帳號:guest(3.144.172.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林致遠
作者(外文):Lin, Chih-Yuan
論文名稱(中文):運用氣溶膠製程合成奈米觸媒作為能源化工領域之應用
論文名稱(外文):Synthesis of Nanocatalyst Using Aerosol Process as Application in Energy and Chemical Industry
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):何榮銘
呂世源
胡啟章
口試委員(外文):Ho, Rong-Ming
Lu, Shih-Yuan
Hu, Chi-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032502
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:109
中文關鍵詞:奈米觸媒甲烷二氧化碳氧化銅氧化鎳二氧化鈰
外文關鍵詞:nanocatalystsmethanecarbon dioxidecopper oxidenickel oxideceria
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究工作目的是建立連續式觸媒催化氣相反應系統。在材料合成的部分,我們運用實驗室現有的氣相奈米粒子合成系統。先前結果顯示氣相製成的奈米粒子具有高的分散性,同時藉由改變前驅物溶液之濃度或種類,我們可以改變所製備出產物的組成及粒子大小,並且已經證實在催化甲烷燃燒以及一氧化碳氧化反應方面有很好的活性。然而我們希望更深入控制觸媒材料,目前能控制的是組成及粒子大小,所以此階段的目標是改進合成系統,並透過二次反應還原系統以控制觸媒材料的氧化態,來分析觸媒氧化態是否會影響甲烷燃燒和二氧化碳重組之催化反應。分析技術上實驗室先前之研究階段已建立一套固定床偵測系統來分析奈米粒子的氧化還原能力與觸媒的催化活性,其可利用氣相層析儀來分析反應氣體成分及計算觸媒催化反應的轉化率,並觀察觸媒在催化反應時的起燃溫度,了解氧化反應的放熱情況。除此之外,利用TPR程溫還原反應可以得知奈米粒子的還原能力及還原溫度。本實驗研究方向會透過此反應系統進而做改善,並且藉由更完整實驗結果希望去探討二次反應還原系統所控制之金屬奈米粒子之氧化態對於催化甲烷燃燒反應及二氧化碳重組反應機制所造成的影響。
第一部份我們利用氣相誘導自組裝[gas-phase evaporation-induced self-assembly (EISA)]的方式來製備不同化學組成的單成分CuOx-NP與均質的複合式CuCeOx-NP之奈米觸媒。合成出的結果顯示不論是CuOx-NP或CuCeOx-NP皆可藉由二次反應還原系統來更進一步控制材料性質(氧化程度),在銅觸媒中添加二氧化鈰我們可以觀察到不論是催化活性還是觸媒的穩定性都有顯著的提升,其原因為氧化鈰的螢石型結構能避免觸媒在反應中燒結,且其所有的氧空洞能有效幫助吸附氧氣從而快速去除積碳。我們也將進一步探討單成分CuOx-NP與複合式CuCeOx-NP經過二次反應還原系統所生成之含有不同氧化態的奈米粒子對於催化甲烷燃燒反應活性的影響。
在第二部分的實驗中,我們一樣利用氣相誘導自組裝以及二次鍛燒合成系統成功製備出不同氧化態的單成分NiOx-NP與複合式NiCeOx-NP,我們使用還原氣體氫氣透過改變第二次鍛燒的溫度來控制樣品的氧化態,並試以不同分析方法佐證我們的結果。實驗上運用上述製備的單成分NiOx-NP與複合式NiCeOx-NP進行二氧化碳重組反應[Dry reforming of methane with carbon dioxide (DRM)]。結果顯示於鎳觸媒中添加氧化鈰之後觸媒的起燃溫度能夠降低約150 ℃且其催化效果在高溫下穩定,沒有失活現象的發生,推測原因為添加CeO2之後(複合式NiCeOx-NP),雖然和單成分NiOx-NP一樣會產生積碳,不過兩者分別產生的積碳型態不同對於觸媒的催化活性也會造成極大的影響。除了探討觸媒成分對於催化活性之影響,我們也以NiCeOx-NP進行改變進料氣體比例的莫爾比:CO2/CH4 (w) = 1與1.5的催化實驗,其結果顯示積碳量差了18倍之多。
材料分析方面我們使用SEM、XRD、DMA、XPS、HR-TEM來分析奈米粒子的型態與晶格、粒徑分佈以及觸媒的氧化程度,並利用觸媒催化活性測試、觸媒催化穩定性測試(甲烷燃燒與二氧化碳重組反應)、程溫還原反應來進行奈米觸媒催化與還原能力的分析。
此合成方法的最主要的功用在於我們可以有效的合成出經過還原後的銅及鎳系奈米觸媒,對比於之前傳統固定床的還原方法來說,我們可以連續式生產過程來製備金屬態的觸媒,也能避免在傳統之還原過程中發生的燒結現象,並將所生產之觸媒應用於催化甲烷燃燒以及二氧化碳重組反應。這將對以使用甲烷為主的能源發展領域上有所助益,可以提升其效率,並降低對環境的汙染。
The synergistic effect of Cu-Ce-O hybrid nanostructure has shown the promise for catalytic methane combustion. In this study, we develop an aerosol-based two-stage thermal treatment method to (1) synthesize the Cu-Ce-O hybrid nanoparticle (NP) with a tunable oxidation state directly in gas phase, and (2) provide a mechanistic understanding of surface reduction of the Cu-Ce-O hybrid NP for catalysis of methane combustion. After evaporation-induced self-assembly followed by a thermal decomposition (i.e., 1st stage) to form metal oxide NP at the 1st stage thermal treatment, a temperature-programmed, aerosol-based hydrogen reduction process was employed for direct tuning the oxidation state of the NP in the gas phase (the 2nd stage thermal treatment). Differential mobility analysis, x-ray diffractomery, x-ray photoelectron spectroscopy, and scanning electron microscopy were employed complementarily for characterization of particle size, morphology, crystallinity, elemental composition, and oxidation state of the NPs. The results show a successful surface reduction of Cu for both Cu-only NP and Cu-Ce-O hybrid NP by the aerosol-based two-stage thermal treatment method. Using the Cu-Ce-O hybrid nanoparticle as catalyst, our results show a successfully catalysis on methane combustion over various initial oxidation states of Cu. The results show a high activity with a low light-off temperature, a high light-off stability and operation stability toward catalytic methane combustion. The prototype method proposed in this study provides the mechanistic understanding of the synergistic catalysis of the surface-reduced Cu-Ce-O hybrid nanoparticle with different oxidation states. The method can be especially useful to fabricate a variety of nanocatalysts with different oxidation states of active metals by design for the study of methane-based energy and environmental applications (e.g., CO2 dry reforming by methane).
The second part of the work is targeted on the catalysis of dry reforming of methane with carbon dioxide (DRM). DRM is highly attractive for simultaneously reducing greenhouse gases and producing syngas. Here, we develop a new NiCeOx hybrid nanoparticle as a high-performance catalyst for DRM. The crystallites of Ni and CeO2 were homogenously self-assembled in gas phase, creating a large amount of Ni-Ce-O interface for a strong metal-support interfacial interaction. Chemical composition, particle size, and oxidation state of the hybrid nanostructure were tunable directly in aerosol state. The results show that the starting catalytic temperature of Ni-based catalysts reduced by around 150 ˚C through the hybridization with CeO2 followed by a direct gas-phase H2-reduction. The Ni-CeOx hybrid nanoparticle showed stable and high conversion of CH4 and CO2 with a remarkably turnover frequency at low temperature (0.1 s-1 at 450 °C). The amount of coke formation greatly reduced by 18×, whereas the H2/CO ratio was constant at around 0.8 after increasing the CO2/CH4 by 1.5×. The work demonstrated a facile route for controlled gas-phase synthesis of NiCeOx hybrid nanoparticles with a very high catalytic activity and stability for DRM. The findings of this study can shed a light on the mechanism of Ni-Ce-O synergistic catalysis, which can be especially useful for methane-based energy applications.
摘要 I
Abstract III
誌謝辭 VI
第一章 緒論 7
1.1 金屬/金屬氧化物的觸媒特性 7
1.2 金屬/金屬氧化物奈米粒子作為觸媒催化的應用 9
1.3 奈米觸媒對甲烷燃燒反應機制之影響 11
1.4 氣溶膠合成技術 12
1.5 催化甲烷燃燒實驗之目的及方法 16
1.6 先前實驗結果(催化甲烷燃燒反應) 18
1.6.1 以氧化銅為基底之觸媒材料性質分析 18
1.6.2 添加不同莫耳比例的鈰對甲烷燃燒催化活性之影響 20
1.6.3 單成分/複合式奈米觸媒之穩定性分析與催化機制的探討 22
1.7單成分/複合式奈米觸媒對二氧化碳重組反應催化之影響 26
第二章 實驗方法及儀器 27
2.1 實驗藥品 27
2.2 氣相奈米粒子之合成 28
2.4 掃描式電子顯微鏡(Scanning Electron Microscopy) 33
2.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy) 34
2.6 X光繞射儀(X-ray diffraction) 35
2.7 氣相奈米粒子流動分析儀(DMA) 36
2.8 熱重量分析儀(TGA) 37
2.9 觸媒催化甲烷燃燒反應之活性測試 38
2.10 觸媒催化二氧化碳重組反應之活性測試 40
2.11 TPR程溫還原反應 42
第三章 實驗結果與分析 44
3.1 甲烷燃燒催化反應 44
3.1.1 二次鍛燒系統製備氧化銅基底之奈米觸媒其材料性質分析 44
3.1.2 CuOx-NP/CuCeOx-NP觸媒對甲烷催化之活性影響 53
3.1.2.1 不同二次鍛燒溫度(Td2)對甲烷燃燒催化活性之影響 53
3.1.2.2二次鍛燒對於單成分/複合式奈米觸媒穩定性與催化機制之影響探討 61
3.2 二氧化碳重組(DRM)催化反應 67
3.2.1 以二次鍛燒還原系統製備之鎳系奈米觸媒其材料性質分析 67
3.2.2 Ni-only-NP/NiCeOx-NP觸媒對二氧化碳重組反應催化活性之影響 74
3.2.2.1 不同二次鍛燒溫度(Td2)對二氧化碳重組反應催化活性之影響 74
3.2.2.2 不同二氧化碳相對濃度對於催化DRM反應8-h穩定性之影響 83
第四章 結論 92
第五章 未來展望 93
5.1 以NiO/MOF混成奈米材料催化二氧化碳重組反應 93
5.2 甲烷蒸氣重組催化反應 95
5.3 以氣溶膠鎳系奈米觸媒催化還原胺化法製備聚醚胺 96
第六章 參考文獻 99

[1] J. Xiaoyuan, L. Guanglie, Z. Renxian, M. Jianxin, C. Yu, Z. Xiaoming, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Applied Surface Science, 173 (2001) 208-220.
[2] R.A. Dixon, R.G. Egdell, Direct observation of sintering in a model oxide supported metal catalyst STM of Pd on WO3(001), Journal of the Chemical Society, Faraday Transactions, 94 (1998) 1329-1331.
[3] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S.i. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction, Journal of Catalysis, 242 (2006) 103-109.
[4] T. Doane, C. Burda, Nanoparticle mediated non-covalent drug delivery, Advanced Drug Delivery Reviews, 65 (2013) 607-621.
[5] M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proceedings of the National Academy of Sciences, 105 (2008) 14265-14270.
[6] G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, Metal-Nanocluster-Filled Carbon Nanotubes:  Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir, 15 (1999) 750-758.
[7] A.T. Bell, The Impact of Nanoscience on Heterogeneous Catalysis, Science, 299 (2003) 1688-1691.
[8] V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis, Green Chemistry, 12 (2010) 743-754.
[9] K. Persson, A. Ersson, K. Jansson, J.L.G. Fierro, S.G. Järås, Influence of molar ratio on Pd–Pt catalysts for methane combustion, Journal of Catalysis, 243 (2006) 14-24.
[10] D. Ciuparu, E. Altman, L. Pfefferle, Contributions of Lattice Oxygen in Methane Combustion over PdO-Based Catalysts, Journal of Catalysis, 203 (2001) 64-74.
[11] B.V. Devener, S.L. Anderson, T. Shimizu, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, S. Williams, In Situ Generation of Pd/PdO Nanoparticle Methane Combustion Catalyst: Correlation of Particle Surface Chemistry with Ignition, The Journal of Physical Chemistry C, 113 (2009) 20632-20639.
[12] A. Hellman, A. Resta, N.M. Martin, J. Gustafson, A. Trinchero, P.A. Carlsson, O. Balmes, R. Felici, R. van Rijn, J.W.M. Frenken, J.N. Andersen, E. Lundgren, H. Grönbeck, The Active Phase of Palladium during Methane Oxidation, The Journal of Physical Chemistry Letters, 3 (2012) 678-682.
[13] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Influence of PdO content and pathway of its formation on methane combustion activity, Catalysis Communications, 6 (2005) 97-100.
[14] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Catalysts for combustion of methane and lower alkanes, Applied Catalysis A: General, 234 (2002) 1-23.
[15] F. Arosio, S. Colussi, G. Groppi, A. Trovarelli, Regeneration of S-poisoned Pd/Al2O3 catalysts for the combustion of methane, Catalysis Today, 117 (2006) 569-576.
[16] G. Zhu, J. Han, D.Y. Zemlyanov, F.H. Ribeiro, Temperature Dependence of the Kinetics for the Complete Oxidation of Methane on Palladium and Palladium Oxide, The Journal of Physical Chemistry B, 109 (2005) 2331-2337.
[17] J. Cortés, E. Valencia, P. Araya, Two-Site Mechanism for the Oxidation Reaction of Methane on Oxidized Palladium, The Journal of Physical Chemistry C, 114 (2010) 11441-11447.
[18] G. Águila, F. Gracia, J. Cortés, P. Araya, Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts, Applied Catalysis B: Environmental, 77 (2008) 325-338.
[19] L. Hu, Q. Peng, Y. Li, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion, Journal of the American Chemical Society, 130 (2008) 16136-16137.
[20] Y.-F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I. Kesumawinata Surjami, J. Chen, Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts, Journal of Catalysis, 253 (2008) 261-268.
[21] W. Liu, M. Flytzanistephanopoulos, Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts, Journal of Catalysis, 153 (1995) 304-316.
[22] W. Liu, M. Flytzanistephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts, Journal of Catalysis, 153 (1995) 317-332.
[23] J. Yuan, H. Dai, L. Zhang, J. Deng, Y. Liu, H. Zhang, H. Jiang, H. He, PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion, Catalysis Today, 175 (2011) 209-215.
[24] P. Cho, T. Mattisson, A. Lyngfelt, Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion, Industrial & Engineering Chemistry Research, 44 (2005) 668-676.
[25] H. Özdemir, M.A. Faruk Öksüzömer, M. Ali Gürkaynak, Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on H2/CO ratio and carbon deposition, International Journal of Hydrogen Energy, 35 (2010) 12147-12160.
[26] P. Forzatti, L. Lietti, Catalyst deactivation, Catalysis Today, 52 (1999) 165-181.
[27] M. Cargnello, J.J.D. Jaén, J.C.H. Garrido, K. Bakhmutsky, T. Montini, J.J.C. Gámez, R.J. Gorte, P. Fornasiero, Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3, Science, 337 (2012) 713-717.
[28] L.F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, G. Marcì, L. Retailleau, A. Giroir-Fendler, Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity, Applied Catalysis A: General, 347 (2008) 81-88.
[29] A.D. Mayernick, M.J. Janik, Methane Activation and Oxygen Vacancy Formation over CeO2 and Zr, Pd Substituted CeO2 Surfaces, The Journal of Physical Chemistry C, 112 (2008) 14955-14964.
[30] V.A. Sadykov, T.G. Kuznetsova, Y.V. Frolova-Borchert, G.M. Alikina, A.I. Lukashevich, V.A. Rogov, V.S. Muzykantov, L.G. Pinaeva, E.M. Sadovskaya, Y.A. Ivanova, E.A. Paukshtis, N.V. Mezentseva, L.C. Batuev, V.N. Parmon, S. Neophytides, E. Kemnitz, K. Scheurell, C. Mirodatos, A.C. van Veen, Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support, Catalysis Today, 117 (2006) 475-483.
[31] L.F. Liotta, G. Di Carlo, G. Pantaleo, G. Deganello, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity, Catalysis Communications, 6 (2005) 329-336.
[32] W. Yang, D. Li, D. Xu, X. Wang, Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion, Journal of Natural Gas Chemistry, 18 (2009) 458-466.
[33] M.S.P. Francisco, V.R. Mastelaro, P.A.P. Nascente, A.O. Florentino, Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2 Catalysts, The Journal of Physical Chemistry B, 105 (2001) 10515-10522.
[34] K. Okuyama, I. Wuled Lenggoro, Preparation of nanoparticles via spray route, Chemical Engineering Science, 58 (2003) 537-547.
[35] D.A. Firmansyah, S.-G. Kim, K.-S. Lee, R. Zahaf, Y.H. Kim, D. Lee, Microstructure-Controlled Aerosol–Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896.
[36] D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645.
[37] A.K. Peterson, D.G. Morgan, S.E. Skrabalak, Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template, Langmuir, 26 (2010) 8804-8809.
[38] H. Chang, H.D. Jang, Controlled synthesis of porous particles via aerosol processing and their applications, Advanced Powder Technology, 25 (2014) 32-42.
[39] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Advanced Powder Technology, 22 (2011) 1-19.
[40] R.J. Farrauto, Low-Temperature Oxidation of Methane, Science, 337 (2012) 659-660.
[41] C. Chen, Y.-H. Yeh, M. Cargnello, C.B. Murray, P. Fornasiero, R.J. Gorte, Methane Oxidation on Pd@ZrO2/Si–Al2O3 Is Enhanced by Surface Reduction of ZrO2, ACS Catalysis, 4 (2014) 3902-3909.
[42] X. Zou, Z. Rui, S. Song, H. Ji, Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/γ-Al2O3, Journal of Catalysis, 338 (2016) 192-201.
[43] T. Machej, E.M. Serwicka, M. Zimowska, R. Dula, A. Michalik-Zym, B. Napruszewska, W. Rojek, R. Socha, Cu/Mn-based mixed oxides derived from hydrotalcite-like precursors as catalysts for methane combustion, Applied Catalysis A: General, 474 (2014) 87-94.
[44] T.-J. Huang, J.-F. Li, Direct methane oxidation over a Bi2O3–GDC system, Journal of Power Sources, 173 (2007) 959-964.
[45] P. Artizzu, E. Garbowski, M. Primet, Y. Brulle, J. Saint-Just, Catalytic combustion of methane on aluminate-supported copper oxide, Catalysis Today, 47 (1999) 83-93.
[46] Z. Wu, J. Deng, Y. Liu, S. Xie, Y. Jiang, X. Zhao, J. Yang, H. Arandiyan, G. Guo, H. Dai, Three-dimensionally ordered mesoporous Co3O4-supported Au–Pd alloy nanoparticles: High-performance catalysts for methane combustion, Journal of Catalysis, 332 (2015) 13-24.
[47] Y.-F. Lu, F.-C. Chou, F.-C. Lee, C.-Y. Lin, D.-H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398.
[48] S. Colussi, F. Amoroso, L. Katta, J. Llorca, A. Trovarelli, The Effect of Ceria on the Dynamics of CuO–Cu2O Redox Transformation: CuO–Cu2O Hysteresis on Ceria, Catalysis Letters, 144 (2014) 1023-1030.
[49] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and Catalytic Applications of CeO2-Based Materials, Chemical Reviews, 116 (2016) 5987-6041.
[50] S.M. Vickers, R. Gholami, K.J. Smith, M.J. MacLachlan, Mesoporous Mn- and La-Doped Cerium Oxide/Cobalt Oxide Mixed Metal Catalysts for Methane Oxidation, ACS Applied Materials & Interfaces, 7 (2015) 11460-11466.
[51] W.R. Schwartz, L.D. Pfefferle, Combustion of Methane over Palladium-Based Catalysts: Support Interactions, The Journal of Physical Chemistry C, 116 (2012) 8571-8578.
[52] F. Zamar, A. Trovarelli, C. Deleitenburg, G. Dolcetti, Ceo2-Based Solid-Solutions with the Fluorite Structure as Novel and Effective Catalysts for Methane Combustion, J Chem Soc Chem Comm, (1995) 965-966.
[53] F. He, Y. Wei, H. Li, H. Wang, Synthesis Gas Generation by Chemical-Looping Reforming Using Ce-Based Oxygen Carriers Modified with Fe, Cu, and Mn Oxides, Energy & Fuels, 23 (2009) 2095-2102.
[54] P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, G. Russo, AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties, Applied Catalysis B: Environmental, 29 (2001) 239-250.
[55] K.-i. Fujimoto, F.H. Ribeiro, M. Avalos-Borja, E. Iglesia, Structure and Reactivity of PdOx/ZrO2Catalysts for Methane Oxidation at Low Temperatures, Journal of Catalysis, 179 (1998) 431-442.
[56] K. Nagase, Y. Zheng, Y. Kodama, J. Kakuta, Dynamic Study of the Oxidation State of Copper in the Course of Carbon Monoxide Oxidation over Powdered CuO and Cu2O, Journal of Catalysis, 187 (1999) 123-130.
[57] G. Comino, A. Gervasini, V. Ragaini, Z.R. Ismagilov, Methane combustion over copper chromite catalysts, Catalysis Letters, 48 (1997) 39-46.
[58] M.F.M. Zwinkels, S.G. Järås, P.G. Menon, T.A. Griffin, Catalytic Materials for High-Temperature Combustion, Catalysis Reviews, 35 (1993) 319-358.
[59] M. Bowker, P.R. Davies, L.S. Al-Mazroai, Photocatalytic Reforming of Glycerol over Gold and Palladium as an Alternative Fuel Source, Catalysis Letters, 128 (2009) 253-255.
[60] L. Kundakovic, M. Flytzani-Stephanopoulos, Reduction characteristics of copper oxide in cerium and zirconium oxide systems, Appl Catal a-Gen, 171 (1998) 13-29.
[61] M. Haruta, Size- and support-dependency in the catalysis of gold, Catalysis Today, 36 (1997) 153-166.
[62] A.D. Mayernick, M.J. Janik, Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces, J Phys Chem C, 112 (2008) 14955-14964.
[63] M. Cargnello, J.J.D. Jaen, J.C.H. Garrido, K. Bakhmutsky, T. Montini, J.J.C. Gamez, R.J. Gorte, P. Fornasiero, Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3, Science, 337 (2012) 713-717.
[64] R.S. Monteiro, D. Zemlyanov, J.M. Storey, F.H. Ribeiro, Surface Area Increase on Pd Foils after Oxidation in Excess Methane, Journal of Catalysis, 201 (2001) 37-45.
[65] J.B. Wang, Y.-S. Wu, T.-J. Huang, Effects of carbon deposition and de-coking treatments on the activation of CH4 and CO2 in CO2 reforming of CH4 over Ni/yttria-doped ceria catalysts, Applied Catalysis A: General, 272 (2004) 289-298.
[66] T.-J. Huang, C.-H. Wang, Methane decomposition and self de-coking over gadolinia-doped ceria-supported Ni catalysts, Chemical Engineering Journal, 132 (2007) 97-103.
[67] H. Ay, D. Üner, Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts, Applied Catalysis B: Environmental, 179 (2015) 128-138.
[68] V.M. Gonzalez-Delacruz, R. Pereñiguez, F. Ternero, J.P. Holgado, A. Caballero, Modifying the Size of Nickel Metallic Particles by H2/CO Treatment in Ni/ZrO2 Methane Dry Reforming Catalysts, ACS Catalysis, 1 (2011) 82-88.
[69] D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chemical Society Reviews, 43 (2014) 7813-7837.
[70] T.D. Gould, A. Izar, A.W. Weimer, J.L. Falconer, J.W. Medlin, Stabilizing Ni Catalysts by Molecular Layer Deposition for Harsh, Dry Reforming Conditions, ACS Catalysis, 4 (2014) 2714-2717.
[71] K.Y. Koo, S.-h. Lee, U.H. Jung, H.-S. Roh, W.L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance, Fuel Processing Technology, 119 (2014) 151-157.
[72] Z. Li, L. Mo, Y. Kathiraser, S. Kawi, Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO2 Nanocomposite: Superb Catalyst toward Methane CO2 Reforming Reaction, ACS Catalysis, 4 (2014) 1526-1536.
[73] N. Wang, K. Shen, L. Huang, X. Yu, W. Qian, W. Chu, Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas, ACS Catalysis, 3 (2013) 1638-1651.
[74] J. Guo, J. Gao, B. Chen, Z. Hou, J. Fei, H. Lou, X. Zheng, Catalytic conversion of CH4 and CO2 to synthesis gas on Ni/SiO2 catalysts containing Gd2O3 promoter, International Journal of Hydrogen Energy, 34 (2009) 8905-8911.
[75] Z. Hou, T. Yashima, Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2, Applied Catalysis A: General, 261 (2004) 205-209.
[76] H. Tian, X. Li, L. Zeng, J. Gong, Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures, ACS Catalysis, 5 (2015) 4959-4977.
[77] X. Du, D. Zhang, L. Shi, R. Gao, J. Zhang, Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane, The Journal of Physical Chemistry C, 116 (2012) 10009-10016.
[78] D. Liu, X.Y. Quek, W.N.E. Cheo, R. Lau, A. Borgna, Y. Yang, MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal–support interaction, Journal of Catalysis, 266 (2009) 380-390.
[79] C.E. Daza, A. Kiennemann, S. Moreno, R. Molina, Dry reforming of methane using Ni–Ce catalysts supported on a modified mineral clay, Applied Catalysis A: General, 364 (2009) 65-74.
[80] R. Yang, C. Xing, C. Lv, L. Shi, N. Tsubaki, Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4, Applied Catalysis A: General, 385 (2010) 92-100.
[81] M.C.J. Bradford, M.A. Vannice, CO2 Reforming of CH4, Catalysis Reviews, 41 (1999) 1-42.
[82] J.R. Rostrupnielsen, J.H.B. Hansen, CO2-Reforming of Methane over Transition Metals, Journal of Catalysis, 144 (1993) 38-49.
[83] L. Zhu, Y. Jiang, J. Zheng, N. Zhang, C. Yu, Y. Li, C.-W. Pao, J.-L. Chen, C. Jin, J.-F. Lee, C.-J. Zhong, B.H. Chen, Ultrafine Nanoparticle-Supported Ru Nanoclusters with Ultrahigh Catalytic Activity, Small, 11 (2015) 4385-4393.
[84] S. Wang, G.Q. Lu, Role of CeO2 in Ni/CeO2–Al2O3 catalysts for carbon dioxide reforming of methane, Applied Catalysis B: Environmental, 19 (1998) 267-277.
[85] W.T. Gibbons, T.H. Liu, K.J. Gaskell, G.S. Jackson, Characterization of palladium/copper/ceria electrospun fibers for water–gas shift catalysis, Applied Catalysis B: Environmental, 160-161 (2014) 465-479.
[86] Y. Yang, W. Li, H. Xu, A new explanation for the carbon deposition and elimination over supported Ni, Ni-Ce and Ni-Co catalysts for CO2-reforming of methane, Reaction Kinetics and Catalysis Letters, 77 (2002) 155-162.
[87] W.T. Gibbons, L.J. Venstrom, R.M. De Smith, J.H. Davidson, G.S. Jackson, Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting, Physical Chemistry Chemical Physics, 16 (2014) 14271-14280.
[88] J.B. Wang, Y.-L. Tai, W.-P. Dow, T.-J. Huang, Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane, Applied Catalysis A: General, 218 (2001) 69-79.
[89] F.-C. Lee, Y.-F. Lu, F.-C. Chou, C.-F. Cheng, R.-M. Ho, D.-H. Tsai, Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation, The Journal of Physical Chemistry C, 120 (2016) 13638-13648.
[90] R.J. Jacob, B. Wei, M.R. Zachariah, Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles, Combustion and Flame, 167 (2016) 472-480.
[91] G. Jian, L. Liu, M.R. Zachariah, Facile Aerosol Route to Hollow CuO Spheres and its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators, Advanced Functional Materials, 23 (2013) 1341-1346.
[92] H. Yoshida, N. Yamashita, S. Ijichi, Y. Okabe, S. Misumi, S. Hinokuma, M. Machida, A Thermally Stable Cr–Cu Nanostructure Embedded in the CeO2 Surface as a Substitute for Platinum-Group Metal Catalysts, ACS Catalysis, 5 (2015) 6738-6747.
[93] Y. Isomura, T. Narushima, H. Kawasaki, T. Yonezawa, Y. Obora, Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst in Ullmann-coupling reaction, Chem Commun, 48 (2012) 3784-3786.
[94] R.K. Pati, I.C. Lee, S. Hou, O. Akhuemonkhan, K.J. Gaskell, Q. Wang, A.I. Frenkel, D. Chu, L.G. Salamanca-Riba, S.H. Ehrman, Flame Synthesis of Nanosized Cu−Ce−O, Ni−Ce−O, and Fe−Ce−O Catalysts for the Water-Gas Shift (WGS) Reaction, ACS Applied Materials & Interfaces, 1 (2009) 2624-2635.
[95] J. Dixkens, H. Fissan, Development of an Electrostatic Precipitator for Off-Line Particle Analysis, Aerosol Science and Technology, 30 (1999) 438-453.
[96] Z. Wang, R. Li, Q. Chen, Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu2O and the Dispersion of Cu2O, CuO, and CeO2, ChemPhysChem, 16 (2015) 2415-2423.
[97] S. Zeng, T. Chen, K. Liu, H. Su, Promotion effect of metal oxides on inverse CeO2/CuO catalysts for preferential oxidation of CO, Catalysis Communications, 45 (2014) 16-20.
[98] G. Avgouropoulos, T. Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method, Applied Catalysis A: General, 244 (2003) 155-167.
[99] C.S. Polster, H. Nair, C.D. Baertsch, Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst, Journal of Catalysis, 266 (2009) 308-319.
[100] G. Avgouropoulos, T. Ioannides, H. Matralis, Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO, Applied Catalysis B: Environmental, 56 (2005) 87-93.
[101] H. Zou, X. Dong, W. Lin, Selective CO oxidation in hydrogen-rich gas over CuO/CeO2 catalysts, Applied Surface Science, 253 (2006) 2893-2898.
[102] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schlögl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions, Journal of Catalysis, 237 (2006) 1-16.
[103] W. Liu, M. Flytzani-Stephanopoulos, Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over CuCeO2, The Chemical Engineering Journal and the Biochemical Engineering Journal, 64 (1996) 283-294.
[104] J.H. Lee, D.L. Trimm, Catalytic combustion of methane, Fuel Processing Technology, 42 (1995) 339-359.
[105] P.A. Bui, D.G. Vlachos, P.R. Westmoreland, Catalytic ignition of methane/oxygen mixtures over platinum surfaces: comparison of detailed simulations and experiments, Surface Science, 385 (1997) L1029-L1034.
[106] H.-Q. Lin, Y.-W. Chen, Complete oxidation of toluene on Pd/modified-CeO2 catalysts, Journal of the Taiwan Institute of Chemical Engineers, 67 (2016) 69-73.
[107] Y.G. Jin, C.H. Sun, S. Su, Experimental and theoretical study of the oxidation of ventilation air methane over Fe2O3 and CuO, Physical Chemistry Chemical Physics, 17 (2015) 16277-16284.
[108] W.R. Schwartz, D. Ciuparu, L.D. Pfefferle, Combustion of Methane over Palladium-Based Catalysts: Catalytic Deactivation and Role of the Support, The Journal of Physical Chemistry C, 116 (2012) 8587-8593.
[109] F.H. Ribeiro, M. Chow, R.A. Dallabetta, Kinetics of the Complete Oxidation of Methane over Supported Palladium Catalysts, Journal of Catalysis, 146 (1994) 537-544.
[110] X. Tang, B. Zhang, Y. Li, Y. Xu, Q. Xin, W. Shen, Carbon monoxide oxidation over CuO/CeO2 catalysts, Catalysis Today, 93 (2004) 191-198.
[111] X. Tang, B. Zhang, Y. Li, Y. Xu, Q. Xin, W. Shen, CuO/CeO2 catalysts: redox features and catalytic behaviors, Applied Catalysis A: General, 288 (2005) 116-125.
[112] W.-P. Dow, Y.-P. Wang, T.-J. Huang, Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst: I. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction, Journal of Catalysis, 160 (1996) 155-170.
[113] J. Deng, W. Chu, B. Wang, W. Yang, X.S. Zhao, Mesoporous Ni/Ce1-xNixO2-y heterostructure as an efficient catalyst for converting greenhouse gas to H2 and syngas, Catalysis Science & Technology, 6 (2016) 851-862.
[114] R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Substrate–support interactions in metal-catalyzed carbon nanofiber growth, Carbon, 39 (2001) 2277-2289.
[115] Y.T. Tseng, W.H. Tseng, C.H. Lin, R.M. Ho, Fabrication of Double‐Length‐Scale Patterns via Lithography, Block Copolymer Templating, and Electrodeposition, Advanced Materials, 19 (2007) 3584-3588.
[116] C. Papadopoulou, H. Matralis, X. Verykios, Utilization of Biogas as a Renewable Carbon Source: Dry Reforming of Methane, in: L. Guczi, A. Erdôhelyi (Eds.) Catalysis for Alternative Energy Generation, Springer New York, New York, NY, 2012, pp. 57-127.
[117] A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios, C. Mirodatos, Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3Catalyst, Journal of Catalysis, 172 (1997) 118-126.
[118] V.A. Tsipouriari, X.E. Verykios, Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst, Catalysis Today, 64 (2001) 83-90.
[119] H.-L. Wang, H. Yeh, Y.-C. Chen, Y.-C. Lai, C.-Y. Lin, K.-Y. Lu, R.-M. Ho, B.-H. Li, C.-H. Lin, D.-H. Tsai, Thermal Stability of Metal–Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis, ACS Applied Materials & Interfaces, 10 (2018) 9332-9341.
[120] H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks, Chemical Reviews, 112 (2012) 673-674.
[121] S.T. Oyama, P. Hacarlioglu, Y. Gu, D. Lee, Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors, International Journal of Hydrogen Energy, 37 (2012) 10444-10450.
[122] W. Wu, C. Tungpanututh, H.-T. Yang, A conceptual design of a stand-alone hydrogen production system with low carbon dioxide emissions, International Journal of Hydrogen Energy, 37 (2012) 10145-10155.
[123] H. Wu, V. La Parola, G. Pantaleo, F. Puleo, A. Venezia, L. Liotta, Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems, Catalysts, 3 (2013) 563.
[124] A. Baiker, D. Monti, Y.S. Fan, Deactivation of copper, nickel, and cobalt catalysts by interaction with aliphatic amines, Journal of Catalysis, 88 (1984) 81-88
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *