|
1. XiuJun (James) Li, A.V.V., Peng Zuo, and Zhihong Nie, Microfluidic 3D cell culture: potential application for tissuebased bioassays. Bioanalysis, 2012. 4(12): p. 1509-1525. 2. Mingming Wu, M.A.S., Modeling Tumor Microenvironments In Vitro. Journal of Biomechanical Engineering, 2014. 136(2): p. 021011. 3. Seok Chung, R.S., Vernella Vickerman, Ioannis K. Zervantonakis, and Roger D. Kamm, Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Annals of Biomedical Engineering, 2010. 38(3): p. 1164–1177. 4. Rui Li, X.L., Xingjian Zhang, Omer Saeed, Yulin Deng, Microfluidics for cell-cell interactions: A review. Frontiers of Chemical Science and Engineering, 2016. 10(1): p. 90-98. 5. Do-Hyun Lee, C.Y.B., Seyong Kwon and Je-Kyun Park, User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between microfluidic bioassays and clinical end-users'needs. Lab on a Chip, 2015. 15(11): p. 2379–2387. 6. Ratmir Derda, A.L., Akiko Mammoto, Sindy K. Y. Tang, Tadanori Mammoto, Donald E. Ingber, and George M. Whitesides, Paper-supported 3D cell culture for tissue-based bioassays. PNAS, 2009. 106(44): p. 18457-18462. 7. Liu T, L.B., Qin J, Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab on a Chip, 2010. 10(13): p. 1671-1677. 8. Zhou M, M.H., Lin H, Qin J, Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials, 2014. 35(5): p. 1390-1401. 9. Seok Chung, R.S., Peter J. Mack, Chen-Rei Wan, Vernella Vickerman and Roger D. Kamm Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip, 2009. 9(2): p. 269-275. 10. Carlos P. Huang, J.L., Hyeryung Seon, Abraham P. Lee, Lisa A. Flanagan, Ho-Young Kim, Andrew J. Putnam and Noo Li Jeon, Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip, 2009. 9(12): p. 1740–1748. 11. De Jong J, L.R.G., Wessling M, Membranes and microfluidics: A review. Lab on a Chip, 2006. 6(9): p. 1125-1139. 12. Jang K J, S.K.Y., A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab on a Chip, 2010. 10(1): p. 36-42. 13. Ostrovidov S, S.Y., Fujii T, Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomedical Microdevices, 2011. 13(5): p. 847-864. 14. VanDersarl J J, X.A.M., Melosh N A, Rapid spatial and temporal controlled signal delivery over large cell culture areas. Lab on a Chip, 2011. 11: p. 3057-63. 15. Shanshan Wang, E.L., Yanghui Gao, Yan Wang, Zhe Guo, Jiarui He, Jianing Zhang, Zhancheng Gao, Qi Wang, Study on Invadopodia Formation for Lung Carcinoma Invasion with a Microfluidic 3D Culture Device. PLoS One, 2013. 8(2). 16. Yi Dong, A.M.S., Keith D. Merdek, Kam M. Sprott, Chunsheng Jiang, William E. Pierceall, Jessie Lin, Michael Stocum, Walter P. Carney, and Denis A. Smirnov, Microfluidics and Circulating Tumor Cells. The Journal of Molecular Diagnostics, March 2013, 2013. 15(2): p. 149-157. 17. Zeisberg, R.K.a.M., Fibroblasts in cancer. Nat Rev Cancer, 2006. 6(5): p. 392-401. 18. Cara-Lynn E. Helm, M.E.F., Andreas H. Zisch, Federica Boschetti, and Melody A. Swartz Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism PNAS 2005 102(44): p. 15779-84. 19. Yamamura N, S.R., Ikeda M, Tanishita K, Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Engineering, ㄋ2007. 13(7): p. 1443-53. 20. Shengli Mi, Z.D., Yuanyuan Xu, Zhengjie Wu, Xiang Qian, Min Zhang & and W. Sun, Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening. Scientific Reports, 2016. 6: p. 35544. 21. Kari R. Fischer, A.D., Sharrell Lee, Jianting Sheng, Fuhai Li, Stephen T. C. Wong5, Hyejin Choi,Tina El Rayes, Seongho Ryu1, Juliane Troeger, Robert F. Schwabe, Linda T. Vahdat, Nasser K. Altorki, Vivek Mittal & Dingcheng Gao, Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015. 527(7579): p. 472–476. 22. Phua, Y.M., N; Pennisi, DJ; Little, MH; Wilkinson, L, Distinct sites of renal fibrosis in Crim1 mutant mice arise from multiple cellular origins. The Journal of pathology, 2013. 229(5): p. 685–96. 23. Thiery JP, S.J., Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 2006 7: p. 131–142. 24. Singh A, S.J., EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741–4751. 25. Mahmut Yilmaz, G.C.a.F.o.L., Distinct mechanisms of tumor invasion and metastasis. TRENDS in Molecular Medicine, 2007. 13(12). 26. Elena I. Deryugina, W.B.K., Intratumoral Cancer Cell Intravasation Can Occur Independent of Invasion into the Adjacent Stroma. Cell Reports, 2017 19(3): p. 601-616. 27. Jessie S. Jeon, I.K.Z., Seok Chung, Roger D. Kamm, Joseph L. Charest, In Vitro Model of Tumor Cell Extravasation. PLOS ONE, 2013. 8(2): p. e56910. 28. 衛生福利部, 105年死因統計結果分析. 2016. 29. Calvin R. Justus, N.L., Maria Ruiz-Echevarria and Li V. Yang, In vitro Cell Migration and Invasion Assays. Journal of Visualized Experiments, 2014. 88: p. e51046. 30. Liu, X., Inflammatory Cytokines Augments TGF-b1- Induced Epithelial-Mesenchymal Transition in A549 Cells by Up-Regulating TbR-I. Cell Motility and the Cytoskeleton, 2008. 65(12): p. 935-944. 31. Solinas, G., Germano, G., Mantovani, A. and Allavena, P, Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of Leukocyte Biology, 2009. 86(5): p. 1065-1073. 32. Mantovani, A., Allavena, Paola Sica, Antonio and Balkwill, Frances, Cancer-related inflammation. Nature, 2008. 454: p. 436-44. 33. Hanahan, D., Coussens and Lisa M, Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell, 2012. 21(3): p. 309-322. 34. RF., C.A.a.D.M., Testing the "Go or Grow" hypothesis in human medulloblastoma cell lines in two and three dimensions. Neurosurgery, 2003. 53(1): p. 174-84. 35. Callier, V., Cancer Cells Can't Proliferate and Invade at the Same Time. Scientific America, 2016.
|