帳號:guest(3.143.237.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曹喬凱
作者(外文):Cao, Qiao-Kai
論文名稱(中文):金剛烷基嵌段共聚物之自組裝行為研究
論文名稱(外文):Self-Organization Behavior of Adamantyl Group Diblock Copolymers
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):蘇群仁
朱哲毅
口試委員(外文):Su, Chun-Jen
Chu, Che-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032513
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:76
中文關鍵詞:金剛烷嵌段共聚物自組裝行為
外文關鍵詞:AdamantaneDiblock CopolymersSelf-Organization Behavior
相關次數:
  • 推薦推薦:0
  • 點閱點閱:328
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金剛烷具有高熱穩定性、疏水性以及低表面能等等的性質,而本身的剛硬性除了可以有效增強鍵結聚合物的熱性質,也能以側鏈的方式鍵結在嵌段共聚物中來提升嵌段間的構型不對稱性,並產生不同於coil-coil類型和rod-coil類型嵌段共聚物的特殊自組裝行為。在這篇論文中系統性地探討了兩種不同系列的金剛烷基嵌段共聚物αAdDVB-b-tBMA和βAdDVB-b-2VP的熱性質、相行為以及所產生的階層性結構。
金剛烷基聚合物在熱分析實驗中展現出了優異的熱穩定性和熱性質,並且也在變溫的小角度X光散射實驗中有著非常穩定的相行為。αAdDVB-b-tBMA嵌段共聚物經過長時間的退火後,在小角度X光散射圖譜中出現了一系列無法確認其結構的特殊比例散射峰,並在穿透式電子顯微鏡的觀察下推測其奈米結構可能為由柱狀微域所形成的無序雙連續相網狀結構。另外兩種不同重量分率的βAdDVB-b-2VP嵌段共聚物則皆在短暫的退火後產生了層狀結構。其中,βAdDVB11.6k-b-2VP7k在260℃下退火6小時後產生了從層狀到六角柱狀的結構轉變,並在穿透式電子顯微鏡下可以觀察到相轉換的過程中所產生的各種過渡結構,如:波浪狀層板結構和網狀結構。此外,我們也提出了βAdDVB-b-2VP的非對稱相圖,顯示βAdDVB-b-2VP的有序層狀相邊界會向較低金剛烷基嵌段的體積分率偏移。
同時我們也通過小角度X光散射和偏光顯微鏡的實驗來證實金剛烷基均聚物和嵌段共聚物皆會產生液晶相,並在經過更長時間的退火處理後發現αAdDVB8.8k-b-tBMA4.6k和βAdDVB7k-b-2VP14.2k嵌段共聚物會產生中間尺度的層狀結構,確認金剛烷基嵌段共聚物會產生由金剛烷基嵌段有序排列而產生的小尺度結構以及嵌段共聚物本身的微分相分離所產生的大尺度結構所組合而成的階層性奈米結構。
Adamantyl group is a bulky and rigid moiety which can provide significant improvement in the thermal properties when it is introduced into the polymer. Moreover, the attachment of the adamantyl group on the polymer backbone may effectively stiffen the chain, rending semiflexible conformational characteristic to the polymer. Therefore, the block copolymers composed of an adamantane-containing block and a coil block may be considered as an interesting class of soft material showing the self-assembly behavior intermediate between that of the conventional coil-coil and rod-coil block copolymers.
This thesis systematically studies the phase behavior and the hierarchical structures of the diblock copolymers composed of adamantyl groups. Two systems were investigated, namely, poly(α-adamantyl-divinylbenzene)-b-poly(tert-butyl methacrylate) (αAdDVB-b-tBMA) and poly(β-adamantyl-divinylbenzene)-b-poly(2-vinylpyridine) (βAdDVB-b-2VP). The as-cast films of both copolymers were found to exhibit metastable distorted morphologies and prolonged annealing above the glass transition temperatures were required to attain the thermodynamically equilibrium microphase-separated structures. The small angle X-ray scattering (SAXS) profile of the annealed αAdDVB8.8k-b-tBMA4.6k (with the weight fraction of the tBMA coil block of 0.34) could be fitted satisfactorily by the Percus-Yevick model of cylindrical domains, showing the lack of long-range order in the microphase-separated structure. The real-space observation of the morphology by transmission electron microscope (TEM) suggested that the diblock copolymer exhibited a bicontinuous disordered network morphology.
For the βAdDVB-b-2VP systems, the two samples with the P2VP block volume fraction of 0.41 and 0.69 were found to display ill-defined morphology in the as-cast state. The metastable structure transformed into well-ordered lamellar morphology upon thermal annealing above the glass transition temperature of βAdDVB block. βAdDVB11.6k-b-2VP7k further exhibited a morphological transformation from lamellae to hexagonally packed cylinders upon annealing at 260°C for more than 6 hours. The transient structures, including undulated lamellae and mesh structure, in the transition process were identified by TEM. An asymmetric phase diagram arising from the large disparity in conformational rigidity of βAdDVB-b-2VP was proposed.
Strikingly, a smaller-length-scale mesomorphic structure arising from the self-assembly of the adamantayl block was revealed by the combination of the SAXS results and polarized optical microscopy (POM). The smaller-length-scale structure in αAdDVB8.8k-b-tBMA4.6k and βAdDVB7k-b-2VP14.2k developed lamellar order upon prolonged annealing. Consequently, the adamantane-containing diblock copolymers constitute a special system displaying hierarchical structure with two distinct length scales: the larger-length-scale structure arose from the microphase separation between the adamantyl block and the coil block, and the smaller-length-scale structure was associated with the formation of a lamellar mesophase by the adamantyl block within its microdomain.
Abstract I
摘要 III
Table of Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1-1 Introduction to Block Copolymer 1
1-2 Phase Behavior of Diblock Copolymer 3
1-3 Classification of Diblock Copolymers According to Conformational
Characteristics 11
1‐3‐1 Coil‐Coil Diblock Copolymers 11
1‐3‐2 Rod‐Coil Diblock Copolymers 11
1‐3‐3 Liquid Crystalline Diblock Copolymers 16
1-4 Introduction to Adamantyl Block Copolymer 24
1-5 Motivation and Objective of the Study 26
Chapter 2 Experimental section 27
2-1 Materials 27
2-2 Sample Preparation 29
2-3 Characterization 30
2‐3‐1 Thermogravimetric Analysis (TGA) Measurements 30
2‐3‐2 Differential Scanning Calorimetry (DSC) Measurements 30
2‐3‐3 Small Angle and Wide Angle X‐ray Scattering (SWAXS) Measurements 30
2‐3‐4 Transmission Electron Microscope (TEM) Observation 31
2‐3‐5 Polarized Optical Microscope (POM) Observation 32
Chapter 3 Results and Discussions 33
3-1 Thermal Properties of the Adamantyl Diblock Copolymers 33
3-2 Microphase-separated Structures of the Adamantyl Diblock Copolymers 37
3‐2‐1 Structure of αAdDVB8.8k‐b‐tBMA4.6k 37
3‐2‐2 Phase behavior and self‐assembled structure of βAdDVB‐b‐2VP 42
3-3 A Smaller-lengthscale-structure Formed by the Adamantyl Block 56
3-4 An Intermediate-Lengthscale Structure of Adamantyl Homopolymer and Diblock Copolymers 63
Chapter 4 Conclusions 70
Reference 72
1 Bates, F. S. & Fredrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annual review of physical chemistry 41, 525-557 (1990).
2 Bates, F. S. & Fredrickson, G. H. Block copolymers--designer soft materials. Physics Today 52, 32-38 (1999).
3 Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chemical Society Reviews 41, 5969-5985 (2012).
4 Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 13, 1602-1617 (1980).
5 Matsen, M. & Bates, F. S. Unifying weak-and strong-segregation block copolymer theories. Macromolecules 29, 1091-1098 (1996).
6 Darling, S. Directing the self-assembly of block copolymers. Progress in Polymer Science 32, 1152-1204 (2007).
7 Chiang, Y.-W. et al. Control of Nanostructural Dimension by Crystallization in a Double-Crystalline Syndiotactic Poly (4-methyl-1-pentene)-block-poly (l-lactide) Block Copolymer. The Journal of Physical Chemistry C 118, 19402-19414 (2014).
8 Matsen, M. W. & Bates, F. S. Origins of complex self-assembly in block copolymers. Macromolecules 29, 7641-7644 (1996).
9 Helfand, E. Theory of inhomogeneous polymers: Fundamentals of the Gaussian random‐walk model. The Journal of Chemical Physics 62, 999-1005 (1975).
10 Helfand, E. & Wasserman, Z. Block copolymer theory. 4. Narrow interphase approximation. Macromolecules 9, 879-888 (1976).
11 Helfand, E. & Wasserman, Z. Block copolymer theory. 5. Spherical domains. Macromolecules 11, 960-966 (1978).
12 Helfand, E. & Wasserman, Z. Block copolymer theory. 6. Cylindrical domains. Macromolecules 13, 994-998 (1980).
13 Helfand, E. Block copolymer theory. III. Statistical mechanics of the microdomain structure. Macromolecules 8, 552-556 (1975).
14 Hajduk, D. A. et al. The gyroid: a new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules 27, 4063-4075 (1994).
15 Politakos, N. et al. Strongly segregated cubic microdomain morphology consistent with the double gyroid phase in high molecular weight diblock copolymers of polystyrene and poly (dimethylsiloxane). Journal of Polymer Science Part B: Polymer Physics 47, 2419-2427 (2009).
16 Hasegawa, H., Tanaka, H., Yamasaki, K. & Hashimoto, T. Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure of polystyrene-polyisoprene diblock polymers. Macromolecules 20, 1651-1662 (1987).
17 Alward, D. B., Kinning, D. J., Thomas, E. L. & Fetters, L. J. Effect of arm number and arm molecular weight on the solid-state morphology of poly (styrene-isoprene) star block copolymers. Macromolecules 19, 215-224 (1986).
18 Winey, K. I., Thomas, E. L. & Fetters, L. J. Isothermal morphology diagrams for binary blends of diblock copolymer and homopolymer. Macromolecules 25, 2645-2650 (1992).
19 Vavasour, J. & Whitmore, M. Self-consistent mean field theory of the microphases of diblock copolymers. Macromolecules 25, 5477-5486 (1992).
20 Matsen, M. W. & Schick, M. Stable and unstable phases of a diblock copolymer melt. Physical Review Letters 72, 2660 (1994).
21 Takenaka, M. et al. Orthorhombic Fddd network in diblock copolymer melts. Macromolecules 40, 4399-4402 (2007).
22 Kim, M. I. et al. Stability of the Fddd phase in diblock copolymer melts. Macromolecules 41, 7667-7670 (2008).
23 Hashimoto, T., Koizumi, S., Hasegawa, H., Izumitani, T. & Hyde, S. T. Observation of" mesh" and" strut" structures in block copolymer/homopolymer mixtures. Macromolecules 25, 1433-1439 (1992).
24 Hamley, I. W. et al. Hexagonal mesophases between lamellae and cylinders in a diblock copolymer melt. Macromolecules 26, 5959-5970 (1993).
25 Zhu, L. et al. “Plastic Deformation” Mechanism and Phase Transformation in a Shear-Induced Metastable Hexagonally Perforated Layer Phase of a Polystyrene-b-poly (ethylene oxide) Diblock Copolymer. Macromolecules 36, 3180-3188 (2003).
26 Hajduk, D. A. et al. Stability of the perforated layer (PL) phase in diblock copolymer melts. Macromolecules 30, 3788-3795 (1997).
27 Chuang, W.-T. et al. Tetragonally perforated layer structure via columnar ordering of 4′-(3, 4, 5-trioctyloxybenzoyloxy) benzoic acid in a supramolecular complex with polystyrene-block-poly (4-vinylpyridine). Chemistry of Materials 21, 975-978 (2009).
28 Jinnai, H. et al. Direct measurement of interfacial curvature distributions in a bicontinuous block copolymer morphology. Physical review letters 84, 518 (2000).
29 Thomas, E. L., Anderson, D. M., Henkee, C. S. & Hoffman, D. Periodic area-minimizing surfaces in block copolymers. Nature 334, 598-601 (1988).
30 Kopsky, V. & Litvin, D. B. International tables for crystallography. (John Wiley, 2010).
31 Matsen, M. & Bates, F. Conformationally asymmetric block copolymers. UMSI research report/University of Minnesota (Minneapolis, Mn). Supercomputer institute 96, 125 (1997).
32 Semenov, A. & Vasilenko, S. Theory of the nematic–smectic-A transition in a melt of macromolecules consisting of a rigid and a flexible block. Sov. Phys. JETP 63, 70-79 (1986).
33 Matsen, M. & Barrett, C. Liquid-crystalline behavior of rod-coil diblock copolymers. The Journal of chemical physics 109, 4108-4118 (1998).
34 Pryamitsyn, V. & Ganesan, V. Self-assembly of rod–coil block copolymers. The Journal of chemical physics 120, 5824-5838 (2004).
35 Bates, F. S. et al. Fluctuations, conformational asymmetry and block copolymer phase behaviour. Faraday Discussions 98, 7-18 (1994).
36 Vavasour, J. & Whitmore, M. Self-consistent field theory of block copolymers with conformational asymmetry. Macromolecules 26, 7070-7075 (1993).
37 Lee, M., Cho, B.-K. & Zin, W.-C. Supramolecular structures from rod− coil block copolymers. Chemical Reviews 101, 3869-3892 (2001).
38 Chen, J., Thomas, E., Ober, C. & Hwang, S. Zigzag morphology of a poly (styrene-b-hexyl isocyanate) rod-coil block copolymer. Macromolecules 28, 1688-1697 (1995).
39 Chen, J., Thomas, E., Ober, C. & Mao, G.-P. Self-assembled smectic phases in rod-coil block copolymers. Science, 343-346 (1996).
40 Radzilowski, L., Carragher, B. & Stupp, S. I. Three-dimensional self-assembly of rodcoil copolymer nanostructures. Macromolecules 30, 2110-2119 (1997).
41 Muthukumar, M., Ober, C. & Thomas, E. Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277, 1225-1232 (1997).
42 Li, C. Y. et al. Hierarchical Assembly of a Series of Rod− Coil Block Copolymers: Supramolecular LC Phase in Nanoenviroment. Macromolecules 37, 2854-2860 (2004).
43 Zhou, Q. F., Li, H. M. & Feng, X. D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules 20, 233-234 (1987).
44 Zhou, Q., Zhu, X. & Wen, Z. Liquid-crystalline side-chain polymers without flexible spacer. Macromolecules 22, 491-493 (1989).
45 Liu, Y., Zhang, D., Wan, X.-. & Zhou, Q.-. Synthesis of a Novel" Mesogen-Jacketed Liquid Crystal Polymer" Based on Vinylterephthatic Acid. Chinese journal of polymer science 16, 283-283 (1998).
46 Yin, X.-Y. et al. Manipulating supramolecular self-assembly via tailoring pendant group size of linear vinyl polymers. Journal of the American Chemical Society 125, 6854-6855 (2003).
47 Ye, C. et al. Molecular weight dependence of phase structures and transitions of mesogen-jacketed liquid crystalline polymers based on 2-vinylterephthalic acids. Macromolecules 37, 7188-7196 (2004).
48 Shi, L.-Y., Zhou, Y., Fan, X.-H. & Shen, Z. Remarkably rich variety of nanostructures and order–order transitions in a rod–coil diblock copolymer. Macromolecules 46, 5308-5316 (2013).
49 Fischer, H., Poser, S., Arnold, M. & Frank, W. On the influence of the morphological structure on the liquid crystalline behavior of liquid crystalline side chain block copolymers. Macromolecules 27, 7133-7138 (1994).
50 Fischer, H., Poser, S. & Arnold, M. Liquid crystalline side group block copolymers with n-butyl methacrylate as an amorphous a-block: synthesis and characterization. Macromolecules 28, 6957-6962 (1995).
51 Tian, Y., Watanabe, K., Kong, X., Abe, J. & Iyoda, T. Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules 35, 3739-3747 (2002).
52 Anthamatten, M., Zheng, W. Y. & Hammond, P. T. A morphological study of well-defined smectic side-chain LC block copolymers. Macromolecules 32, 4838-4848 (1999).
53 Anthamatten, M. & Hammond, P. T. A SAXS study of microstructure ordering transitions in liquid crystalline side-chain diblock copolymers. Macromolecules 32, 8066-8076 (1999).
54 Shah, M., Pryamitsyn, V. & Ganesan, V. A model for self-assembly in side chain liquid crystalline block copolymers. Macromolecules 41, 218-229 (2008).
55 Cypcar, C. C., Camelio, P., Lazzeri, V., Mathias, L. J. & Waegell, B. Prediction of the glass transition temperature of multicyclic and bulky substituted acrylate and methacrylate polymers using the energy, volume, mass (EVM) QSPR model. Macromolecules 29, 8954-8959 (1996).
56 Kang, B.-G. et al. Living Anionic Polymerization of N-(1-Adamantyl)-N-4-vinylbenzylideneamine and N-(2-Adamantyl)-N-4-vinylbenzylideneamine: Effects of Adamantyl Groups on Polymerization Behaviors and Thermal Properties. Macromolecules 48, 8489-8496 (2015).
57 Kobayashi, S., Kataoka, H. & Ishizone, T. in Journal of Physics: Conference Series. 012017 (IOP Publishing).
58 Kobayashi, S., Matsuzawa, T., Matsuoka, S.-i., Tajima, H. & Ishizone, T. Living Anionic Polymerizations of 4-(1-Adamantyl) styrene and 3-(4-Vinylphenyl)-1, 1 ‘-biadamantane. Macromolecules 39, 5979-5986 (2006).
59 Lu, W., Huang, C., Hong, K., Kang, N.-G. & Mays, J. W. Poly (1-adamantyl acrylate): Living Anionic Polymerization, Block Copolymerization, and Thermal Properties. Macromolecules 49, 9406-9414 (2016).
60 Kobayashi, S. et al. Synthesis and properties of new thermoplastic elastomers containing poly [4-(1-adamantyl) styrene] hard Segments. Macromolecules 41, 5502-5508 (2008).
61 Ramireddy, C., Tuzar, Z., Prochazka, K., Webber, S. & Munk, P. Styrene-tert-butyl methacrylate and styrene-methacrylic acid block copolymers: synthesis and characterization. Macromolecules 25, 2541-2545 (1992).
62 Papadopoulos, P., Peristeraki, D., Floudas, G., Koutalas, G. & Hadjichristidis, N. Origin of glass transition of poly (2-vinylpyridine). A temperature-and pressure-dependent dielectric spectroscopy study. Macromolecules 37, 8116-8122 (2004).
63 Qi, S. & Wang, Z.-G. Kinetics of phase transitions in weakly segregated block copolymers: Pseudostable and transient states. Physical Review E 55, 1682 (1997).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *