帳號:guest(18.226.150.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):倪秉瑄
作者(外文):Ni, Bing-Syuan.
論文名稱(中文):應用於癌轉移研究之人體肺癌平台建立
論文名稱(外文):Construction of a human lung tumor platform for tumor metastasis study
指導教授(中文):黃振煌
指導教授(外文):Huang, Jen-Huang.
口試委員(中文):徐祖安
陳冠宇
口試委員(外文):Hsu, Tsu-An
Chen, Guan-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032512
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:55
中文關鍵詞:微流體腫瘤轉移
外文關鍵詞:microfluidiclungtumormetastasis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:255
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在全世界為數眾多惡性腫瘤的患者中,肺癌是長年以來許多患者的噩夢之一,想當然每年也有許多患者死於肺癌。由許多臨床證據顯示出,對於癌症患者而言,癌轉移才是造成他們死亡的主要原因。為了研究並了解癌轉移的機制,重建惡性腫瘤之環境的體外裝置被視為相對簡單並可模仿癌細胞與其周圍體細胞複雜又多樣化的互動的方法之一。然而,目前為止所發展的裝置通常只在靜止狀態下做培養或只包含一至二種細胞以至於無法完整的複製癌細胞之環境且製作過程繁瑣又費時。對此,本篇研究將針對是否流動系統及立體培養會影響癌細胞以及共培養、細胞激素如何影響癌細胞行為等兩大方向作探討。我們設計以微流體作為基礎的裝置結合肺癌細胞A549和肺微血管內皮細胞以創造更完善的腫瘤環境。該裝置的主要特點為我們設計了可拋棄式的卡匣,該卡匣在裝置中主要為癌細胞培養的位置。對應上述之不同條件,我們可以任意調整卡匣中癌細胞的環境以達到隨插即用的功能和即時且可數量化的癌細胞轉移或生長的數據。此外該卡匣也與循環流動系統結合以建構體外肺癌平台。截至目前為止,該裝置已經完成了:(1)A549/GFP細胞的平面培養與細胞激素TGF-β1投放比較;(2) A549/GFP細胞與肺微血管內皮細胞之共培養;(3)A549/GFP細胞在膠原蛋白中的立體培養;(4)A549/GFP細胞在流動系統中的收集。未來,我們也計畫將纖維母細胞或巨噬細胞結合癌細胞共同培養於裝置中並加以投放抗癌藥物以創造出更完善的癌細胞環境利於未來之癌轉移研究。
Lung cancer is one of the most common malignancies and the leading causes of cancer-related death in the world. Many clinical data has shown that cancer metastasis is the major reason that causes the death of patients. To investigate the mechanism of metastasis, reconstruction of tumor microenvironment in vitro is considered as an easily accessible approach that can mimic the complex and multiple interactions among lung tumor cells and other surrounding cells. However, the existing devices usually contain no flow dynamic systems which are not able to represent the tumor microenvironment. Moreover, the manufacturing and operation processes are complex and time-consuming. Therefore, the goals of this study are to understand if a flow dynamic system and 3D culture can affect the growth conditions of the carcinoma cells and if a co-culture of multiple cells and adding of grow factors will alter the behaviors of the tumor cells. Here, we developed a microfluidic-based platform that can culture lung cancer cells and endothelial cells in the same format to mimic a tumor microenvironment. We developed a technique to fabricate a microfluidic-based platform that contains multiple disposable microfluidic clips. These clips could be adjusted to meet certain culture condition and plug-and-play after observation so that the cancer cells migration results can be in time and quantitatively obtained. In addition, we connected the tumor chip with the circulating system to form an in vitro human lung platform. So far, we demonstrated: (1) The capability of the A549/GFP cell culture in the tumor chip with TGF-β1 treatment. (2) The co-culture of A549/GFP and HPMECs cells in tumor chip. (2) The proliferation and migration of A549/GFP cells in 3D collagen scaffold. (3) The capturing and culturing of A549/GFP cells in flow dynamic system. For the future applications, fibroblasts or macrophage cells can be introduced in the system to construct more advanced tumor microenvironment for drug development research. For example, antineoplastic drugs can be administrated through the circulating system in our platform.
Table of Content
Chapter 1: Introduction & paper review---------------------------1
1-1 Review: 2D, 3D microfluidic devices--------------------------1
1-1-1 3D structure-----------------------------------------------2
1-1-2 Microchannel structure-------------------------------------3
1-1-3 Membrane application---------------------------------------3
1-2 Lack of Multicellular interaction----------------------------4
1-2-1 Fibroblasts------------------------------------------------5
1-2-2 Endothelial cells------------------------------------------6
1-3 Tumor microenvironments--------------------------------------8
1-3-1 Epithelial-mesenchymal transition (EMT)--------------------8
1-3-2 Cancer cell migrations-------------------------------------8
1-3-3 Intravasation---------------------------------------------10
1-3-4 Current invasion model------------------------------------11
Chapter 2: Approaches-------------------------------------------13
2-1 Device design-----------------------------------------------13
2-1-1 Device formation by a laser cutter------------------------17
2-2 Cell culture------------------------------------------------18
2-2-1 Sterilization---------------------------------------------18
2-3 Cytokines assay---------------------------------------------19
2-3-1 Live and dead staining------------------------------------19
2-4 Pretesting procedures---------------------------------------19
2-4-1 Flow testing----------------------------------------------19
2-4-2 HeLa cells testing----------------------------------------20
2-5 Experiment procedures---------------------------------------20
2-5-1 A549/GFP 2D cell culture----------------------------------20
2-5-2 A549/GFP 3D cell culture----------------------------------21
3-1 Pretesting results------------------------------------------22
3-1-1 Flow testing----------------------------------------------22
3-1-2 HeLa cells testing----------------------------------------23
3-2 Experiment results------------------------------------------23
3-2-1 A549 2D cell culture--------------------------------------23
3-2-2 A549/GFP 2D mono-cell culture-----------------------------27
3-2-3 A549/GFP 2D mono-cell culture with TGF-β1 in medium------29
3-2-4 A549/GFP 2D co-culture with HPMECs------------------------30
3-2-5 A549 3D cell culture on alginate surface------------------33
3-2-6 A549 3D cell culture on the collagen surface--------------34
3-2-7 A549/GFP 3D cell culture in collagen hydrogel-------------36
3-2-8 A549/GFP 3D cell culture in thin collagen-----------------39
3-2-9 A549/GFP cells collection in medium container-------------45
Chapter 4: Conclusions------------------------------------------49
Chapter 5: Future applications----------------------------------51
5-1 Advance tumor microenvironment constructions----------------51
5-2 Antineoplastic drugs administrations------------------------52
Chapter 6: Reference--------------------------------------------53

1. XiuJun (James) Li, A.V.V., Peng Zuo, and Zhihong Nie, Microfluidic 3D cell culture: potential application for tissuebased bioassays. Bioanalysis, 2012. 4(12): p. 1509-1525.
2. Mingming Wu, M.A.S., Modeling Tumor Microenvironments In Vitro. Journal of Biomechanical Engineering, 2014. 136(2): p. 021011.
3. Seok Chung, R.S., Vernella Vickerman, Ioannis K. Zervantonakis, and Roger D. Kamm, Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Annals of Biomedical Engineering, 2010. 38(3): p. 1164–1177.
4. Rui Li, X.L., Xingjian Zhang, Omer Saeed, Yulin Deng, Microfluidics for cell-cell interactions: A review. Frontiers of Chemical Science and Engineering, 2016. 10(1): p. 90-98.
5. Do-Hyun Lee, C.Y.B., Seyong Kwon and Je-Kyun Park, User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between microfluidic bioassays and clinical end-users'needs. Lab on a Chip, 2015. 15(11): p. 2379–2387.
6. Ratmir Derda, A.L., Akiko Mammoto, Sindy K. Y. Tang, Tadanori Mammoto, Donald E. Ingber, and George M. Whitesides, Paper-supported 3D cell culture for tissue-based bioassays. PNAS, 2009. 106(44): p. 18457-18462.
7. Liu T, L.B., Qin J, Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab on a Chip, 2010. 10(13): p. 1671-1677.
8. Zhou M, M.H., Lin H, Qin J, Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials, 2014. 35(5): p. 1390-1401.
9. Seok Chung, R.S., Peter J. Mack, Chen-Rei Wan, Vernella Vickerman and Roger D. Kamm Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip, 2009. 9(2): p. 269-275.
10. Carlos P. Huang, J.L., Hyeryung Seon, Abraham P. Lee, Lisa A. Flanagan, Ho-Young Kim, Andrew J. Putnam and Noo Li Jeon, Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip, 2009. 9(12): p. 1740–1748.
11. De Jong J, L.R.G., Wessling M, Membranes and microfluidics: A review. Lab on a Chip, 2006. 6(9): p. 1125-1139.
12. Jang K J, S.K.Y., A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab on a Chip, 2010. 10(1): p. 36-42.
13. Ostrovidov S, S.Y., Fujii T, Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomedical Microdevices, 2011. 13(5): p. 847-864.
14. VanDersarl J J, X.A.M., Melosh N A, Rapid spatial and temporal controlled signal delivery over large cell culture areas. Lab on a Chip, 2011. 11: p. 3057-63.
15. Shanshan Wang, E.L., Yanghui Gao, Yan Wang, Zhe Guo, Jiarui He, Jianing Zhang, Zhancheng Gao, Qi Wang, Study on Invadopodia Formation for Lung Carcinoma Invasion with a Microfluidic 3D Culture Device. PLoS One, 2013. 8(2).
16. Yi Dong, A.M.S., Keith D. Merdek, Kam M. Sprott, Chunsheng Jiang, William E. Pierceall, Jessie Lin, Michael Stocum, Walter P. Carney, and Denis A. Smirnov, Microfluidics and Circulating Tumor Cells. The Journal of Molecular Diagnostics, March 2013, 2013. 15(2): p. 149-157.
17. Zeisberg, R.K.a.M., Fibroblasts in cancer. Nat Rev Cancer, 2006. 6(5): p. 392-401.
18. Cara-Lynn E. Helm, M.E.F., Andreas H. Zisch, Federica Boschetti, and Melody A. Swartz Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism PNAS 2005 102(44): p. 15779-84.
19. Yamamura N, S.R., Ikeda M, Tanishita K, Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Engineering, ㄋ2007. 13(7): p. 1443-53.
20. Shengli Mi, Z.D., Yuanyuan Xu, Zhengjie Wu, Xiang Qian, Min Zhang & and W. Sun, Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening. Scientific Reports, 2016. 6: p. 35544.
21. Kari R. Fischer, A.D., Sharrell Lee, Jianting Sheng, Fuhai Li, Stephen T. C. Wong5, Hyejin Choi,Tina El Rayes, Seongho Ryu1, Juliane Troeger, Robert F. Schwabe, Linda T. Vahdat, Nasser K. Altorki, Vivek Mittal & Dingcheng Gao, Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015. 527(7579): p. 472–476.
22. Phua, Y.M., N; Pennisi, DJ; Little, MH; Wilkinson, L, Distinct sites of renal fibrosis in Crim1 mutant mice arise from multiple cellular origins. The Journal of pathology, 2013. 229(5): p. 685–96.
23. Thiery JP, S.J., Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 2006 7: p. 131–142.
24. Singh A, S.J., EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741–4751.
25. Mahmut Yilmaz, G.C.a.F.o.L., Distinct mechanisms of tumor invasion and metastasis. TRENDS in Molecular Medicine, 2007. 13(12).
26. Elena I. Deryugina, W.B.K., Intratumoral Cancer Cell Intravasation Can Occur Independent of Invasion into the Adjacent Stroma. Cell Reports, 2017 19(3): p. 601-616.
27. Jessie S. Jeon, I.K.Z., Seok Chung, Roger D. Kamm, Joseph L. Charest, In Vitro Model of Tumor Cell Extravasation. PLOS ONE, 2013. 8(2): p. e56910.
28. 衛生福利部, 105年死因統計結果分析. 2016.
29. Calvin R. Justus, N.L., Maria Ruiz-Echevarria and Li V. Yang, In vitro Cell Migration and Invasion Assays. Journal of Visualized Experiments, 2014. 88: p. e51046.
30. Liu, X., Inflammatory Cytokines Augments TGF-b1- Induced Epithelial-Mesenchymal Transition in A549 Cells by Up-Regulating TbR-I. Cell Motility and the Cytoskeleton, 2008. 65(12): p. 935-944.
31. Solinas, G., Germano, G., Mantovani, A. and Allavena, P, Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of Leukocyte Biology, 2009. 86(5): p. 1065-1073.
32. Mantovani, A., Allavena, Paola Sica, Antonio and Balkwill, Frances, Cancer-related inflammation. Nature, 2008. 454: p. 436-44.
33. Hanahan, D., Coussens and Lisa M, Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell, 2012. 21(3): p. 309-322.
34. RF., C.A.a.D.M., Testing the "Go or Grow" hypothesis in human medulloblastoma cell lines in two and three dimensions. Neurosurgery, 2003. 53(1): p. 174-84.
35. Callier, V., Cancer Cells Can't Proliferate and Invade at the Same Time. Scientific America, 2016.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *