帳號:guest(3.137.219.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳任璿
作者(外文):Wu, Jen-Hsuan.
論文名稱(中文):紅磷鉀離子全電池之研究
論文名稱(外文):Red phosphorus for potassium-ion full cells
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):周更生
曾院介
口試委員(外文):Chou, Kan-Sen
Tseng, Yuan-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032506
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:28
中文關鍵詞:鉀離子電池紅磷全電池
外文關鍵詞:potassium-ion batteryred phosphorusfull cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鉀金屬跟鈉金屬一樣,在地球上的含量極為豐富,由於其低成本、自然資源豐富、且跟鋰金屬同為鹼金屬一族,具有相似的化學性質,使其成為最有潛力替代鋰離子電池能源儲存和轉換的新材料。最近,鉀離子電池(KIBs)已經被極大的關注。有研究已經證明將鉀離子插入石墨碳材料是可行的。然而,鉀離子電池(KIBs)的電化學性能依然不能令人滿意。此外,由於鉀離子電池相關的文獻,負極材料多以碳材為主,這限制了鉀電池的電容量。在這裡,我們提出了以商用紅磷為材料的負極,以高能量球磨即可活化商用紅磷,混碳材是為了增加導電度和穩定性。此外,我們用紅磷為負極,K-MnHCFe的層狀結構為正極,組成了鉀離子的全電池。目前世界上的研究還沒有人做出用紅磷為負極的鉀離子半電池,更不用說鉀離子全電池了。我們的研究證明了此搭配的鉀離子全電池可以作為儲存能量的裝置,不但具有非常優異的電容量性能(約500 mA h g-1, 300 mA g-1)和穩定的長期循環性能(200 mA h g-1, 1000 mA g-1,經過680次循環。)此外,我們成功組裝了軟包鉀離子全電池,並用它來點亮許多LED燈泡。這些結果使得RP-C/K-MnHCFe的鉀離子全電池有望用於儲能裝置的實際應用,因此我們認為該結構是一種非常具有前景的電池儲存裝置設計。
Potassium has as rich an abundance as sodium in the earth. potassium-ion battery is thought of as alternatives to Lithium-ion batteries due to low cost, and the similar chemical properties to Li. Recently, significant attention has been paid to potassium-ion battery (KIBs). The intercalation of potassium ions into graphitic carbon materials has been demonstrated to be feasible. However, the electrochemical performance of the potassium-ion battery (KIBs) is still unsatisfactory. Besides, most of researches reported about potassium-ion batteries are carbon-based anodes. Here we report RP-based anodes (RP-C) for potassium-ion batteries. We propose an anode made of commercial red phosphorus. We can activate commercial red phosphorus by using high-energy ball milling. To increase conductivity and stability, we mix RP with carbon materials. In addition, we constitute a full cell of potassium ions, used red phosphorus as the anode, and the layered structure of K-MnHCFe as the cathode. By far, there isn’t a research about a potassium ion half cell using red phosphorus as anodes, not to mention a potassium ion full cell. The K-ion full cell was successfully assembled, and it has very excellent rate capability (about 500 mA h g-1, at 300 mA g-1) and stable long term cycling performance (200 mA h g-1 at 1000 mA g-1 after 680 cycles.) Moreover, we successfully assemble a pouch-type K-ion full cell, and using it to lighten up many LED bulbs. These results make RP-C/K-MnHCFe K-ion full cell promising for practical application in energy storage devices, and we believe that the structure as a new promising battery storage applications.
中文摘要------------------------------------------------ I
Abstract----------------------------------------------- II
Table of Contents-------------------------------------- III
List of Figures---------------------------------------- IV
Chapter 1. Introduction-------------------------------- 1
1.1 Introduction of Potassium ion batteries------------ 1
1.2 Red phosphorus anodes: potential and challenges---- 4
1.3 Introduction of cathode---------------------------- 6
1.4 half cell vs full cell----------------------------- 7
1.5 The effect of anode in potassium ion batteries----- 8
Chapter 2. Experimental Section------------------------ 9
2.1 Chemicals------------------------------------------ 9
2.2 Red phosphorus anode preparation------------------- 9
2.3 Synthesis of K-MnHCFe------------------------------ 9
2.4 Cathode preparation-------------------------------- 10
2.5 Potassium ion battery assembly--------------------- 10
2.6 Electrochemical characterization Potassium ion battery assembly----------------------------------------------- 10
2.7 Characterization----------------------------------- 10
Chapter 3. Result and discussion----------------------- 11
3.1 Characterization of RP-Fe composites and K-MnHCFe-- 11
3.2 Electrochemical performance------------------------ 12
3.3 Conclusion----------------------------------------- 23
Reference-----------------------------------------------25
(1) Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of power sources, 226, 272-288.
(2) Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 241, 680-689.
(3) Zhang, W. J. (2011). A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 196(1), 13-24.
(4) Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
(5) Kucinskis, G., Bajars, G., & Kleperis, J. (2013). Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, 240, 66-79.
(6) Wang, Y., Liu, B., Li, Q., Cartmell, S., Ferrara, S., Deng, Z. D., & Xiao, J. (2015). Lithium and lithium ion batteries for applications in microelectronic devices: A review. Journal of Power Sources, 286, 330-345.
(7) Zeng, X., Li, J., & Singh, N. (2014). Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology, 44(10), 1129-1165.
(8) Ellis, B. L., Lee, K. T., & Nazar, L. F. (2010). Positive electrode materials for Li-ion and Li-batteries. Chemistry of Materials, 22(3), 691-714.
(9) Carmichael, R. S. (2017). Practical Handbook of Physical Properties of Rocks and Minerals (1988). CRC press.
(10) Yabuuchi, N., Kubota, K., Dahbi, M., & Komaba, S. (2014). Research development on sodium-ion batteries. Chemical reviews, 114(23), 11636-11682.
(11) Kim, H., Hong, J., Park, K. Y., Kim, H., Kim, S. W., & Kang, K. (2014). Aqueous rechargeable Li and Na ion batteries. Chemical reviews, 114(23), 11788-11827.
(12) Xing, Z., Qi, Y., Jian, Z., & Ji, X. (2016). Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS applied materials & interfaces, 9(5), 4343-4351.
(13) Lei, K., Li, F., Mu, C., Wang, J., Zhao, Q., Chen, C., & Chen, J. (2017). High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy & Environmental Science, 10(2), 552-557.
(14) Share, K., Cohn, A. P., Carter, R., Rogers, B., & Pint, C. L. (2016). Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS nano, 10(10), 9738-9744.
(15) Jian, Z., Luo, W., & Ji, X. (2015). Carbon electrodes for K-ion batteries. Journal of the American Chemical Society, 137(36), 11566-11569.
(16) Jian, Z., Xing, Z., Bommier, C., Li, Z., & Ji, X. (2016). Hard carbon microspheres: potassium‐ion anode versus sodium‐ion anode. Advanced Energy Materials, 6(3), 1501874.
(17) Bie, X., Kubota, K., Hosaka, T., Chihara, K., & Komaba, S. (2017). A novel K-ion battery: hexacyanoferrate (II)/graphite cell. Journal of Materials Chemistry A, 5(9), 4325-4330.
(18) Wang, L., Zou, J., Chen, S., Zhou, G., Bai, J., Gao, P., ... & Li, H. (2018). TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Storage Materials, 12, 216-222.
(19) Ren, W., Chen, X., & Zhao, C. (2018). Ultrafast Aqueous Potassium‐Ion Batteries Cathode for Stable Intermittent Grid‐Scale Energy Storage. Advanced Energy Materials, 1801413.
(20) Jian, Z., Xing, Z., Bommier, C., Li, Z., & Ji, X. (2016). Hard carbon microspheres: potassium‐ion anode versus sodium‐ion anode. Advanced Energy Materials, 6(3), 1501874.
(21) Share, K., Cohn, A. P., Carter, R., Rogers, B., & Pint, C. L. (2016). Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS nano, 10(10), 9738-9744.
(22) Jian, Z., Luo, W., & Ji, X. (2015). Carbon electrodes for K-ion batteries. Journal of the American Chemical Society, 137(36), 11566-11569.
(23) Xing, Z., Qi, Y., Jian, Z., & Ji, X. (2016). Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS applied materials & interfaces, 9(5), 4343-4351.
(24) Ong, S. P., Chevrier, V. L., Hautier, G., Jain, A., Moore, C., Kim, S., ... & Ceder, G. (2011). Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy & Environmental Science, 4(9), 3680-3688.
(25) Cohn, A. P., Muralidharan, N., Carter, R., Share, K., Oakes, L., & Pint, C. L. (2016). Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. Journal of Materials Chemistry A, 4(39), 14954-14959.
(26) Liu, C., Li, F., Ma, L. P., & Cheng, H. M. (2010). Advanced materials for energy storage. Advanced materials, 22(8), E28-E62.
(27) Sun, J., Zheng, G., Lee, H. W., Liu, N., Wang, H., Yao, H., ... & Cui, Y. (2014). Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano letters, 14(8), 4573-4580.
(28) Bai, A., Wang, L., Li, J., He, X., Wang, J., & Wang, J. (2015). Composite of graphite/phosphorus as anode for lithium-ion batteries. Journal of Power Sources, 289, 100-104.
(29) Li, W. J., Chou, S. L., Wang, J. Z., Liu, H. K., & Dou, S. X. (2016). Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C). Journal of Materials Chemistry A, 4(2), 505-511.
(30) Kim, Y., Park, Y., Choi, A., Choi, N. S., Kim, J., Lee, J., ... & Lee, K. T. (2013). An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Advanced materials, 25(22), 3045-3049..
(31) Ramireddy, T., Xing, T., Rahman, M. M., Chen, Y., Dutercq, Q., Gunzelmann, D., & Glushenkov, A. M. (2015). Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 3(10), 5572-5584.
(32) Qian, J., Wu, X., Cao, Y., Ai, X., & Yang, H. (2013). High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angewandte Chemie, 125(17), 4731-4734.
(33) Li, W. J., Chou, S. L., Wang, J. Z., Liu, H. K., & Dou, S. X. (2013). Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano letters, 13(11), 5480-5484.
(34) Li, W., Yang, Z., Li, M., Jiang, Y., Wei, X., Zhong, X., ... & Yu, Y. (2016). Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano letters, 16(3), 1546-1553.
(35) Wang, Y., Zhang, L., Li, H., Wang, Y., Jiao, L., Yuan, H., ... & Yang, X. (2014). Solid state synthesis of Fe2P nanoparticles as high-performance anode materials for nickel-based rechargeable batteries. Journal of Power Sources, 253, 360-365.
(36) Li, Q., Ma, J., Wang, H., Yang, X., Yuan, R., & Chai, Y. (2016). Interconnected Ni2P nanorods grown on nickel foam for binder free lithium ion batteries. Electrochimica Acta, 213, 201-206.
(37) Li, G. A., Wang, C. Y., Chang, W. C., & Tuan, H. Y. (2016). Phosphorus-rich copper phosphide nanowires for field-effect transistors and lithium-ion batteries. ACS nano, 10(9), 8632-8644.
(38) Yang, J., Zhang, Y., Sun, C., Liu, H., Li, L., Si, W., ... & Dong, X. (2016). Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Research, 9(3), 612-621.
(39) Whittingham, M. S. (2004). Lithium batteries and cathode materials. Chemical reviews, 104(10), 4271-4302..
(40) Kraytsberg, A., & Ein‐Eli, Y. (2012). Higher, Stronger, Better… ︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries. Advanced Energy Materials, 2(8), 922-939.
(41) Sultana, I., Rahman, M. M., Ramireddy, T., Chen, Y., & Glushenkov, A. M. (2017). High capacity potassium-ion battery anodes based on black phosphorus. Journal of Materials Chemistry A, 5(45), 23506-23512.
(42) Xue, L., Li, Y., Gao, H., Zhou, W., Lü, X., Kaveevivitchai, W., ... & Goodenough, J. B. (2017). Low-cost high-energy potassium cathode. Journal of the American Chemical Society, 139(6), 2164-2167.
(43) Liao, J., Hu, Q., Yu, Y., Wang, H., Tang, Z., Wen, Z., & Chen, C. (2017). A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@ carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. Journal of Materials Chemistry A, 5(36), 19017-19024.
(44) Xie, Y., Chen, Y., Liu, L., Tao, P., Fan, M., Xu, N., ... & Yan, C. (2017). Carbon Monoliths: Ultra‐High Pyridinic N‐Doped Porous Carbon Monolith Enabling High‐Capacity K‐Ion Battery Anodes for Both Half‐Cell and Full‐Cell Applications (Adv. Mater. 35/2017). Advanced Materials, 29(35).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *