帳號:guest(18.226.200.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張德威
作者(外文):Chang, Te-Wei
論文名稱(中文):流體化吸附吸收在二氧化碳捕獲的應用
論文名稱(外文):CO2 Capture by Fluidized Adsorption Absorption
指導教授(中文):汪上曉
指導教授(外文):Wong, Shan-Hill
口試委員(中文):李恩各
康嘉麟
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032519
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:86
中文關鍵詞:二氧化碳捕捉混合吸收-吸附系統
外文關鍵詞:CO2 capturehybrid absorption-adsorption system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:426
  • 評分評分:*****
  • 下載下載:37
  • 收藏收藏:0
使用化石燃料導致二氧化碳排放量增加以及由此產生的溫室效應引起人類廣泛關注,二氧化碳減排已成為全球趨勢。在這項研究中,我們選擇廉價的中孔洞材料活性炭(AC),作為吸附劑。此外,我們還採用含浸法修飾AC以提高其CO2捕捉能力。在溶劑方面,我們選擇乙二醇(EG),二甘醇(DEG)和聚乙二醇(PEG-400)用於煙道氣中的CO2捕集。在固體吸附劑方面,我們採用TGA測量吸附劑的吸附容量,並使用突破實驗確定溶劑和混合物在批次系統中的吸附容量。
實驗結果顯示,10wt% AC分散在EG中、5wt%AC分散在DEG中和5wt%AC分散在PEG-400中,吸收量分別達到最大值並且接近吸附劑和吸收劑的吸附和吸收容量之和。進一步添加吸附劑的重量百分比,由於分散效果變差,將導致總吸收容量降低。
在修飾後的AC混合吸附-吸附系統中,分散在EG中的20wt%AC-NaOH(2N)和分散在EG中的20wt%AC-KOH(2N)吸收量達到最大值,分別為0.1984mmol/g(1bar,10%CO2)與0.1551mmol/g(1bar,10%CO2),並且高於固體吸附值與液體吸收值之重量加權平均。此外,兩者在比較多次循環吸收再生表現,20wt%AC-KOH(2N)+EG吸收劑吸收量經五次再生後為0.100mmol/g,下降幅度低,穩定度比較好。
實驗結果發現,選取的改質活性碳分散在甘油的新型吸收劑,其吸收效果勝過吸收量為0.125mmol/L-1(1bar,10%CO2)之ZIF-8/mIm分散在甘油的吸收劑。
Increasing CO2 emissions from using fossil fuels and the resulting greenhouse effect have received extensive concerns, and the reduction of CO2 has become the global trend. In this study, we select cheap mesoporous materials, AC (activated carbon) as adsorbents. Moreover, we also modify AC with impregnation method to improve its CO2 capture capacity. For solution, we select EG(ethylene glycol), DEG(diethylene glycol) and PEG-400(polyethylene glcol) for CO2 capture in flue gas. TGA was used to determine the adsorption capacity of the adsorbent and a break through experiment was used to determine the absorption capacity of the solvent and the hybrid in batch system.
The result shows that 10wt% AC dispersed in EG, 5wt%AC dispersed in DEG and 5wt%AC dispersed in PEG-400 reach maximum value and are close to the sum of adsorption and absorption capacities of the adsorbent and absorbent. Further addition of adsorbent will lead to decrease in total capacity due to poor dispersion.
In modified AC hybrid absorption-adsorption system, 20wt%AC-NaOH(2N) dispersed in EG and 20wt%AC-KOH(2N) dispersed in EG reach maximum value, 0.1984mmol/g(1bar,10%CO2)and 0.1551mmol/g(1bar,10%CO2)respectively, and are higher than the weighted average ad(b)sorption value of solid and liquid phase. Moreover, 20wt%AC-KOH(2N)+EG has lower degradation of absorption capacity after each cycle of regeneration test.
The experimental results show that the selected absorbent, modified activated carbon, dispersed in EG has better absorption than that of ZIF-8/mIm in EG with absorption of 0.125mmol/L-1 (1bar, 10% CO2).
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 CO2捕獲技術 2
1-3 CO2分離技術 4
第二章 文獻回顧與研究動機 7
2-1 研究動機 7
2-2 文獻回顧 8
第三章 實驗方法 20
3-1 實驗藥品 20
3-2 實驗設備 21
3-2 吸收劑製備 22
3-3 實驗裝置與步驟 24
3-4 儀器校正 28
3-5 數據處理 29
第四章 結果與討論 32
4-1吸附劑負載率 32
4-2 比表面積與孔隙體積分析 35
4-3 SEM與EDS影像分析 36
4-4 活性碳固體吸附劑 50
4-4-1吸收實驗 50
4-4-2再生實驗 53
4-5 活性碳流體化吸收劑 56
4-6 氫氧化鉀/活性碳流體化吸收劑 61
4-6-1 吸收實驗 61
4-6-2 再生實驗 65
4-7 氫氧化鈉/活性碳流體化吸收劑 70
4-7-1 吸收實驗 70
4-7-2 再生實驗 75
4-8 氫氧化鉀與氫氧化鈉/活性碳流體化吸收劑比較 79
第五章 結論 83
第六章 參考文獻 84

1. Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Riahi, K., IPCC, 2007: climate change 2007: synthesis report. IPCC: 2008.
2. Agency, I. E. A., Energy Technology Perspectives 2010. 2010.
3. Pires, J.; Martins, F.; Alvim-Ferraz, M.; Simões, M., Recent developments on carbon capture and storage: an overview. Chemical Engineering Research and Design 2011, 89 (9), 1446-1460.
4. 談駿嵩; 王志盈, 二氧化碳捕獲. 科學發展 2015, 510, p32~37.
5. Krishnamurthy, S.; Rao, V. R.; Guntuka, S.; Sharratt, P.; Haghpanah, R.; Rajendran, A.; Amanullah, M.; Karimi, I. A.; Farooq, S., CO2 capture from dry flue gas by vacuum swing adsorption: a pilot plant study. AIChE Journal 2014, 60 (5), 1830-1842.
6. Liu, H.; Liu, B.; Lin, L.-C.; Chen, G.; Wu, Y.; Wang, J.; Gao, X.; Lv, Y.; Pan, Y.; Zhang, X., A hybrid absorption–adsorption method to efficiently capture carbon. Nature communications 2014, 5, 5147.
7. Yaghi, O. M.; O'keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705.
8. Hu, C.; Guo, R.; Li, B.; Ma, X.; Wu, H.; Jiang, Z., Development of novel mordenite-filled chitosan–poly (acrylic acid) polyelectrolyte complex membranes for pervaporation dehydration of ethylene glycol aqueous solution. Journal of Membrane Science 2007, 293 (1-2), 142-150.
9. McEwen, J.; Hayman, J.-D.; Yazaydin, A. O., A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chemical Physics 2013, 412, 72-76.
10. Myers, A.; Prausnitz, J. M., Thermodynamics of mixed‐gas adsorption. AIChE Journal 1965, 11 (1), 121-127.
11. Rochelle, G. T., Amine scrubbing for CO2 capture. Science 2009, 325 (5948), 1652-1654.
12. McDonald, T. M.; D'Alessandro, D. M.; Krishna, R.; Long, J. R., Enhanced carbon dioxide capture upon incorporation of N, N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chemical Science 2011, 2 (10), 2022-2028.
13. Vaidya, P. D.; Kenig, E. Y., CO2‐Alkanolamine reaction kinetics: A review of recent studies. Chemical Engineering & Technology 2007, 30 (11), 1467-1474.
14. Li, X.; Hou, M.; Zhang, Z.; Han, B.; Yang, G.; Wang, X.; Zou, L., Absorption of CO 2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chemistry 2008, 10 (8), 879-884.
15. Gutowski, K. E.; Maginn, E. J., Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. J Am Chem Soc 2008, 130 (44), 14690-14704.
16. Guo, B.; Zhao, T.; Sha, F.; Zhang, F.; Li, Q.; Zhang, J., A novel CCU approach of CO2 by the system 1, 2-ethylenediamine+ 1, 2-ethylene glycol. Korean Journal of Chemical Engineering 2016, 33 (6), 1883-1888.
17. Li, C.; Zhang, J.; Zhang, T.; Wei, X.; Zhang, E.; Yang, N.; Zhao, N.; Su, M.; Zhou, H., Density, viscosity, and excess properties for 1, 2-diaminoethane+ 1, 2-ethanediol at (298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data 2010, 55 (9), 4104-4107.
18. Maheswari, A. U.; Palanivelu, K., Absorption of carbon dioxide in alkanolamine and vegetable oil mixture and isolation of 2-amino-2-methyl-1-propanol carbamate. Journal of CO2 Utilization 2014, 6, 45-52.
19. Li, J.; You, C.; Chen, L.; Ye, Y.; Qi, Z.; Sundmacher, K., Dynamics of CO2 absorption and desorption processes in alkanolamine with cosolvent polyethylene glycol. Ind Eng Chem Res 2012, 51 (37), 12081-12088.
20. Li, J.; Chen, L.; Ye, Y.; Qi, Z., Solubility of CO2 in the Mixed Solvent System of Alkanolamines and Poly (ethylene glycol) 200. Journal of Chemical & Engineering Data 2014, 59 (6), 1781-1787.
21. Sircar, S.; Golden, T.; Rao, M., Activated carbon for gas separation and storage. Carbon 1996, 34 (1), 1-12.
22. 张丽丹; 王晓宁; 韩春英; 郭坤敏, 活性炭吸附二氧化碳性能的研究. 北京化工大学学报 (自然科学版) 2007, 1.
23. Plaza, M. G.; García, S.; Rubiera, F.; Pis, J.; Pevida, C., Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chemical Engineering Journal 2010, 163 (1-2), 41-47.
24. Saha, D.; Deng, S., Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. Journal of colloid and interface science 2010, 345 (2), 402-409.
25. Cinke, M.; Li, J.; Bauschlicher Jr, C. W.; Ricca, A.; Meyyappan, M., CO2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters 2003, 376 (5-6), 761-766.
26. Su, F.; Lu, C.; Cnen, W.; Bai, H.; Hwang, J. F., Capture of CO2 from flue gas via multiwalled carbon nanotubes. Science of the total environment 2009, 407 (8), 3017-3023.
27. Ghosh, A.; Subrahmanyam, K.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C., Uptake of H2 and CO2 by graphene. The Journal of Physical Chemistry C 2008, 112 (40), 15704-15707.
28. Chiang, Y.-C.; Chen, Y.-J.; Wu, C.-Y., Effect of Relative Humidity on Adsorption Breakthrough of CO2 on Activated Carbon Fibers. Materials 2017, 10 (11), 1296.
29. Hayashi, H.; Hirano, S.; Shigemoto, N.; Yamada, S., Characterization of potassium carbonate supported on porous materials and the application to the recovery of carbon dioxide from flue gases under moist conditions. Nippon Kagaku Kaishi 1995, 1006-1012.
30. Hayashi, H.; Taniuchi, J.; Furuyashiki, N.; Sugiyama, S.; Hirano, S.; Shigemoto, N.; Nonaka, T., Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon. Ind Eng Chem Res 1998, 37 (1), 185-191.
31. Hirano, S.; Shigemoto, N.; Yamada, S.; Hayashi, H., Cyclic fixed-bed operations over K2CO3-on-carbon for the recovery of carbon dioxide under moist conditions. Bulletin of the Chemical Society of Japan 1995, 68 (3), 1030-1035.
32. Chiang, H.-L.; Tsai, J.-H.; Tsai, C.-L.; Hsu, Y.-C., Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas. Separation science and technology 2000, 35 (6), 903-918.
33. Bagreev, A.; Bandosz, T. J., A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Ind Eng Chem Res 2002, 41 (4), 672-679.
34. YU-MIN, C., Absorption of CO2 by Alkaline Sorbents on Activated Carbon. 2003.
35. Pinna, F., Supported metal catalysts preparation. Catalysis Today 1998, 41 (1-3), 129-137.
36. Zhang, R.; Schwarz, J., Design of inhomogeneous metal distributions within catalyst particles. Applied Catalysis A: General 1992, 91 (1), 57-65.
37. Lu, C.; Bai, H.; Wu, B.; Su, F.; Hwang, J. F., Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy & Fuels 2008, 22 (5), 3050-3056.
38. Przepiórski, J.; Skrodzewicz, M.; Morawski, A., High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science 2004, 225 (1-4), 235-242.
39. Lin, T. Y., Kinetics of the Reaction of CO2 with Solid Sorbents at Low Temperatures. 2001, 129.
40. Packer, M., Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 2009, 37 (9), 3428-3437.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *