|
1. 胡啟章, 電化學原理與方法(二版). 2011. 2. Wendt, H. and G. Kreysa, Electrochemical Engineering (Scinece and technolology in chemical and Other Industrires). 1999. 3. Bard, A.J. and L.R. Faulkner, Electrochemical methods (fundamentals and Applications). 2001. 4. Lu, M., F. Beguin, and E. Frackowiak, Supercapacitors: Materials, Systems and Applications. 2013. 5. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. 1999. 6. Ko¨tz, R. and M. Carlen, Principles and Applications of Electrochemical Capacitors. Electrochimica Acta, 2000. 45: p. 2483-2498. 7. Miller, J.R. and P. Simon, Fundamentals of electrochemical capacitor design and operation. Electrochemical Society Interface, 2008. 8. Gouy, M., Sur la constitution de la charge électrique à la surface d'un électrolyte. Journal de Physique Théorique et Appliquée, 1910. 9(1): p. 457-468. 9. Chapman, D.L., LI.A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6, 1913. 25(148): p. 475-481. 10. Stern, O., Z. Elektrochem. Angew. Phys. Chem., 1924. 30: p. 508-516. 11. Burt, R., G. Birkett, and X.S. Zhao, A review of molecular modelling of electric double layer capacitors. Phys Chem Chem Phys, 2014. 16(14): p. 6519-38. 12. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature material, 2008. 7: p. 845-854. 13. 陳金銘, 高容量碳粉材料. 工業材料, 1998. 133期. 14. 黃鉦致, 以不同原料和四種活化方法製備活性碳之物理化學與吸附特性. 國立聯合大學化學工程學系碩士論文, 2009. 15. Lewis, I., Chemistry of carbonization. Carbon, 1982. 20: p. 11. 16. Otowa, T., R. Tanibata, and M. ltoh, Production and adsorption characteristics of MAXSORB: high-surface-area active carbon Gas Separation & Purification, 1993. 7(4): p. 5. 17. Lozano-Castello´, D., et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007. 45: p. 8. 18. Romanos, J., et al., Nanospace engineering of KOH activated carbon. Nanotechnology, 2012. 23(1): p. 015401. 19. Franklin, R.E., 1950-The interpretation of diffuse X-ray diagrams of carbon. Acta Cryst., 1950. 3. 20. Franklin, R.E., 1951-The structure of graphitic carbons. Acta Cryst., 1951. 4. 21. Franklin, R.E., crystallite growth in graphitizing and non-graphitizing carbons. Proc. Roy. Soc. Lond. A, 1951. 209. 22. Mrozowski, S., Proc. First and Second Carbon Conf., 1956. 23. Inagaki, M., New carbons. Elsevier, 2000. 14. 24. 陳語婷, 非晶質碳材在動力鋰電池之研究. 國立交通大學理學院應用科技學程碩士論文, 2014. 25. Dahn, J.R., et al., 1995-Mechanisms for Lithium Insertion in Carbonaceous Materials. Science, 1995. 270. 26. Mochida, I., et al., 1998-Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. Journal of Power Sources, 1998. 75. 27. Takeuchi, M., et al., Electrochemical intercalation of tetraethylammonium tetrafluoroborate into KOH-treated carbon consisting of multi-graphene sheets for an electric double layer capacitor. Vol. 66. 1998. 1311-1317. 28. Takeuchi, M., et al., Non-porous carbon for a high energy density electric double layer capacitor. Vol. 69. 2001. 487-492. 29. Ka, B.H. and S.M. Oh, 2008-Electrochemical activation of expanded graphite electrode for electrochemical capacitor. Journal of The Electrochemical Society, 2008. 155. 30. Aida, T., et al., High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. Journal of Power Sources, 2007. 166(2): p. 462-470. 31. Morita, M., et al., On the electrochemical activation of alkali-treated soft carbon for advanced electrochemical capacitors. Journal of Applied Electrochemistry, 2013. 44(4): p. 447-453. 32. 朱春野, 納米門炭及納米門電容器. New carbon materials, 2005. 20. 33. 時志強, 炭基电化学电容器电极材料的制备与电容性能研究. 天津大學博士論文, 2007. 34. Barbieri, O., et al., Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005. 43(6): p. 1303-1310. 35. Gregg, S. and K.S. Sing, Adsorption, surface area, and porosity. 1983. 36. Kaneko, K. and C. Ishii, Superhigh surface area determination of microporous solids. Colloids and surfaces, 1992. 67: p. 203-212. 37. Raymundo-Piñero, E., et al., Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon, 2006. 44(12): p. 2498-2507. 38. Chmiola, J., et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science, 2006. 313(5794): p. 1760-1763. 39. Yang, C.-M., et al., Nanowindow-Regulated Specific Capacitance of Supercapacitor Electrodes of Single-Wall Carbon Nanohorns. Journal of the American Chemical Society, 2007. 129(1): p. 20-21. 40. Ania, C.O., et al., Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors. Carbon, 2009. 47(14): p. 3158-3166. 41. Inagaki, M. and F. Kang, Materials Science and Engineering of Carbon: Fundamentals (Second Edition). 2014. 42. Sonibare, O.O., T. Haeger, and S.F. Foley, Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy, 2010. 35(12): p. 5347-5353. 43. Klung, H. and L. Alexander, X-ray diffraction procedures. John Wiley & Sons, 1974. 44. Binoy, K.S., R.K. Boruah, and P.K. Gogoi, 2009-A X-ray diffraction analysis on graphene layers of Assam coal. J. Chem. Sci., 2009. 121. 45. Takagi, H., et al., XRD analysis of carbon stacking structure in coal during heat treatment. Fuel, 2004. 83(17-18): p. 2427-2433. 46. Lee, G.-J. and S.-I. Pyun, Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochimica Acta, 2006. 51(15): p. 3029-3038. 47. Naoi, K., ‘Nanohybrid Capacitor’: The Next Generation Electrochemical Capacitors. Fuel Cells, 2010. 10(5): p. 825-833. 48. Kötz, R., et al., Comparison of pressure evolution in supercapacitor devices using different aprotic solvents. Electrochemistry Communications, 2008. 10(3): p. 359-362. 49. Ruch, P.W., et al., A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochimica Acta, 2010. 55(7): p. 2352-2357. 50. Naoi, K., et al., Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices. Energy & Environmental Science, 2012. 5(11). 51. Kinoshita, K., Carbon: electrochemical and physicochemical properties. John Wiley Sons,New York, NY, 1988. 52. Shuichi Ishimoto, Y.A., Masanori Shinya, and Katsuhiko Naoi, Degradation Responses of Activated-Carbon-Based EDLCs for Higher Voltage Operation and Their Factors. Journal of The Electrochemistry Society, 2009. 156(7): p. A563-A571. 53. Chiba, K., et al., Electrolyte Systems for High Withstand Voltage and Durability II. Alkylated Cyclic Carbonates for Electric Double-Layer Capacitors. Journal of The Electrochemical Society, 2011. 158(12). 54. Chiba, K., et al., Electrolyte Systems for High Withstand Voltage and Durability I. Linear Sulfones for Electric Double-Layer Capacitors. Journal of The Electrochemical Society, 2011. 158(8). 55. Brandt, A. and A. Balducci, The Influence of Pore Structure and Surface Groups on the Performance of High Voltage Electrochemical Double Layer Capacitors Containing Adiponitrile-Based Electrolyte. Journal of the Electrochemical Society, 2012. 159(12): p. A2053-A2059. 56. Brandt, A., et al., Adiponitrile-based electrochemical double layer capacitor. Journal of Power Sources, 2012. 204: p. 213-219. 57. Ruther, R.E., et al., Stable Electrolyte for High Voltage Electrochemical Double-Layer Capacitors. Journal of The Electrochemical Society, 2016. 164(2): p. A277-A283. 58. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev, 2015. 44(21): p. 7484-539. 59. Balducci, A., Electrolytes for high voltage electrochemical double layer capacitors: A perspective article. Journal of Power Sources, 2016. 326: p. 534-540. 60. Beguin, F., et al., Carbons and electrolytes for advanced supercapacitors. Adv Mater, 2014. 26(14): p. 2219-51, 2283. 61. Pohlmann, S., et al., The Influence of Anion-Cation Combinations on the Physicochemical Properties of Advanced Electrolytes for Supercapacitors and the Capacitance of Activated Carbons. ChemElectroChem, 2014. 1(8): p. 1301-1311. 62. Makoto Ue, K.I.a.S., Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double‐Layer Capacitors. Journal of Electrochemistry Society 1994. 141. 63. Yu, X., et al., Spiro-(1,1′)-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors. Journal of Power Sources, 2014. 265: p. 309-316. 64. Xu, K., M.S. Ding, and T.R. Jow, Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. Journal of The Electrochemical Society, 2001. 148(3). 65. J. Chmiola, G.Y., Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. SCIENCE, 2006. 313(5794): p. 1760-1763. 66. Janes, A., et al., Fluoroethylene Carbonate as Co-Solvent for Propylene Carbonate Based Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2013. 160(8): p. A1025-A1030. 67. Jänes, A. and E. Lust, Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. Journal of Electroanalytical Chemistry, 2006. 588(2): p. 285-295. 68. Brandon, E.J., et al., Extending the low temperature operational limit of double-layer capacitors. Journal of Power Sources, 2007. 170(1): p. 225-232. 69. Perricone, E., et al., Investigation of methoxypropionitrile as co-solvent for ethylene carbonate based electrolyte in supercapacitors. A safe and wide temperature range electrolyte. Electrochimica Acta, 2013. 93: p. 1-7. 70. Tian, S., et al., Tetramethylammonium difluoro(oxalato)borate dissolved in ethylene/propylene carbonates as electrolytes for electrochemical capacitors. Journal of Power Sources, 2014. 256: p. 404-409. 71. Laheäär, A., et al., LiPF6 based ethylene carbonate–dimethyl carbonate electrolyte for high power density electrical double layer capacitor. Electrochimica Acta, 2009. 54(19): p. 4587-4594. 72. Radovic, L.R., Chemistry & Physics of Carbon. Taylor & Francis, 2000. 27. 73. T. Morimoto, K.H., Y. Sanada, K. Kurihara, Electric double-layer capacitor using organic electrolyte. Journal of Power Sources 1996. 60: p. 239-247. 74. AKIHIKO YOSHIDA, I.T., and ATSUSHI NISHINO, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers. Carbon, 1990. 28: p. 611-615. 75. Yong Tek Ju, M.-Y.C., Mok-Hwa Kim, Jae-Won Lee, Sun-Min Park, Byung Hyun Choi and Kwang Chul Roh, The reduction effect of oxygen functional groups in activated carbon for supercapacitor electrode. Journal of Ceramic Processing Research, 2012. 13: p. s159-s162. 76. M. R. Wertheimer, J.E.K.-S., J. Cerny, and S. Liang, Modification of Active Carbon by Hydrophobic Plasma Polymers: II Fabric Substrates. Plasmas and Polymers, 1998. 3(3). 77. Chi, Y.W., et al., New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping. Nano Lett, 2016. 16(9): p. 5719-27. 78. Salinas-Torres, D., et al., Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions. Carbon, 2015. 82: p. 205-213. 79. Chi, Y.-W., et al., New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping. Nano Letters, 2016. 16(9): p. 5719-5727. 80. Pinkert, K., et al., Role of Surface Functional Groups in Ordered Mesoporous Carbide-Derived Carbon/Ionic Liquid Electrolyte Double-Layer Capacitor Interfaces. ACS Applied Materials & Interfaces, 2014. 6(4): p. 2922-2928. 81. Kim, M.-H., et al., Fluorinated activated carbon with superb kinetics for the supercapacitor application in nonaqueous electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 443: p. 535-539. 82. Fang, B., et al., High capacity supercapacitors based on modified activated carbon aerogel. Journal of Applied Electrochemistry, 2005. 35(3): p. 229-233. 83. Fang, B. and L. Binder, A Novel Carbon Electrode Material for Highly Improved EDLC Performance. The Journal of Physical Chemistry B, 2006. 110(15): p. 7877-7882. 84. Shen, H.H. and C.C. Hu, Capacitance Enhancement of Activated Carbon Modified in the Propylene Carbonate Electrolyte. Journal of the Electrochemical Society, 2014. 161(12): p. A1828-A1835. 85. Rajkumar, M., et al., Advanced materials for aqueous supercapacitors in the asymmetric design. Progress in Natural Science: Materials International, 2015. 25(6): p. 527-544. 86. Naoi, K.a.S., Patrice, New Materials and New Configurations for Advanced electrochemical capacitors. Journal of The Electrochemical Society, 2008. 17(1): p. 34-37. 87. Glenn G. Amatucci, F.B., Aurelien Du Pasquier, and Tao Zheng, An Asymmetric Hybrid Nonaqueous Energy Storage Cell. Journal of The Electrochemical Society, 2001. 148(8): p. A930-A939. 88. Zhang, F., et al., A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science, 2013. 6(5). 89. Jezowski, P., et al., Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat Mater, 2018. 17(2): p. 167-173. 90. Hsu, C.-T., et al., How the electrochemical reversibility of a battery-type material affects the charge balance and performances of asymmetric supercapacitors. Electrochimica Acta, 2014. 146: p. 759-768. 91. Box, G.E.P., W.G. Hunter, and J.S. Hunter, Statistics for Experiments. 1978, New York: Wiely. 92. Montgomery, D.C., Design and Analysis of Experiment. 4th ed. 1997, Singapore: John Wiely & Sons, Inc. 93. 沈曉萱, 碳材的表面電化學修飾對有機系超高電容表現之研究. 國立清華大學化學工程學系博士論文, 2016. 94. 汪建民, 材料分析. 中國材料科學學會, 2001. 95. KSW, S., et al., Reporting physisorption data for gas solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985. 57. 96. Bartłomiej Gaweł, Gas Adsorption: Study of the porosity of materials. Norwegian University of Science and Technology (NTNU). 97. SING, K.S.W., et al., 1985-Reporting physisorption data for gassolid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure & App!. Chem.,, 1985. 57. 98. Bokobza, L., J.-L. Bruneel, and M. Couzi, Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. C, 2015. 1(1): p. 77-94. 99. Ubnoske, S.M., et al., Role of nanocrystalline domain size on the electrochemical double-layer capacitance of high edge density carbon nanostructures. MRS Communications, 2015. 5(02): p. 285-290. 100. Hantel, M.M., D. Weingarth, and R. Kötz, Parameters determining dimensional changes of porous carbons during capacitive charging. Carbon, 2014. 69: p. 275-286. 101. Kima, Y.-J., et al., PVDC-Based Carbon Material by Chemical Activation and Its Application to Nonaqueous EDLC. J. Electrochem. Soc,, 2004. 151. 102. Zhai, D., et al., Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Microporous and Mesoporous Materials, 2010. 130(1-3): p. 224-228. 103. Qi, X., et al., Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys Chem Chem Phys, 2014. 16(46): p. 25306-13. 104. thermo scientific XPS- https://xpssimplified.com/elements/carbon.php#inorganic. 105. Min Yi, Z.S., Xiaojing Zhang and Shulin Ma, Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. Journal of Physics D: Applied Physics, 2012. 46(2). 106. Zhang, W., M. Dahbi, and S. Komaba, Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries. Current Opinion in Chemical Engineering, 2016. 13: p. 36-44. 107. Dahbi, M., et al., Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries. Electrochemistry Communications, 2014. 44: p. 66-69. 108. Lux, S.F., et al., Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries. Electrochemical Society Interface, 2010. 157. 109. Holtstiege, F., et al., Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 2018. 4(1). 110. Cooper, A.J., et al., Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon, 2014. 66: p. 340-350.
|