帳號:guest(13.59.153.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉宇謙
作者(外文):Liu, Yu-Chien
論文名稱(中文):軟碳在碳酸丙烯酯電解液之高電壓超高電容器之研究
論文名稱(外文):Characterization of Soft Carbon for High-Voltage Supercapacitors in Propylene Carbonate Electrolytes
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):張家欽
陳彥旭
口試委員(外文):Chang, Chia-Chin
Chen, Yan-Shi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032505
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:183
中文關鍵詞:超高電容器軟碳陰離子嵌入/嵌出電化學活化KOH活化微結晶奈米門碳
外文關鍵詞:supercapacitorssoft carbonanionintercalation/de-intercalationelectrochemical activationKOH activationmicrocrystallitenanogate carbon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:253
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
軟碳材料過去曾被利用於鋰離子電池系統,其原因為高速率充放電能力比石墨好,在快速充放電速率下,電容值較高,近年來軟碳漸漸開始應用在快速充放電系統,如鋰離子電容器;因此,如將此特性應用於有機相高電壓超高電容器,就有機會提高其能量密度,彌補超級電容器低能量密度的缺點,是一項新穎且具有競爭力的領域。
本研究首先專注在評估純軟碳之石墨結晶大小與孔洞性等,對其應用於有機系之超高電容的電化學行為影響。其二,根據前述軟碳微結構之差異,對於有機電解質之陰離子的嵌入/嵌出的速率與電容量之影響,做一釐清。
因欲達到更高的電容量,本研究針對軟碳進行KOH活化。利用KOH化學活化,將軟碳蝕刻出微孔或甚至潛孔結構,以增加比電容、可逆性、高速充放電之電化學性能。實驗結果顯示,經過KOH活化後的軟碳具有能夠電化學活化的特性,利用第一圈充放電建立離子可以吸/脫附或嵌入/嵌出的活性位置,並展現良好的電雙層電容行為。
值得注意的是,經過KOH活化後的軟碳比表面積仍然很低,且密度高,屬於無孔結構,經過電化學活化,其電容值劇烈地提高,儲能特性有如傳統電雙層電容,其材料特性與傳統活性碳(高比表面積)特徵不同,且因比表面積較低,碳材表面不易吸附水氣,故正極上限工作電位窗至少可達2V。研究結果為,鹼活化軟碳SA03當正極電位窗2.6 V (-0.6V – 2.0V) 時,比電容可達65 F/g。
因KOH活化的效果與軟碳微結構多寡有直接關係,因此,利用實驗設計法找到最佳的KOH活化參數組合,及電化學活化參數是需要的,由實驗設計結果得知,選擇SA04軟碳、碳與KOH混合比例為1:5、KOH活化溫度為720℃及電化學活化電位越高,能夠得到最大電容值,但如果要考慮庫倫效率,上限電位必須修正為1.4V,目前研究結果,由最佳參數製作出的鹼活化軟碳,正極電位窗為2.0V時(-0.6V – 1.4V),重量比電容為100 F g-1,體積比電容為65 F cm-3。
為了組成非對稱式超高電容,將鹼活化SA04軟碳當作正極,商用活性碳ACS25當作負極,得到全電池電壓3.8V,若根據兩極活性材料重量,電容為30 F g-1,庫倫效率95 %,能量密度58.16 Wh kg-1,功率密度1.85 kW kg-1。
In the first part, this essay aims to debate the influences of graphite domain size, graphite microcrystalline degree and pore microstructures on the capacitive behavior of soft carbons through electrochemical analyses and material characterizations. The relationship between charge capacity of soft carbon and quantities of anions intercalation/de-intercalation is established to clarify the charge storage mechanism. From the results of electrochemical analysis and XRD, there is a positive correlation between electrochemical activation and d-spacing of graphene layers. When the soft carbon has larger d-spacing, the percentage of capacitance increase after the electrochemical activation is higher. Furthermore, the absolute value of capacitance is greater if the soft carbon has more graphite-like microcrystalline structures along the c axis (Lc).
In the second part, we utilize potassium hydroxide to chemically activate soft carbons to generate micropores and/or latent pore structures to enhance the electrochemical performances, such as specific capacitance, reversibility, high-rate capability, etc. From the results, the soft carbon after KOH activation, denoted as alkali-soft carbon, is very sensitive to the electrochemical activation; i.e., the specific capacitance of alkali-soft carbon can be dramatically enhanced after the first charge procedure. The above results suggest that electrochemical activation is effective to create the active site for ion intercalation/de-intercalation or adsorption/de-sorption in the graphite-like microcrystalline structure. The alkali-soft carbon with electrochemical activation shows the typical capacitive behavior in the highly positive potential region (-0.6 - 1.4V).
Note that the BET surface area of alkali-soft carbon is very small even though the soft carbon had been activated by KOH. This phenomenon disagrees with the traditional charge storage mechanisms of EDLC. There is a considerable advantage of the low surface area of EDLC electrode material that could avoid the side reaction occurring between electrode material and electrolyte. The lower surface area is, the less possibility of water adsorption on the carbon surface is obtained. Therefore, it could save the cost of the drying process that always occupies the massive part of the total outlay. So far when the positive potential window of alkali-SA03 is 2.6 V (-0.6 - 2.0V), the specific capacitance reaches 65 F g-1. Thus, the alkali-soft carbon could be a superior and novel positive electrode material for high-voltage supercapacitors.
In the final part, it is necessary to utilize design of experiments to obtain the best parameters of KOH activation and electrochemical activation since there is a correlation between the effect of KOH activation and soft carbon microcrystalline structure. Through the best activation condition, when the positive working potential is 2.0 V (-0.6V - 1.4V), the specific capacitance reaches 100 F g-1 or 65 F cm-3. For an asymmetric supercapacitor system, using alkali-SA04 as a positive electrode and ACS25 activated carbon as a negative electrode, an asymmetric supercapacitor with a cell voltage of 3.8 V is developed, in which the cell-specific capacitance and coulombic efficiency are 30 F g-1 and 95%, respectively. Furthermore, the energy density reaches 58.16 Wh kg-1 and power density is 1.85 kW kg-1.
中文摘要 -------------I
Abstract-------------III
致謝 -------------VI
目錄 -------------VIII
圖目錄 -------------XI
表目錄 -------------XVI
第一章 緒論及文獻回顧-------------1
1-1 電化學原理-------------1
1-1-1 電化學反應系統-------------1
1-1-2 電化學裝置-------------2
1-2 電化學電容器-------------7
1-2-1 傳統電容器之簡介-------------7
1-2-2 電化學電容器-------------8
1-2-3 電化學電容器的分類-------------11
1-2-3-1 電雙層電容器-------------11
1-2-3-2 贗電容電化學電容器-------------15
1-3 碳電極材料-------------17
1-3-1 活性碳製備-KOH活化-------------19
1-3-2 軟碳-------------24
1-3-3 電化學活化-------------28
1-3-4 奈米門碳(Nanogate carbon®)-------------31
1-3-4-1 奈米門碳的結構與性能-------------31
1-3-4-2 奈米門碳的電化學活化-------------32
1-3-4-3 奈米門碳的儲能原理-------------34
1-3-5 碳材料微觀結構對電容性能的影響-------------38
1-3-5-1 比表面積與孔徑大小-------------38
1-3-5-2 結構因子-------------42
1-4 有機相高電壓超級電容器-------------45
1-4-1 高電壓電解液(high-voltage electrolyte)-------------48
1-4-2 碳材料的表面改質(surface functional group)-------------52
1-4-3 鈍化膜的形成(passivation film)-------------57
1-4-4 混合型電容器(hybrid capacitors)-------------58
1-5 實驗設計法-------------63
1-5-1 前言-------------63
1-5-2 部分因素設計法(Fractional Factorial Design)-------------64
1-5-3 應答曲面設計(response surface method)-------------68
1-6 研究動機-------------70
第二章 實驗方法與步驟-------------72
2-1 實驗藥品與儀器-------------72
2-1-1 實驗藥品-------------72
2-1-2 實驗儀器-------------73
2-2 碳電極的製備-------------74
2-3 電解液製備及電化學裝置設計-------------75
2-4 電化學及儀器分析-------------75
2-4-1 電化學分析-------------75
2-4-2 儀器分析-------------76
2-4-2-1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)-------------76
2-4-2-2 X光繞射分析(X-ray diffraction analysis, XRD)------------77
2-4-2-3 氮氣吸脫附曲線-------------79
2-4-2-4 拉曼散射光譜(Raman-------------86
2-4-2-5 X射線光電子能譜學(X-ray photoelectron spectroscopy)-------------87
第三章 不同微晶軟碳應用於正極之行為-------------89
3-1 前言-------------89
3-2 實驗方法-------------89
3-3 不同微晶軟碳的材料分析-------------90
3-3-1 X-ray繞射圖-------------90
3-3-2 SEM影像-------------92
3-3-3 氮氣吸脫附法-------------94
3-3-4 Raman光譜-------------97
3-4 不同微晶軟碳的電化學行為-------------100
3-4-1 循環伏安法 -------------100
3-4-2 等電流充放電-------------104
3-5 不同微晶軟碳在高電壓活化後的材料分析-------------107
3-5-1 SEM影像-------------107
3-5-2 X-ray繞射圖-------------108
3-5-3 Raman光譜-------------111
3-6 小結-------------113
第四章 KOH化學活化軟碳應用於正極之行為-------------115
4-1 前言-------------115
4-2 實驗方法-------------116
4-3 KOH活化軟碳的電化學行為-------------117
4-3-1 循環伏安法及等電流充放電-------------117
4-3-2 嵌入起始電位及不同活化上限電位的影響-------------120
4-3-3 不同KOH活化軟碳微晶結構的影響-------------123
4-4 KOH活化軟碳的材料分析-------------125
4-4-1 SEM影像-------------125
4-4-2 氮氣吸脫附法-------------126
4-4-3 Raman光譜-------------128
4-4-4 X-ray繞射圖-------------130
4-4-5 XPS分析-------------133
4-5 電化學活化機制-------------137
4-6 小結-------------141
第五章 以實驗設計法控制KOH活化軟碳之電容表現-------------143
5-1 前言-------------143
5-2 實驗方法-------------143
5-3 24全因素實驗設計法-------------144
5-4 變異數分析(Analysis of Variables, ANOVA)-------------147
5-5 陡升/陡降實驗(Steepest Ascent/descent Experiment)-------------154
5-6 中央合成設計實驗(Central Composite Design, CCD)-------------156
5-7 非對稱超級電容器之組裝-------------161
5-8 小結-------------165
第六章 結論及未來展望-------------166
6-1 結論-------------166
6-2 未來展望-------------168
參考文獻 -------------176
1. 胡啟章, 電化學原理與方法(二版). 2011.
2. Wendt, H. and G. Kreysa, Electrochemical Engineering (Scinece and technolology in chemical and Other Industrires). 1999.
3. Bard, A.J. and L.R. Faulkner, Electrochemical methods (fundamentals and Applications). 2001.
4. Lu, M., F. Beguin, and E. Frackowiak, Supercapacitors: Materials, Systems and Applications. 2013.
5. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. 1999.
6. Ko¨tz, R. and M. Carlen, Principles and Applications of Electrochemical Capacitors. Electrochimica Acta, 2000. 45: p. 2483-2498.
7. Miller, J.R. and P. Simon, Fundamentals of electrochemical capacitor design and operation. Electrochemical Society Interface, 2008.
8. Gouy, M., Sur la constitution de la charge électrique à la surface d'un électrolyte. Journal de Physique Théorique et Appliquée, 1910. 9(1): p. 457-468.
9. Chapman, D.L., LI.A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6, 1913. 25(148): p. 475-481.
10. Stern, O., Z. Elektrochem. Angew. Phys. Chem., 1924. 30: p. 508-516.
11. Burt, R., G. Birkett, and X.S. Zhao, A review of molecular modelling of electric double layer capacitors. Phys Chem Chem Phys, 2014. 16(14): p. 6519-38.
12. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature material, 2008. 7: p. 845-854.
13. 陳金銘, 高容量碳粉材料. 工業材料, 1998. 133期.
14. 黃鉦致, 以不同原料和四種活化方法製備活性碳之物理化學與吸附特性. 國立聯合大學化學工程學系碩士論文, 2009.
15. Lewis, I., Chemistry of carbonization. Carbon, 1982. 20: p. 11.
16. Otowa, T., R. Tanibata, and M. ltoh, Production and adsorption characteristics of MAXSORB: high-surface-area active carbon Gas Separation & Purification, 1993. 7(4): p. 5.
17. Lozano-Castello´, D., et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007. 45: p. 8.
18. Romanos, J., et al., Nanospace engineering of KOH activated carbon. Nanotechnology, 2012. 23(1): p. 015401.
19. Franklin, R.E., 1950-The interpretation of diffuse X-ray diagrams of carbon. Acta Cryst., 1950. 3.
20. Franklin, R.E., 1951-The structure of graphitic carbons. Acta Cryst., 1951. 4.
21. Franklin, R.E., crystallite growth in graphitizing and non-graphitizing carbons. Proc. Roy. Soc. Lond. A, 1951. 209.
22. Mrozowski, S., Proc. First and Second Carbon Conf., 1956.
23. Inagaki, M., New carbons. Elsevier, 2000. 14.
24. 陳語婷, 非晶質碳材在動力鋰電池之研究. 國立交通大學理學院應用科技學程碩士論文, 2014.
25. Dahn, J.R., et al., 1995-Mechanisms for Lithium Insertion in Carbonaceous Materials. Science, 1995. 270.
26. Mochida, I., et al., 1998-Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. Journal of Power Sources, 1998. 75.
27. Takeuchi, M., et al., Electrochemical intercalation of tetraethylammonium tetrafluoroborate into KOH-treated carbon consisting of multi-graphene sheets for an electric double layer capacitor. Vol. 66. 1998. 1311-1317.
28. Takeuchi, M., et al., Non-porous carbon for a high energy density electric double layer capacitor. Vol. 69. 2001. 487-492.
29. Ka, B.H. and S.M. Oh, 2008-Electrochemical activation of expanded graphite electrode for electrochemical capacitor. Journal of The Electrochemical Society, 2008. 155.
30. Aida, T., et al., High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. Journal of Power Sources, 2007. 166(2): p. 462-470.
31. Morita, M., et al., On the electrochemical activation of alkali-treated soft carbon for advanced electrochemical capacitors. Journal of Applied Electrochemistry, 2013. 44(4): p. 447-453.
32. 朱春野, 納米門炭及納米門電容器. New carbon materials, 2005. 20.
33. 時志強, 炭基电化学电容器电极材料的制备与电容性能研究. 天津大學博士論文, 2007.
34. Barbieri, O., et al., Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005. 43(6): p. 1303-1310.
35. Gregg, S. and K.S. Sing, Adsorption, surface area, and porosity. 1983.
36. Kaneko, K. and C. Ishii, Superhigh surface area determination of microporous solids. Colloids and surfaces, 1992. 67: p. 203-212.
37. Raymundo-Piñero, E., et al., Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon, 2006. 44(12): p. 2498-2507.
38. Chmiola, J., et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science, 2006. 313(5794): p. 1760-1763.
39. Yang, C.-M., et al., Nanowindow-Regulated Specific Capacitance of Supercapacitor Electrodes of Single-Wall Carbon Nanohorns. Journal of the American Chemical Society, 2007. 129(1): p. 20-21.
40. Ania, C.O., et al., Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors. Carbon, 2009. 47(14): p. 3158-3166.
41. Inagaki, M. and F. Kang, Materials Science and Engineering of Carbon: Fundamentals (Second Edition). 2014.
42. Sonibare, O.O., T. Haeger, and S.F. Foley, Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy, 2010. 35(12): p. 5347-5353.
43. Klung, H. and L. Alexander, X-ray diffraction procedures. John Wiley & Sons, 1974.
44. Binoy, K.S., R.K. Boruah, and P.K. Gogoi, 2009-A X-ray diffraction analysis on graphene layers of Assam coal. J. Chem. Sci., 2009. 121.
45. Takagi, H., et al., XRD analysis of carbon stacking structure in coal during heat treatment. Fuel, 2004. 83(17-18): p. 2427-2433.
46. Lee, G.-J. and S.-I. Pyun, Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochimica Acta, 2006. 51(15): p. 3029-3038.
47. Naoi, K., ‘Nanohybrid Capacitor’: The Next Generation Electrochemical Capacitors. Fuel Cells, 2010. 10(5): p. 825-833.
48. Kötz, R., et al., Comparison of pressure evolution in supercapacitor devices using different aprotic solvents. Electrochemistry Communications, 2008. 10(3): p. 359-362.
49. Ruch, P.W., et al., A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochimica Acta, 2010. 55(7): p. 2352-2357.
50. Naoi, K., et al., Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices. Energy & Environmental Science, 2012. 5(11).
51. Kinoshita, K., Carbon: electrochemical and physicochemical properties. John Wiley Sons,New York, NY, 1988.
52. Shuichi Ishimoto, Y.A., Masanori Shinya, and Katsuhiko Naoi, Degradation Responses of Activated-Carbon-Based EDLCs for Higher Voltage Operation and Their Factors. Journal of The Electrochemistry Society, 2009. 156(7): p. A563-A571.
53. Chiba, K., et al., Electrolyte Systems for High Withstand Voltage and Durability II. Alkylated Cyclic Carbonates for Electric Double-Layer Capacitors. Journal of The Electrochemical Society, 2011. 158(12).
54. Chiba, K., et al., Electrolyte Systems for High Withstand Voltage and Durability I. Linear Sulfones for Electric Double-Layer Capacitors. Journal of The Electrochemical Society, 2011. 158(8).
55. Brandt, A. and A. Balducci, The Influence of Pore Structure and Surface Groups on the Performance of High Voltage Electrochemical Double Layer Capacitors Containing Adiponitrile-Based Electrolyte. Journal of the Electrochemical Society, 2012. 159(12): p. A2053-A2059.
56. Brandt, A., et al., Adiponitrile-based electrochemical double layer capacitor. Journal of Power Sources, 2012. 204: p. 213-219.
57. Ruther, R.E., et al., Stable Electrolyte for High Voltage Electrochemical Double-Layer Capacitors. Journal of The Electrochemical Society, 2016. 164(2): p. A277-A283.
58. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev, 2015. 44(21): p. 7484-539.
59. Balducci, A., Electrolytes for high voltage electrochemical double layer capacitors: A perspective article. Journal of Power Sources, 2016. 326: p. 534-540.
60. Beguin, F., et al., Carbons and electrolytes for advanced supercapacitors. Adv Mater, 2014. 26(14): p. 2219-51, 2283.
61. Pohlmann, S., et al., The Influence of Anion-Cation Combinations on the Physicochemical Properties of Advanced Electrolytes for Supercapacitors and the Capacitance of Activated Carbons. ChemElectroChem, 2014. 1(8): p. 1301-1311.
62. Makoto Ue, K.I.a.S., Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double‐Layer Capacitors. Journal of Electrochemistry Society 1994. 141.
63. Yu, X., et al., Spiro-(1,1′)-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors. Journal of Power Sources, 2014. 265: p. 309-316.
64. Xu, K., M.S. Ding, and T.R. Jow, Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. Journal of The Electrochemical Society, 2001. 148(3).
65. J. Chmiola, G.Y., Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. SCIENCE, 2006. 313(5794): p. 1760-1763.
66. Janes, A., et al., Fluoroethylene Carbonate as Co-Solvent for Propylene Carbonate Based Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2013. 160(8): p. A1025-A1030.
67. Jänes, A. and E. Lust, Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. Journal of Electroanalytical Chemistry, 2006. 588(2): p. 285-295.
68. Brandon, E.J., et al., Extending the low temperature operational limit of double-layer capacitors. Journal of Power Sources, 2007. 170(1): p. 225-232.
69. Perricone, E., et al., Investigation of methoxypropionitrile as co-solvent for ethylene carbonate based electrolyte in supercapacitors. A safe and wide temperature range electrolyte. Electrochimica Acta, 2013. 93: p. 1-7.
70. Tian, S., et al., Tetramethylammonium difluoro(oxalato)borate dissolved in ethylene/propylene carbonates as electrolytes for electrochemical capacitors. Journal of Power Sources, 2014. 256: p. 404-409.
71. Laheäär, A., et al., LiPF6 based ethylene carbonate–dimethyl carbonate electrolyte for high power density electrical double layer capacitor. Electrochimica Acta, 2009. 54(19): p. 4587-4594.
72. Radovic, L.R., Chemistry & Physics of Carbon. Taylor & Francis, 2000. 27.
73. T. Morimoto, K.H., Y. Sanada, K. Kurihara, Electric double-layer capacitor using organic electrolyte. Journal of Power Sources 1996. 60: p. 239-247.
74. AKIHIKO YOSHIDA, I.T., and ATSUSHI NISHINO, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers. Carbon, 1990. 28: p. 611-615.
75. Yong Tek Ju, M.-Y.C., Mok-Hwa Kim, Jae-Won Lee, Sun-Min Park, Byung Hyun Choi and Kwang Chul Roh, The reduction effect of oxygen functional groups in activated carbon for supercapacitor electrode. Journal of Ceramic Processing Research, 2012. 13: p. s159-s162.
76. M. R. Wertheimer, J.E.K.-S., J. Cerny, and S. Liang, Modification of Active Carbon by Hydrophobic Plasma Polymers: II Fabric Substrates. Plasmas and Polymers, 1998. 3(3).
77. Chi, Y.W., et al., New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping. Nano Lett, 2016. 16(9): p. 5719-27.
78. Salinas-Torres, D., et al., Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions. Carbon, 2015. 82: p. 205-213.
79. Chi, Y.-W., et al., New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping. Nano Letters, 2016. 16(9): p. 5719-5727.
80. Pinkert, K., et al., Role of Surface Functional Groups in Ordered Mesoporous Carbide-Derived Carbon/Ionic Liquid Electrolyte Double-Layer Capacitor Interfaces. ACS Applied Materials & Interfaces, 2014. 6(4): p. 2922-2928.
81. Kim, M.-H., et al., Fluorinated activated carbon with superb kinetics for the supercapacitor application in nonaqueous electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 443: p. 535-539.
82. Fang, B., et al., High capacity supercapacitors based on modified activated carbon aerogel. Journal of Applied Electrochemistry, 2005. 35(3): p. 229-233.
83. Fang, B. and L. Binder, A Novel Carbon Electrode Material for Highly Improved EDLC Performance. The Journal of Physical Chemistry B, 2006. 110(15): p. 7877-7882.
84. Shen, H.H. and C.C. Hu, Capacitance Enhancement of Activated Carbon Modified in the Propylene Carbonate Electrolyte. Journal of the Electrochemical Society, 2014. 161(12): p. A1828-A1835.
85. Rajkumar, M., et al., Advanced materials for aqueous supercapacitors in the asymmetric design. Progress in Natural Science: Materials International, 2015. 25(6): p. 527-544.
86. Naoi, K.a.S., Patrice, New Materials and New Configurations for Advanced electrochemical capacitors. Journal of The Electrochemical Society, 2008. 17(1): p. 34-37.
87. Glenn G. Amatucci, F.B., Aurelien Du Pasquier, and Tao Zheng, An Asymmetric Hybrid Nonaqueous Energy Storage Cell. Journal of The Electrochemical Society, 2001. 148(8): p. A930-A939.
88. Zhang, F., et al., A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science, 2013. 6(5).
89. Jezowski, P., et al., Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat Mater, 2018. 17(2): p. 167-173.
90. Hsu, C.-T., et al., How the electrochemical reversibility of a battery-type material affects the charge balance and performances of asymmetric supercapacitors. Electrochimica Acta, 2014. 146: p. 759-768.
91. Box, G.E.P., W.G. Hunter, and J.S. Hunter, Statistics for Experiments. 1978, New York: Wiely.
92. Montgomery, D.C., Design and Analysis of Experiment. 4th ed. 1997, Singapore: John Wiely & Sons, Inc.
93. 沈曉萱, 碳材的表面電化學修飾對有機系超高電容表現之研究. 國立清華大學化學工程學系博士論文, 2016.
94. 汪建民, 材料分析. 中國材料科學學會, 2001.
95. KSW, S., et al., Reporting physisorption data for gas solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985. 57.
96. Bartłomiej Gaweł, Gas Adsorption: Study of the porosity of materials. Norwegian University of Science and Technology (NTNU).
97. SING, K.S.W., et al., 1985-Reporting physisorption data for gassolid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure & App!. Chem.,, 1985. 57.
98. Bokobza, L., J.-L. Bruneel, and M. Couzi, Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. C, 2015. 1(1): p. 77-94.
99. Ubnoske, S.M., et al., Role of nanocrystalline domain size on the electrochemical double-layer capacitance of high edge density carbon nanostructures. MRS Communications, 2015. 5(02): p. 285-290.
100. Hantel, M.M., D. Weingarth, and R. Kötz, Parameters determining dimensional changes of porous carbons during capacitive charging. Carbon, 2014. 69: p. 275-286.
101. Kima, Y.-J., et al., PVDC-Based Carbon Material by Chemical Activation and Its Application to Nonaqueous EDLC. J. Electrochem. Soc,, 2004. 151.
102. Zhai, D., et al., Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Microporous and Mesoporous Materials, 2010. 130(1-3): p. 224-228.
103. Qi, X., et al., Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys Chem Chem Phys, 2014. 16(46): p. 25306-13.
104. thermo scientific XPS- https://xpssimplified.com/elements/carbon.php#inorganic.
105. Min Yi, Z.S., Xiaojing Zhang and Shulin Ma, Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. Journal of Physics D: Applied Physics, 2012. 46(2).
106. Zhang, W., M. Dahbi, and S. Komaba, Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries. Current Opinion in Chemical Engineering, 2016. 13: p. 36-44.
107. Dahbi, M., et al., Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries. Electrochemistry Communications, 2014. 44: p. 66-69.
108. Lux, S.F., et al., Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries. Electrochemical Society Interface, 2010. 157.
109. Holtstiege, F., et al., Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 2018. 4(1).
110. Cooper, A.J., et al., Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon, 2014. 66: p. 340-350.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *