area and pore size distribution. The capacitive performances of these Na-intercalated manganese oxides were evaluated in sulfate electrolytes containing various cations (Li+, Na+, K+, Mg2+, Al3+, etc.) by cyclic voltammetry (CV) and chronopotentiometry (CP). From the textural and electrochemical results, the Na-intercalated manganese oxide synthesized at pH = 12.3 shows poor crystalline and hydrous properties, leading to an excellent capacitive performance (specific capacitance obtained at 1000 mV/s and 200 A/g are respectively equal to 194 and 203 F/g in 0.5 M Na2SO4). Moreover, the specific gravimetric energy (SE) and power (SP) of this supercapacitor are respectively decrease/increased from 32.2 Wh/kg and 1.2 kW/kg to 18.1 Wh/kg and 24 kW/kg when current density varies from 2 to 20 A/g under a cell voltage of 2.4 V in 0.5 M Na2SO4 with 2mM NaHCO3.
The second part employs the design of experiments to find the key factors influencing the capacitive behavior of K-intercalated manganese oxides via changes in the potassium ion concentration and pH value in the precursor solution as well as the synthesis temperature and time. In addition, the K-intercalated manganese oxide synthesized by the hydrothermal process with the precursor solution containing 10 mM K2SO4 at pH = 8 and 75oC for 7 h shows the best capacitive performance, evaluated by CP. After the mentioned above for the series material analysis, it shows poor crystalline, loose lattice structure, and proper hydration characteristics.
From the results of the first part and second part, I know that there are some factors influencing the capacitance. At low scan rates or low current densities, the order of factors with respect to decreasing the influence is: the valence state of cation > the secondary hydration radius of cations, the electrostatic attraction of cations, sulfate radicals, and the conductivity of electrolytes ≥ the major hydration radius of cations, and the cation radius. On the other hand, at high scan rates or high current densities, the order is: the conductivity of electrolytes, the electrostatic attraction of cations and sulfate radicals > the secondary hydration radius of cations ≥ the main hydration radius and ionic radius of cations.
致謝
摘要
Abstract
目錄
第一章 緒論..................................................... 1
1.1 電化學原理.................................................. 1
1.1.1 電化學反應系統............................................ 1
1.1.2 三電極系統介紹............................................ 2
1.1.3 影響電化學系統之因素....................................... 4
1.2 電化學電容器................................................ 7
1.2.1 電化學電容器之分類......................................... 9
1.2.1.1 電雙層電容器:工作機制及相關模型........................... 9
1.2.1.2 擬電容儲能的基本原理..................................... 14
1.2.1.3 混合式非對稱電容器....................................... 15
1.2.2 電化學電容器之量測......................................... 16
1.3 實驗設計.................................................... 20
1.3.1 前言..................................................... 20
1.3.2 部分因素設計法............................................ 21
1.3.3 應答曲面設計.............................................. 25
1.3.4 缺適度的檢驗.............................................. 28
1.4 文獻回顧.................................................... 31
1.4.1 金屬氧化物電極種類以及製備方法.............................. 31
1.4.2 錳氧化物於超級電容器的應用................................. 34
1.4.2.1 錳氧化物電荷儲存機制..................................... 34
1.4.2.2 錳氧化物電容之影響因素................................... 36
1.5 研究動機.................................................... 46
第二章 實驗方法與步驟............................................ 47
2.1 實驗藥品與儀器.............................................. 47
2.1.1 實驗藥品.................................................. 47
2.1.2 實驗儀器.................................................. 48
2.2 實驗方法.................................................... 49
2.2.1 錳氧化物的製備............................................ 49
2.2.2 石墨基材的製備與前處理..................................... 49
2.2.3 電極的製備................................................ 50
2.3 電化學分析實驗.............................................. 50
2.3.1 循環伏安掃描(Cyclic Voltammetry, CV)...................... 53
2.3.2 計時電位分析法(Chronopotentiometry, CP)................... 53
2.4 材料分析儀器................................................ 55
2.4.1 X光繞射分析(X-ray Diffraction Analysis, XRD).............. 55
2.4.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)....... 56
2.4.3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)... 57
2.4.4 X 光電子能譜儀(X-ray Photoelectron Spectroscope, XPS)..... 58
2.4.5 比表面積與孔徑分析儀(Surface area and porosity analyzer)[76] ................................................................59
2.4.6 感應耦合電漿質譜分析儀(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS).......................................... 64
2.4.7 拉曼散射光譜儀(Raman Spectroscope)........................ 65
第三章 利用水熱(熱液)法調整鈉錳氧化物之合成參數於不同電解液之電化學影響 ................................................................66
3.1 前言....................................................... 66
3.2 改變Na2SO4量、pH、反應溫度及時間對鈉含量的影響................ 67
3.2.1 pH改變對鈉預嵌入錳氧化物之電化學影響........................ 70
3.2.2鈉錳氧化物的比較與溫度因素影響............................... 77
3.2.3 材料分析.................................................. 79
3.2.3.1 錳氧化物結晶結構分析..................................... 79
3.2.3.2 錳氧化物表面形態分析..................................... 82
3.2.3.3 錳氧化物之化合狀態與化學組成.............................. 92
3.2.3.4 錳氧化物之比表面積與孔徑分布...................... 104
3.3 不同電解液對不同鈉錳氧化物之影響...................... 107
3.3.1 電解液之重要因素.................................. 110
3.4 鈉錳氧化物及電解液之最佳化探討........................ 115
3.5 非對稱超級電容器之組裝............................... 119
3.5.1 硫酸鈉電解液下之非對稱超級電容.................... 119
3.5.1.1 非對稱電容器電量匹配............................. 119
3.5.1.2 非對稱電容器電化學表現........................... 122
3.5.1.3非對稱電容器於添加2mM碳酸氫鈉之硫酸鈉電解液電化學表現 125
3.5.2 硫酸鎂電解液下之非對稱超級電容.................... 129
3.5.2.1非對稱電容器2.4V電量匹配及電化學特性............... 129
3.5.2.2非對稱電容器2.0V電量匹配.......................... 134
3.5.2.3 非對稱電容器2.0V電化學表現....................... 135
3.5.1.3非對稱電容器於添加2mM碳酸氫鈉之硫酸鈉電解液2.0V電化學表現 ........................................................137
3.6 結論............................................... 143
第四章 以24全因素實驗設計法探討鉀嵌入二氧化錳之電化學性質... 146
4.1 前言............................................... 146
4.2 實驗設計法之參數設定................................. 146
4.3 24全因素實驗設計法.................................. 148
4.4 變異數分析(Analysis Of Variation, ANOVA)........... 150
4.5 陡升/陡降途徑(Steepest Ascent/Descent)之電容大小控制. 156
4.6 中心組合設計(Central Composite Design).............. 158
4.7材料分析............................................. 161
4.7.1 鉀錳氧化物結晶結構分析............................. 161
4.7.2 鉀錳氧化物元素之定性及定量分析...................... 162
4.7.3 鉀錳氧化物之化合狀態與化學組成...................... 164
4.7.4 鉀錳氧化物表面型態分析............................. 170
4.7.5 鉀錳氧化物之比表面積與孔徑分布...................... 173
4.8 不同電解液對鉀錳氧化物之影響.......................... 175
4.9 結論............................................... 179
第五章 總結與未來展望.................................... 181
5.1 總結............................................... 181
5.2 未來展望............................................ 184
參考文獻................................................ 185
[1] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications, wiley New York 1980.
[2] D.R. Crow, Principles and applications of electrochemistry, CRC Press1994.
[3] 胡啟章,電化學原理與方法,五南圖書,2012.
[4] 田福助,電化學理論與應用,8 ed.,新科技,2001.
[5] B.E. Conway,電化學超級電容器-科學原理與技術應用,化工工業,2005.
[6] 吳宇平、萬春榮、姜長印等,鋰離子二次電池,北京化學工業,2002.
[7] 郭炳琨、徐徽、王先友等,鋰離子電池,長沙中南大學,2002.
[8] 張國輝,循環伏安法置備含水釕銥氧化物於電化學電容器的應用,化學工程學系,國立中正大學,2000.
[9] E. Heitz, D. Pletcher, F.C. Walsh: Industrial Electrochemistry, Chapmann and Hall, London, New York, 1990, ISBN 0‐7514‐0148x, 2. Aufl., 653 Seiten, 268 Abb., 74 Tab., Paperback, $19.95, Berichte der Bunsengesellschaft für physikalische Chemie 99(4) (1995) 693-694.
[10] A.M. Couper, D. Pletcher, F.C. Walsh, Electrode materials for electrosynthesis, Chemical Reviews 90(5) (1990) 837-865.
[11] D. Galizzioli, F. Tantardini, S. Trasatti, Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions, Journal of Applied Electrochemistry 5(3) (1975) 203-214.
[12] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica acta 45(15) (2000) 2483-2498.
[13] S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, H. Yoneda, Advanced capacitors and their application, Journal of power sources 97 (2001) 807-811.
[14] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews 38(9) (2009) 2520-2531.
[15] P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon–electrolyte systems, Accounts of chemical research 46(5) (2012) 1094-1103.
[16] T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger, Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, Journal of The Electrochemical Society 153(12) (2006) A2171-A2180.
[17] G.E. Box, W.G. Hunter, J.S. Hunter, Statistics for experimenters, 1978, 374-433.
[18] D.C. Montgomery, Design and analysis of experiments, 4 ed., John Wiley & Sons2008.
[19] H. Wendt, Electrocatalysis in organic electrochemistry, Electrochimica Acta 29(11) (1984) 1513-1525.
[20] S. Trasatti, Physical electrochemistry of ceramic oxides, Electrochimica Acta 36(2) (1991) 225-241.
[21] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews 41(2) (2012) 797-828.
[22] H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte, Journal of Solid State Chemistry 144(1) (1999) 220-223.
[23] J.W. Long, K.E. Swider‐Lyons, R.M. Stroud, D.R. Rolison, Design of Pore and Matter Architectures in Manganese Oxide Charge‐Storage Materials, Electrochemical and Solid-State Letters 3(10) (2000) 453-456.
[24] R.N. Reddy, R.G. Reddy, Sol–gel MnO2 as an electrode material for electrochemical capacitors, Journal of Power Sources 124(1) (2003) 330-337.
[25] J.K. Chang, M.T. Lee, W.T. Tsai, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, Journal of Power Sources 166(2) (2007) 590-594.
[26] C.C. Hu, C.C. Wang, Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, Journal of the Electrochemical Society 150(8) (2003) A1079-A1084.
[27] K.R. Prasad, N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors, Electrochemistry Communications 6(10) (2004) 1004-1008.
[28] T. Shinomiya, V. Gupta, N. Miura, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochimica acta 51(21) (2006) 4412-4419.
[29] K.R. Prasad, N. Miura, Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors, Journal of Power Sources 135(1) (2004) 354-360.
[30] H.Y. Lee, V. Manivannan, J. Goodenough, Electrochemical capacitors with KCl electrolyte, Comptes rendus de l'Academie des sciences-Series IIC-Chemistry 2(11-13) (1999) 565-577.
[31] C. Yu, L. Zhang, J. Shi, J. Zhao, J. Gao, D. Yan, A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties, Advanced Functional Materials 18(10) (2008) 1544-1554.
[32] V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures, The Journal of Physical Chemistry B 109(43) (2005) 20207-20214.
[33] V. Subramanian, H. Zhu, B. Wei, Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material, Journal of Power Sources 159(1) (2006) 361-364.
[34] S.C. Pang, M.A. Anderson, T.W. Chapman, Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide, Journal of the Electrochemical Society 147(2) (2000) 444-450.
[35] S.F. Chin, S.C. Pang, M.A. Anderson, Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, Journal of the Electrochemical Society 149(4) (2002) A379-A384.
[36] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, The Journal of Physical Chemistry C 112(11) (2008) 4406-4417.
[37] H.Y. Lee, S. Kim, H.Y. Lee, Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode, Electrochemical and Solid-State Letters 4(3) (2001) A19-A22.
[38] S. Devaraj, N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent, Electrochemical and Solid-State Letters 8(7) (2005) A373-A377.
[39] S. Devaraj, N. Munichandraiah, The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties, Journal of The Electrochemical Society 154(10) (2007) A901-A909.
[40] M.S. Wu, P.C.J. Chiang, Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors, Electrochemical and solid-state letters 7(6) (2004) A123-A126.
[41] J.Y. Luo, Y.Y. Xia, Effect of pore structure on the electrochemical capacitive performance of MnO2, Journal of the Electrochemical Society 154(11) (2007) A987-A992.
[42] F. Tian, Y. Xie, Preparation and capacitive properties of lithium manganese oxide intercalation compound, Journal of Nanoparticle Research 17(12) (2015) 481.
[43] M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.S. Kolekar, J.Y. Chang, A.V. Ghule, Comparative Study of Individual and Mixed Aqueous Electrolytes with ZnFe2O4 Nano–flakes Thin Film as an Electrode for Supercapacitor Application, ChemistrySelect 1(5) (2016) 959-966.
[44] Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, The Journal of Physical Chemistry C 113(31) (2009) 14020-14027.
[45] A. Jänes, J. Eskusson, L. Mattisen, E. Lust, Electrochemical behaviour of hybrid devices based on Na2SO4 and Rb2SO4 neutral aqueous electrolytes and carbon electrodes within wide cell potential region, Journal of Solid State Electrochemistry 19(3) (2015) 769-783.
[46] Y. Munaiah, B.G.S. Raj, T.P. Kumar, P. Ragupathy, Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior, Journal of Materials Chemistry A 1(13) (2013) 4300-4306.
[47] Y.S. Yun, S. Lee, N.R. Kim, M. Kang, C. Leal, K.Y. Park, K. Kang, H.J. Jin, High and rapid alkali cation storage in ultramicroporous carbonaceous materials, Journal of Power Sources 313 (2016) 142-151.
[48] S. Wen, J.W. Lee, I.H. Yeo, J. Park, S.I. Mho, The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2, Electrochimica acta 50(2) (2004) 849-855.
[49] R.N. Reddy, R.G. Reddy, Sol–gel MnO2 as an electrode material for electrochemical capacitors, Journal of Power Sources 124(1) (2003) 330-337.
[50] L. Coustan, P. Lannelongue, P. Arcidiacono, F. Favier, Faradaic contributions in the supercapacitive charge storage mechanisms of manganese dioxides, Electrochimica Acta 206 (2016) 479-489.
[51] J. Gu, X. Fan, X. Liu, S. Li, Z. Wang, S. Tang, D. Yuan, Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability, Chemical Engineering Journal 324 (2017) 35-43.
[52] Y. Li, C. Zhang, Y. Jiang, T.-J. Wang, H. Wang, Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization, Desalination 399 (2016) 171-177.
[53] C.J. Gabelich, T.D. Tran, I.M. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environmental science & technology 36(13) (2002) 3010-3019.
[54] C.H. Hou, C.Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination 314 (2013) 124-129.
[55] R. Zhao, M. Van Soestbergen, H. Rijnaarts, A. Van der Wal, M. Bazant, P. Biesheuvel, Time-dependent ion selectivity in capacitive charging of porous electrodes, Journal of colloid and interface science 384(1) (2012) 38-44.
[56] S.B. Ma, Y.H. Lee, K.Y. Ahn, C.M. Kim, K.H. Oh, K.B. Kim, Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution, Journal of The Electrochemical Society 153(1) (2006) C27-C32.
[57] J. Zhang, X. Zhao, A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons, Carbon 52 (2013) 1-9.
[58] Z. Zhou, N. Cai, Y. Zhou, Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon, Materials Chemistry and Physics 94(2) (2005) 371-375.
[59] R. Liu, S.B. Lee, MnO2/poly (3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, Journal of the American Chemical Society 130(10) (2008) 2942-2943.
[60] P.Y. Chuang, C.C. Hu, The electrochemical characteristics of binary manganese–cobalt oxides prepared by anodic deposition, Materials chemistry and physics 92(1) (2005) 138-145.
[61] K.C. Liu, M.A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, Journal of the Electrochemical Society 143(1) (1996) 124-130.
[62] V. Srinivasan, J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors, Journal of the Electrochemical Society 144(8) (1997) L210-L213.
[63] Y.S. Chen, C.C. Hu, Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition, Electrochemical and Solid-State Letters 6(10) (2003) A210-A213.
[64] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature materials 7(11) (2008) 845-854.
[65] Q. Feng, H. Kanoh, K. Ooi, Manganese oxide porous crystals, J. Mater. Chem. 9(2) (1999) 319-333.
[66] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341(6153) (2013) 1502-1505.
[67] S.L. Brock, N. Duan, Z.R. Tian, O. Giraldo, H. Zhou, S.L. Suib, A review of porous manganese oxide materials, Chemistry of Materials 10(10) (1998) 2619-2628.
[68] K. Kuratani, K. Tatsumi, N. Kuriyama, Manganese oxide nanorod with 2× 4 tunnel structure: synthesis and electrochemical properties, Crystal growth & design 7(8) (2007) 1375-1377.
[69] L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse, Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, The Journal of Physical Chemistry C 112(18) (2008) 7270-7277.
[70] Q. Qu, Y. Shi, S. Tian, Y. Chen, Y. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, Journal of Power Sources 194(2) (2009) 1222-1225.
[71] J. Whitacre, A. Tevar, S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device, Electrochemistry Communications 12(3) (2010) 463-466.
[72] Y.G. Wang, Y.Y. Xia, A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system, Electrochemistry Communications 7(11) (2005) 1138-1142.
[73] Q. Qu, L. Li, S. Tian, W. Guo, Y. Wu, R. Holze, A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O, Journal of Power Sources 195(9) (2010) 2789-2794.
[74] T.M. Ou, C.T. Hsu, C.C. Hu, Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application, Journal of The Electrochemical Society 162(5) (2015) A5124-A5132.
[75] A. Adomkevicius, L. Cabo-Fernandez, T.H. Wu, T.M. Ou, M.G. Chen, Y. Andreev, C.C. Hu, L.J. Hardwick, Na0.35MnO2 as an ionic conductor with randomly distributed nano-sized layers, Journal of Materials Chemistry A 5(20) (2017) 10021-10026.
[76] M.G. Huang, A study on anions intercalation into carbon for asymmetric supercapacitors, National Tsing Hua University, 2015.
[77] K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry 57(4) (1985) 603-619.
[78] M. Thommes, Physical adsorption characterization of nanoporous materials, Chem. Ing. Tech 82(7) (2010) 1059-1073.
[79] B.C. Lippens, J. De Boer, Studies on pore systems in catalysts: V. The t method, Journal of Catalysis 4(3) (1965) 319-323.
[80] T.H. Wu, D. Hesp, V. Dhanak, C. Collins, F. Braga, L.J. Hardwick, C.C. Hu, Charge storage mechanism of activated manganese oxide composites for pseudocapacitors, Journal of Materials Chemistry A 3(24) (2015) 12786-12795.
[81] T. Gao, H. Fjellvåg, P. Norby, A comparison study on Raman scattering properties of α-and β-MnO2, Analytica chimica acta 648(2) (2009) 235-239.
[82] J. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization, Electrochimica Acta 47(15) (2002) 2381-2386.
[83] 高濂、鄭珊、張青紅,奈米光觸媒,初版ed.,五南圖書,2004.
[84] T.M. Ou, Na-intercalation manganese oxide for the supercapacitor application, National Tsing Hua University, 2014.
[85] A. Adomkevicius, Controlling Transition Metal Oxides Nanostructures for Energy Storage System, University of Liverpool and National Tsing Hua University, 2017.
[86] C. Wei, C. Xu, B. Li, H. Du, D. Nan, F. Kang, Anomalous effect of K ion on crystallinity and capacitance of the manganese dioxide, Journal of Power Sources 225 (2013) 226-230.
[87] A. Radhiyah, M.I. Izwan, V. Baiju, C.K. Feng, I. Jamil, R. Jose, Doubling of electrochemical parameters via the pre-intercalation of Na+ in layered MnO 2 nanoflakes compared to α-MnO2 nanorods, RSC Advances 5(13) (2015) 9667-9673.
[88] S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, T.H. You, Y.S. Wang, C.W. Lin, C.C.M. Ma, C.C. Hu, Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density, Journal of Power Sources 362 (2017) 258-269.
[89] J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes, Carbon 48(13) (2010) 3825-3833.
[90] V. Di Castro, G. Polzonetti, XPS study of MnO oxidation, Journal of Electron Spectroscopy and Related Phenomena 48(1) (1989) 117-123.
[91] Z. Ye, B. Wang, G. Liu, Y. Dong, X. Cui, X. Peng, A. Zou, D. Li, Micropore-Dominant Vanadium and Iron Co-Doped MnO2 Hybrid Film Electrodes for High-Performance Supercapacitors, Journal of The Electrochemical Society 163(13) (2016) A2725-A2732.
[92] H. Nesbitt, D. Banerjee, Interpretation of XPS Mn (2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation, American Mineralogist 83(3-4) (1998) 305-315.
[93] J.M. Cerrato, M.F. Hochella Jr, W.R. Knocke, A.M. Dietrich, T.F. Cromer, Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants, Environmental science & technology 44(15) (2010) 5881-5886.
[94] C. Zhang, C. Feng, P. Zhang, Z. Guo, Z. Chen, S. Li, H. Liu, K0.25Mn2O4 nanofiber microclusters as high power cathode materials for rechargeable lithium batteries, RSC Advances 2(4) (2012) 1643-1649.
[95] M. Chigane, M. Ishikawa, M. Izaki, Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism, Journal of the Electrochemical Society 148(7) (2001) D96-D101.
[96] M. Chigane, M. Ishikawa, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, Journal of the electrochemical society 147(6) (2000) 2246-2251.
[97] A. Dias, R.G. Sá, M.C. Spitale, M. Athayde, V.S. Ciminelli, Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic (III) oxidation, Materials Research Bulletin 43(6) (2008) 1528-1538.
[98] E. Nightingale Jr, Phenomenological theory of ion solvation. Effective radii of hydrated ions, The Journal of Physical Chemistry 63(9) (1959) 1381-1387.
[99] Y. Marcus, Ionic radii in aqueous solutions, Chemical Reviews 88(8) (1988) 1475-1498.
[100] S. Komaba, A. Ogata, T. Tsuchikawa, Enhanced supercapacitive behaviors of birnessite, Electrochemistry communications 10(10) (2008) 1435-1437.
[101] Y.H. Chu, C.C. Hu, K.H. Chang, Electrochemical quartz crystal microbalance study of amorphous MnO2 prepared by anodic deposition, Electrochimica Acta 61 (2012) 124-131.
[102] Q. Qu, Y. Shi, S. Tian, Y. Chen, Y. Wu, R. Holze, A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, Journal of Power Sources 194(2) (2009) 1222-1225.
[103] M. Huang, Y. Zhang, F. Li, L. Zhang, R.S. Ruoff, Z. Wen, Q. Liu, Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors, Scientific reports 4 (2014) 3878.
[104] S. Shivakumara, N. Munichandraiah, Asymmetric supercapacitor based on nanostructured porous manganese oxide and reduced graphene oxide in aqueous neutral electrolyte, Solid State Communications 260 (2017) 34-39.
[105] V. Subramanian, H. Zhu, B. Wei, Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte, Chemical Physics Letters 453(4-6) (2008) 242-249.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *