帳號:guest(18.226.93.114)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳俊佑
作者(外文):Chen, June-Yo
論文名稱(中文):探討光固化生物可分解高分子PGSA、PEGDA和PCLDA共聚材料之物理與降解性質
論文名稱(外文):The Investigation of Physical and Degradation Properties of Biodegradable, Photocurable Copolymers, PGSA, PEGDA and PCLDA
指導教授(中文):王潔
指導教授(外文):Wang, Jane
口試委員(中文):謝明佑
鄭逸琳
口試委員(外文):Shie, Ming-You
Cheng, Yih-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032520
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:68
中文關鍵詞:生物可降解光固化高分子3D列印
外文關鍵詞:biodegradablephotocurable3D printing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:279
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
隨著生物可降解高分子的應用在組織工程中越來越普遍,在過去的二十年中,可生物降解高分子的應用越加廣泛。由於大多數傳統的可生物降解聚合物是熱塑性聚合物材料,所以可生物降解的支架和裝置,其製造部分僅限於熱固化型。同時,許多現有的生物可降解高分子受限於植入時的快速降解,極高的機械性質和有限的官能基,造成生物可降解高分子的應用備受限制。由於機械強度高,大多數常見的可生物降解高分子用於骨組織工程。然而,整體僵硬的機械性能導致缺乏軟組織工程材料的選擇。在本計畫中,三種可生物可降解和生物可相容之高分子因為它們的光固化特性而被選擇:Poly(caprolactone) diacrylate (PCLDA), Poly(ethylene glycol) diacrylate (PEGDA) and Poly(glycerol sebacate) acrylate (PGSA)。透過調整高分子的各種組合,共聚物展現出楊氏模量在0.5-10MPa之間,正好在一般的軟組織機械性能周圍。再者,通過3D打印製造的共聚物展現出比通過UV光製造的高分子更高的機械強度。通過拉力分析,極限拉伸強度,斷裂伸長率和降解性質,幾種組合被鑑定為用於軟組織(例如心臟,肺,肝,腎和脈管系統再生)的有用材料。此外,具有光固化能力,使得共聚物展現出很好的裝置和支架形成能力。
As the applications of biodegradable polymers become more common in tissue engineering, a wide range of biodegradable polymers became available over the last two decades. As most traditional biodegradable polymers were thermoplastic polymeric materials, the fabrication of biodegradable scaffolds and devices were limited to thermal molding. Meanwhile, many of the existing biodegradable polymers suffer from a short half-life due to rapid degradation upon implantation, exceedingly high stiffness, and limited ability to functionalize the surface with chemical moieties. With the high mechanical strength, most common biodegradable polymers became useful in bone tissue engineering. However, the overall stiff mechanical properties lead to the lack of choice of material for soft tissue engineering. In this work, the combination between three biodegradable and biocompatible polymers is explored through photocuring: Poly(caprolactone) diacrylate (PCLDA), Poly(ethylene glycol) diacrylate (PEGDA) and Poly(glycerol sebacate) acrylate (PGSA). The various combinations of copolymer composition led to products with Young’s modulus ranging between 0.5-10 MPa, right around the general soft tissue mechanical properties. In addition, copolymers fabricated by 3D-print fabrication show higher mechanical strength than those fabricated via direct UV exposure. Through the analysis of substrate stiffness, ultimate tensile strength, elongation at break and the degradation properties, several combinations are identified as useful materials for soft tissues, such as heart, lung, liver, kidney, and vasculature regeneration. With the photocuring capabilities, the copolymers exhibit great devices and scaffold formation capabilities.
Table of Content
摘要 2
Abstract 3
1 Research Background 9
1.1 Introduction to Tissue Engineering 9
1.1.1 Mechanical Properties of Soft Tissues 12
1.2 Introduction to Common Biodegradable Polymer 12
1.2.1 Poly(Glycerol Sebacate) Acrylate 14
1.2.2 Polycaprolactone Diacrylate 15
1.2.3 Poly(Ethylene Glycol) Diacrylate 17
1.2.4 Introduction to Mechanism of Biodegradation 18
1.3 Scaffold Fabrications for Tissue Engineering 20
1.3.1 Common Scaffold Fabrication Methods 20
1.3.2 Digital Light Processing Additive Manufacturing 21
1.4 Motivation and Purpose 22
2 Experimental Method 24
2.1 Material and Equipment Selection 24
2.2 Preparation of Materials 24
2.2.1 Synthesis of PGS 24
2.2.2 Synthesis of PGSA 25
2.2.3 Synthesis of PCLDA 25
2.2.4 Preparation of PEGDA 26
2.3 Polymer Mixture 26
2.4 Fabrication of Polymer Samples 26
2.4.1 Direct UV Exposure 27
2.4.2 Digital Light Processing Additive Manufacturing 27
2.5 Measurement of Mechanical Properties 28
2.6 In Vitro Degradation 28
2.6.1 Degradation of Copolymer Fabricated via direct UV exposure 29
2.6.2 Degradation of Copolymer Fabricated via Digital Light Processing 30
2.6.3 Measurement of Swelling Ratio 32
2.7 Liver Tissue Regeneration Scaffolds 32
2.7.1 Design of Liver Tissue Regeneration Scaffolds 32
2.7.2 DLP-AM Fabrication of Liver Tissue Regeneration Scaffolds 33
3 Result and Discussion 34
3.1 Mechanical Properties of Copolymers 34
3.1.1 Mechanical Properties of Pure Materials 34
3.1.2 Properties of PGSA-co-PEGDA 36
3.1.3 Properties of PGSA-co-PCLDA 38
3.1.4 Properties of PCLDA-co-PEGDA 40
3.2 Degradation Results of Copolymer 41
3.2.1 The Degradation of Copolymer PGSA-co-PEGDA 42
3.2.2 The Degradation of Copolymer PGSA-co-PCLDA 45
3.2.3 The Degradation of Copolymer PCLDA-co-PEGDA 48
3.3 Application in Tissue Engineering 51
3.4 Scaffold Formation 53
4 Conclusion 56
5 Future Work 58
6 Reference 63
7 Appendix 68

6 Reference
1. Passier, R., L.W. van Laake, and C.L. Mummery, Stem-cell-based therapy and lessons from the heart. Nature, 2008. 453: p. 322.
2. Caplan., A.I., Mesenchymal Stem Cells: Cell-Based Reconstructive Therapy in Orthopedics. Tissue Engineering., September 2005, 11(7-8): 1198-1211.
3. Ikeda, E., et al., Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation, 2008. 76(5): p. 495-505.
4. El-Serag, H.B., et al., The continuing increase in the incidence of hepatocellular carcinoma in the united states: An update. Annals of Internal Medicine, 2003. 139(10): p. 817-823.
5. Petersen, B.E., et al., Bone Marrow as a Potential Source of Hepatic Oval Cells. Science, 1999. 284(5417): p. 1168-1170.
6. Theise, N.D., et al., Liver from bone marrow in humans. Hepatology, 2000. 32(1): p. 11-16.
7. Jared W. Allen, S.N.B., Engineering Liver Therapies for the Future. Tissue Engingeering, 2004. 8(5): p. 725-737.
8. Wang, Y., et al., A tough biodegradable elastomer. Nature Biotechnology, 2002. 20: p. 602.
9. Vert, M., Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts. Journal of Materials Science: Materials in Medicine, 2009. 20(2): p. 437-446.
10. Woodward, S.C., et al., The intracellular degradation of poly(ε-caprolactone). Journal of Biomedical Materials Research, 1985. 19(4): p. 437-444.
11. Sun, H., et al., Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials, 2009. 30(31): p. 6358-6366.
12. Luo, D., et al., Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery. Macromolecules, 2002. 35(9): p. 3456-3462.
13. Yeong, W.Y., et al., Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomaterialia, 2010. 6(6): p. 2028-2034.
14. Chen, Q.-Z., et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 2008. 29(1): p. 47-57.
15. Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-3431.
16. McKee, C.T., et al., Indentation versus tensile measurements of Young's modulus for soft biological tissues. Tissue Eng Part B Rev, 2011. 17(3): p. 155-64.
17. Hollenstein, M., et al., Mechanical Characterization of the Liver Capsule and Parenchyma, in Biomedical Simulation: Third International Symposium, ISBMS 2006, Zurich, Switzerland, July 10-11, 2006. Proceedings, M. Harders and G. Székely, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 150-158.
18. Snedeker, J.G., et al., Strain-rate dependent material properties of the porcine and human kidney capsule. Journal of Biomechanics, 2005. 38(5): p. 1011-1021.
19. Jayasuriya, A.C., et al., Piezoelectric and mechanical properties in bovine cornea. Journal of Biomedical Materials Research Part A, 2003. 66A(2): p. 260-265.
20. Wollensak, G. and E. Iomdina, Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmologica, 2009. 87(1): p. 48-51.
21. Downs, J.C., et al., Viscoelastic Characterization of Peripapillary Sclera: Material Properties by Quadrant in Rabbit and Monkey Eyes. Journal of Biomechanical Engineering, 2003. 125(1): p. 124-131.
22. Velardi, F., F. Fraternali, and M. Angelillo, Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomechanics and Modeling in Mechanobiology, 2006. 5(1): p. 53-61.
23. Bilston, L.E. and L.E. Thibault, The mechanical properties of the human cervical spinal cordIn Vitro. Annals of Biomedical Engineering, 1995. 24(1): p. 67-74.
24. Miller, K. and K. Chinzei, Mechanical properties of brain tissue in tension. Journal of Biomechanics, 2002. 35(4): p. 483-490.
25. Assoul, N., et al., Mechanical properties of rat thoracic and abdominal aortas. Journal of Biomechanics, 2008. 41(10): p. 2227-2236.
26. Kesava Reddy, G., AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvascular Research, 2004. 68(2): p. 132-142.
27. Crespy, D., M. Bozonnet, and M. Meier, 100 Years of Bakelite, the Material of a 1000 Uses. Angewandte Chemie International Edition, 2008. 47(18): p. 3322-3328.
28. Research, T.M. Biodegradable Plastics (Polylactic Acid (PLA), Polyhydroxyalkanoates (PHA), Polybutylene Succinate (PBS), Polycaprolactone (PCL), Starch-based, and Regenerated Cellulose) Market for Packaging, Textile, Agriculture, Injection Molding, and Other Applications - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2015 - 2023. 2016; Available from: http://www.transparencymarketresearch.com/biodegradable-plastics-market.html.
29. Markit, I. Chemical Economics Handbook Biodegradable Polymers. 2015; Available from: https://www.ihs.com/products/biodegradable-polymers-chemical-economics-handbook.html.
30. Chujo, K., et al., Ring-opening polymerization of glycolide. Die Makromolekulare Chemie, 1967. 100(1): p. 262-266.
31. Frazza, E.J. and E.E. Schmitt, A new absorbable suture. Journal of Biomedical Materials Research, 1971. 5(2): p. 43-58.
32. Wang, Y., et al., A tough biodegradable elastomer. Nat Biotech, 2002. 20(6): p. 602-606.
33. Wang, Y., Y.M. Kim, and R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research Part A, 2003. 66A(1): p. 192-197.
34. Motlagh, D., et al., Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 2006. 27(24): p. 4315-4324.
35. Redenti, S., et al., Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials, 2009. 30(20): p. 3405-3414.
36. Nijst, C.L.E., et al., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate). Biomacromolecules, 2007. 8(10): p. 3067-3073.
37. Natta, F.J.v., J.W. Hill, and W.H. Carothers, Studies of Polymerization and Ring Formation. XXIII.1 ε-Caprolactone and its Polymers. Journal of the American Chemical Society, 1934. 56(2): p. 455-457.
38. Gunatillake, P.A. and R. Adhikari, Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater, 2003. 5: p. 1-16; discussion 16.
39. Menei, P., et al., Fate and biocompatibility of three types of microspheres implanted into the brain. Journal of Biomedical Materials Research, 1994. 28(9): p. 1079-1085.
40. Mark Chasin, R.L., Biodegradable Polymers as Drug Delivery Systems. Vol. 45. 1990.
41. Coombes, A.G.A., et al., Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials, 2004. 25(2): p. 315-325.
42. Marra, K.G., et al., In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res, 1999. 47(3): p. 324-35.
43. Salgado, C.L., et al., Characterization of chitosan and polycaprolactone membranes designed for wound repair application. Journal of Materials Science, 2012. 47(2): p. 659-667.
44. Zein, I., et al., Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002. 23(4): p. 1169-1185.
45. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry, 1977. 252(11): p. 3578-3581.
46. Knop, K., et al., Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition, 2010. 49(36): p. 6288-6308.
47. Kawai, F., Microbial degradation of polyethers. Appl Microbiol Biotechnol, 2002. 58(1): p. 30-8.
48. Whitesides, G.M., Poly(ethylene glycol) chemistry biotechnical and biomedical applications J. Milton Harris, Ed. Applied Biochemistry and Biotechnology, 1993. 41(3): p. 233-234.
49. Nguyen, K.T. and J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002. 23(22): p. 4307-4314.
50. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8–9): p. 762-798.
51. Pomerantseva, I., et al., Degradation behavior of poly(glycerol sebacate). Journal of Biomedical Materials Research Part A, 2009. 91A(4): p. 1038-1047.
52. Langer, R. and N. Peppas, Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, Part C, 1983. 23(1): p. 61-126.
53. Ulery, B.D., L.S. Nair, and C.T. Laurencin, Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 2011. 49(12): p. 832-864.
54. Williams, D.F., Mechanisms of biodegradation of implantable polymers. Clin Mater, 1992. 10(1-2): p. 9-12.
55. ARNOLD I. CAPLAN, P.D., Mesenchymal Stem Cells: Cell-Based Reconstructive Therapy on Orthopedics. Tisse Engingeering, 2005. 11(7-8): p. 1198-1211.
56. Passier, R., L.W. van Laake, and C.L. Mummery, Stem-cell-based therapy and lessons from the heart. Nature, 2008. 453(7193): p. 322-329.
57. Bajaj, P., et al., 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annual Review of Biomedical Engineering, 2014. 16(1): p. 247-276.
58. Melchels, F.P.W., et al., Additive manufacturing of tissues and organs. Progress in Polymer Science, 2012. 37(8): p. 1079-1104.
59. Lutolf, M.P., Materials science: Cell environments programmed with light. Nature, 2012. 482(7386): p. 477-478.
60. Hornbeck, L.J. Current status of the digital micromirror device (DMD) for projection television applications. in Proceedings of IEEE International Electron Devices Meeting. 1993.
61. Hornbeck, L.J. Digital Light Processing for high-brightness high-resolution applications. 1997.
62. Ian Gibson, D.R., Brent Stucker, Additive Manufacturing Technologies. 2014.
63. Petrovic, V., et al., Additive layered manufacturing: sectors of industrial application shown through case studies. International Journal of Production Research, 2011. 49(4): p. 1061-1079.
64. Bell, E., et al., Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science, 1981. 211(4486): p. 1052-1054.
65. Golander, C., et al., Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. 1992, Plenum Press, New York.
66. Sakuma, I., et al. In vitro Measurement of Mechanical Properties of Liver Tissue under Compression and Elongation Using a New Test Piece Holding Method with Surgical Glue. 2003. Berlin, Heidelberg: Springer Berlin Heidelberg.
67. Pomfret, E.A., et al., Liver Regeneration and Surgical Outcome in Donors of Right-lobe Liver Grafts. Transplantation, 2003. 76(1): p. 5-10.
68. Monson, K.L., et al., Axial Mechanical Properties of Fresh Human Cerebral Blood Vessels. Journal of Biomechanical Engineering, 2003. 125(2): p. 288-294.
69. Tanter, M., et al., High-Resolution Quantitative Imaging of Cornea Elasticity Using Supersonic Shear Imaging. IEEE Transactions on Medical Imaging, 2009. 28(12): p. 1881-1893.
70. Ho, P.C., et al., Kinetics of Corneal Epithelial Regeneration and Epidermal Growth Factor. Investigative Ophthalmology & Visual Science, 1974. 13(10): p. 804-809.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *