|
[1] J. Xiaoyuan, L. Guanglie, Z. Renxian, M. Jianxin, C. Yu, Z. Xiaoming, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Applied Surface Science, 173 (2001) 208-220. [2] R.A. Dixon, R.G. Egdell, Direct observation of sintering in a model oxide supported metal catalyst STM of Pd on WO3(001), Journal of the Chemical Society, Faraday Transactions, 94 (1998) 1329-1331. [3] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S.i. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction, Journal of Catalysis, 242 (2006) 103-109. [4] T. Doane, C. Burda, Nanoparticle mediated non-covalent drug delivery, Advanced Drug Delivery Reviews, 65 (2013) 607-621. [5] M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proceedings of the National Academy of Sciences, 105 (2008) 14265-14270. [6] G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir, 15 (1999) 750-758. [7] A.T. Bell, The Impact of Nanoscience on Heterogeneous Catalysis, Science, 299 (2003) 1688-1691. [8] V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis, Green Chemistry, 12 (2010) 743-754. [9] K. Persson, A. Ersson, K. Jansson, J.L.G. Fierro, S.G. Järås, Influence of molar ratio on Pd–Pt catalysts for methane combustion, Journal of Catalysis, 243 (2006) 14-24. [10] D. Ciuparu, E. Altman, L. Pfefferle, Contributions of Lattice Oxygen in Methane Combustion over PdO-Based Catalysts, Journal of Catalysis, 203 (2001) 64-74. [11] B.V. Devener, S.L. Anderson, T. Shimizu, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, S. Williams, In Situ Generation of Pd/PdO Nanoparticle Methane Combustion Catalyst: Correlation of Particle Surface Chemistry with Ignition, The Journal of Physical Chemistry C, 113 (2009) 20632-20639. [12] A. Hellman, A. Resta, N.M. Martin, J. Gustafson, A. Trinchero, P.A. Carlsson, O. Balmes, R. Felici, R. van Rijn, J.W.M. Frenken, J.N. Andersen, E. Lundgren, H. Grönbeck, The Active Phase of Palladium during Methane Oxidation, The Journal of Physical Chemistry Letters, 3 (2012) 678-682. [13] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Influence of PdO content and pathway of its formation on methane combustion activity, Catalysis Communications, 6 (2005) 97-100. [14] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Catalysts for combustion of methane and lower alkanes, Applied Catalysis A: General, 234 (2002) 1-23. [15] F. Arosio, S. Colussi, G. Groppi, A. Trovarelli, Regeneration of S-poisoned Pd/Al2O3 catalysts for the combustion of methane, Catalysis Today, 117 (2006) 569-576. [16] G. Zhu, J. Han, D.Y. Zemlyanov, F.H. Ribeiro, Temperature Dependence of the Kinetics for the Complete Oxidation of Methane on Palladium and Palladium Oxide, The Journal of Physical Chemistry B, 109 (2005) 2331-2337. [17] J. Cortés, E. Valencia, P. Araya, Two-Site Mechanism for the Oxidation Reaction of Methane on Oxidized Palladium, The Journal of Physical Chemistry C, 114 (2010) 11441-11447. [18] G. Águila, F. Gracia, J. Cortés, P. Araya, Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts, Applied Catalysis B: Environmental, 77 (2008) 325-338. [19] L. Hu, Q. Peng, Y. Li, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion, Journal of the American Chemical Society, 130 (2008) 16136-16137. [20] Y.-F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I. Kesumawinata Surjami, J. Chen, Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts, Journal of Catalysis, 253 (2008) 261-268. [21] W. Liu, M. Flytzanistephanopoulos, Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts, Journal of Catalysis, 153 (1995) 304-316. [22] W. Liu, M. Flytzanistephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts, Journal of Catalysis, 153 (1995) 317-332. [23] J. Yuan, H. Dai, L. Zhang, J. Deng, Y. Liu, H. Zhang, H. Jiang, H. He, PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion, Catalysis Today, 175 (2011) 209-215. [24] P. Cho, T. Mattisson, A. Lyngfelt, Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion, Industrial & Engineering Chemistry Research, 44 (2005) 668-676. [25] H. Özdemir, M.A. Faruk Öksüzömer, M. Ali Gürkaynak, Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on H2/CO ratio and carbon deposition, International Journal of Hydrogen Energy, 35 (2010) 12147-12160. [26] P. Forzatti, L. Lietti, Catalyst deactivation, Catalysis Today, 52 (1999) 165-181. [27] M. Cargnello, J.J.D. Jaén, J.C.H. Garrido, K. Bakhmutsky, T. Montini, J.J.C. Gámez, R.J. Gorte, P. Fornasiero, Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3, Science, 337 (2012) 713-717. [28] L.F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, G. Marcì, L. Retailleau, A. Giroir-Fendler, Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity, Applied Catalysis A: General, 347 (2008) 81-88. [29] A.D. Mayernick, M.J. Janik, Methane Activation and Oxygen Vacancy Formation over CeO2 and Zr, Pd Substituted CeO2 Surfaces, The Journal of Physical Chemistry C, 112 (2008) 14955-14964. [30] V.A. Sadykov, T.G. Kuznetsova, Y.V. Frolova-Borchert, G.M. Alikina, A.I. Lukashevich, V.A. Rogov, V.S. Muzykantov, L.G. Pinaeva, E.M. Sadovskaya, Y.A. Ivanova, E.A. Paukshtis, N.V. Mezentseva, L.C. Batuev, V.N. Parmon, S. Neophytides, E. Kemnitz, K. Scheurell, C. Mirodatos, A.C. van Veen, Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support, Catalysis Today, 117 (2006) 475-483. [31] L.F. Liotta, G. Di Carlo, G. Pantaleo, G. Deganello, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity, Catalysis Communications, 6 (2005) 329-336. [32] W. Yang, D. Li, D. Xu, X. Wang, Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion, Journal of Natural Gas Chemistry, 18 (2009) 458-466. [33] M.S.P. Francisco, V.R. Mastelaro, P.A.P. Nascente, A.O. Florentino, Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2 Catalysts, The Journal of Physical Chemistry B, 105 (2001) 10515-10522. [34] K. Okuyama, I. Wuled Lenggoro, Preparation of nanoparticles via spray route, Chemical Engineering Science, 58 (2003) 537-547. [35] D.A. Firmansyah, S.-G. Kim, K.-S. Lee, R. Zahaf, Y.H. Kim, D. Lee, Microstructure-Controlled Aerosol–Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896. [36] D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645. [37] A.K. Peterson, D.G. Morgan, S.E. Skrabalak, Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template, Langmuir, 26 (2010) 8804-8809. [38] H. Chang, H.D. Jang, Controlled synthesis of porous particles via aerosol processing and their applications, Advanced Powder Technology, 25 (2014) 32-42. [39] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Advanced Powder Technology, 22 (2011) 1-19. [40] R.J. Farrauto, Low-Temperature Oxidation of Methane, Science, 337 (2012) 659-660. [41] C. Chen, Y.-H. Yeh, M. Cargnello, C.B. Murray, P. Fornasiero, R.J. Gorte, Methane Oxidation on Pd@ZrO2/Si–Al2O3 Is Enhanced by Surface Reduction of ZrO2, ACS Catalysis, 4 (2014) 3902-3909. [42] X. Zou, Z. Rui, S. Song, H. Ji, Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/γ-Al2O3, Journal of Catalysis, 338 (2016) 192-201. [43] T. Machej, E.M. Serwicka, M. Zimowska, R. Dula, A. Michalik-Zym, B. Napruszewska, W. Rojek, R. Socha, Cu/Mn-based mixed oxides derived from hydrotalcite-like precursors as catalysts for methane combustion, Applied Catalysis A: General, 474 (2014) 87-94. [44] T.-J. Huang, J.-F. Li, Direct methane oxidation over a Bi2O3–GDC system, Journal of Power Sources, 173 (2007) 959-964. [45] P. Artizzu, E. Garbowski, M. Primet, Y. Brulle, J. Saint-Just, Catalytic combustion of methane on aluminate-supported copper oxide, Catalysis Today, 47 (1999) 83-93. [46] Z. Wu, J. Deng, Y. Liu, S. Xie, Y. Jiang, X. Zhao, J. Yang, H. Arandiyan, G. Guo, H. Dai, Three-dimensionally ordered mesoporous Co3O4-supported Au–Pd alloy nanoparticles: High-performance catalysts for methane combustion, Journal of Catalysis, 332 (2015) 13-24. [47] Y.-F. Lu, F.-C. Chou, F.-C. Lee, C.-Y. Lin, D.-H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398. [48] S. Colussi, F. Amoroso, L. Katta, J. Llorca, A. Trovarelli, The Effect of Ceria on the Dynamics of CuO–Cu2O Redox Transformation: CuO–Cu2O Hysteresis on Ceria, Catalysis Letters, 144 (2014) 1023-1030. [49] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and Catalytic Applications of CeO2-Based Materials, Chemical Reviews, 116 (2016) 5987-6041. [50] S.M. Vickers, R. Gholami, K.J. Smith, M.J. MacLachlan, Mesoporous Mn- and La-Doped Cerium Oxide/Cobalt Oxide Mixed Metal Catalysts for Methane Oxidation, ACS Applied Materials & Interfaces, 7 (2015) 11460-11466. [51] W.R. Schwartz, L.D. Pfefferle, Combustion of Methane over Palladium-Based Catalysts: Support Interactions, The Journal of Physical Chemistry C, 116 (2012) 8571-8578. [52] F. Zamar, A. Trovarelli, C. Deleitenburg, G. Dolcetti, Ceo2-Based Solid-Solutions with the Fluorite Structure as Novel and Effective Catalysts for Methane Combustion, J Chem Soc Chem Comm, (1995) 965-966. [53] F. He, Y. Wei, H. Li, H. Wang, Synthesis Gas Generation by Chemical-Looping Reforming Using Ce-Based Oxygen Carriers Modified with Fe, Cu, and Mn Oxides, Energy & Fuels, 23 (2009) 2095-2102. [54] P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, G. Russo, AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties, Applied Catalysis B: Environmental, 29 (2001) 239-250. [55] K.-i. Fujimoto, F.H. Ribeiro, M. Avalos-Borja, E. Iglesia, Structure and Reactivity of PdOx/ZrO2Catalysts for Methane Oxidation at Low Temperatures, Journal of Catalysis, 179 (1998) 431-442. [56] K. Nagase, Y. Zheng, Y. Kodama, J. Kakuta, Dynamic Study of the Oxidation State of Copper in the Course of Carbon Monoxide Oxidation over Powdered CuO and Cu2O, Journal of Catalysis, 187 (1999) 123-130. [57] G. Comino, A. Gervasini, V. Ragaini, Z.R. Ismagilov, Methane combustion over copper chromite catalysts, Catalysis Letters, 48 (1997) 39-46. [58] M.F.M. Zwinkels, S.G. Järås, P.G. Menon, T.A. Griffin, Catalytic Materials for High-Temperature Combustion, Catalysis Reviews, 35 (1993) 319-358. [59] M. Bowker, P.R. Davies, L.S. Al-Mazroai, Photocatalytic Reforming of Glycerol over Gold and Palladium as an Alternative Fuel Source, Catalysis Letters, 128 (2009) 253-255. [60] L. Kundakovic, M. Flytzani-Stephanopoulos, Reduction characteristics of copper oxide in cerium and zirconium oxide systems, Appl Catal a-Gen, 171 (1998) 13-29. [61] M. Haruta, Size- and support-dependency in the catalysis of gold, Catalysis Today, 36 (1997) 153-166. [62] A.D. Mayernick, M.J. Janik, Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces, J Phys Chem C, 112 (2008) 14955-14964. [63] M. Cargnello, J.J.D. Jaen, J.C.H. Garrido, K. Bakhmutsky, T. Montini, J.J.C. Gamez, R.J. Gorte, P. Fornasiero, Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3, Science, 337 (2012) 713-717. [64] R.S. Monteiro, D. Zemlyanov, J.M. Storey, F.H. Ribeiro, Surface Area Increase on Pd Foils after Oxidation in Excess Methane, Journal of Catalysis, 201 (2001) 37-45. [65] J.B. Wang, Y.-S. Wu, T.-J. Huang, Effects of carbon deposition and de-coking treatments on the activation of CH4 and CO2 in CO2 reforming of CH4 over Ni/yttria-doped ceria catalysts, Applied Catalysis A: General, 272 (2004) 289-298. [66] T.-J. Huang, C.-H. Wang, Methane decomposition and self de-coking over gadolinia-doped ceria-supported Ni catalysts, Chemical Engineering Journal, 132 (2007) 97-103. [67] H. Ay, D. Üner, Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts, Applied Catalysis B: Environmental, 179 (2015) 128-138. [68] V.M. Gonzalez-Delacruz, R. Pereñiguez, F. Ternero, J.P. Holgado, A. Caballero, Modifying the Size of Nickel Metallic Particles by H2/CO Treatment in Ni/ZrO2 Methane Dry Reforming Catalysts, ACS Catalysis, 1 (2011) 82-88. [69] D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chemical Society Reviews, 43 (2014) 7813-7837. [70] T.D. Gould, A. Izar, A.W. Weimer, J.L. Falconer, J.W. Medlin, Stabilizing Ni Catalysts by Molecular Layer Deposition for Harsh, Dry Reforming Conditions, ACS Catalysis, 4 (2014) 2714-2717. [71] K.Y. Koo, S.-h. Lee, U.H. Jung, H.-S. Roh, W.L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance, Fuel Processing Technology, 119 (2014) 151-157. [72] Z. Li, L. Mo, Y. Kathiraser, S. Kawi, Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO2 Nanocomposite: Superb Catalyst toward Methane CO2 Reforming Reaction, ACS Catalysis, 4 (2014) 1526-1536. [73] N. Wang, K. Shen, L. Huang, X. Yu, W. Qian, W. Chu, Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas, ACS Catalysis, 3 (2013) 1638-1651. [74] J. Guo, J. Gao, B. Chen, Z. Hou, J. Fei, H. Lou, X. Zheng, Catalytic conversion of CH4 and CO2 to synthesis gas on Ni/SiO2 catalysts containing Gd2O3 promoter, International Journal of Hydrogen Energy, 34 (2009) 8905-8911. [75] Z. Hou, T. Yashima, Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2, Applied Catalysis A: General, 261 (2004) 205-209. [76] H. Tian, X. Li, L. Zeng, J. Gong, Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures, ACS Catalysis, 5 (2015) 4959-4977. [77] X. Du, D. Zhang, L. Shi, R. Gao, J. Zhang, Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane, The Journal of Physical Chemistry C, 116 (2012) 10009-10016. [78] D. Liu, X.Y. Quek, W.N.E. Cheo, R. Lau, A. Borgna, Y. Yang, MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal–support interaction, Journal of Catalysis, 266 (2009) 380-390. [79] C.E. Daza, A. Kiennemann, S. Moreno, R. Molina, Dry reforming of methane using Ni–Ce catalysts supported on a modified mineral clay, Applied Catalysis A: General, 364 (2009) 65-74. [80] R. Yang, C. Xing, C. Lv, L. Shi, N. Tsubaki, Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4, Applied Catalysis A: General, 385 (2010) 92-100. [81] M.C.J. Bradford, M.A. Vannice, CO2 Reforming of CH4, Catalysis Reviews, 41 (1999) 1-42. [82] J.R. Rostrupnielsen, J.H.B. Hansen, CO2-Reforming of Methane over Transition Metals, Journal of Catalysis, 144 (1993) 38-49. [83] L. Zhu, Y. Jiang, J. Zheng, N. Zhang, C. Yu, Y. Li, C.-W. Pao, J.-L. Chen, C. Jin, J.-F. Lee, C.-J. Zhong, B.H. Chen, Ultrafine Nanoparticle-Supported Ru Nanoclusters with Ultrahigh Catalytic Activity, Small, 11 (2015) 4385-4393. [84] S. Wang, G.Q. Lu, Role of CeO2 in Ni/CeO2–Al2O3 catalysts for carbon dioxide reforming of methane, Applied Catalysis B: Environmental, 19 (1998) 267-277. [85] W.T. Gibbons, T.H. Liu, K.J. Gaskell, G.S. Jackson, Characterization of palladium/copper/ceria electrospun fibers for water–gas shift catalysis, Applied Catalysis B: Environmental, 160-161 (2014) 465-479. [86] Y. Yang, W. Li, H. Xu, A new explanation for the carbon deposition and elimination over supported Ni, Ni-Ce and Ni-Co catalysts for CO2-reforming of methane, Reaction Kinetics and Catalysis Letters, 77 (2002) 155-162. [87] W.T. Gibbons, L.J. Venstrom, R.M. De Smith, J.H. Davidson, G.S. Jackson, Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting, Physical Chemistry Chemical Physics, 16 (2014) 14271-14280. [88] J.B. Wang, Y.-L. Tai, W.-P. Dow, T.-J. Huang, Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane, Applied Catalysis A: General, 218 (2001) 69-79. [89] F.-C. Lee, Y.-F. Lu, F.-C. Chou, C.-F. Cheng, R.-M. Ho, D.-H. Tsai, Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation, The Journal of Physical Chemistry C, 120 (2016) 13638-13648. [90] R.J. Jacob, B. Wei, M.R. Zachariah, Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles, Combustion and Flame, 167 (2016) 472-480. [91] G. Jian, L. Liu, M.R. Zachariah, Facile Aerosol Route to Hollow CuO Spheres and its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators, Advanced Functional Materials, 23 (2013) 1341-1346. [92] H. Yoshida, N. Yamashita, S. Ijichi, Y. Okabe, S. Misumi, S. Hinokuma, M. Machida, A Thermally Stable Cr–Cu Nanostructure Embedded in the CeO2 Surface as a Substitute for Platinum-Group Metal Catalysts, ACS Catalysis, 5 (2015) 6738-6747. [93] Y. Isomura, T. Narushima, H. Kawasaki, T. Yonezawa, Y. Obora, Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst in Ullmann-coupling reaction, Chem Commun, 48 (2012) 3784-3786. [94] R.K. Pati, I.C. Lee, S. Hou, O. Akhuemonkhan, K.J. Gaskell, Q. Wang, A.I. Frenkel, D. Chu, L.G. Salamanca-Riba, S.H. Ehrman, Flame Synthesis of Nanosized Cu−Ce−O, Ni−Ce−O, and Fe−Ce−O Catalysts for the Water-Gas Shift (WGS) Reaction, ACS Applied Materials & Interfaces, 1 (2009) 2624-2635. [95] J. Dixkens, H. Fissan, Development of an Electrostatic Precipitator for Off-Line Particle Analysis, Aerosol Science and Technology, 30 (1999) 438-453. [96] Z. Wang, R. Li, Q. Chen, Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu2O and the Dispersion of Cu2O, CuO, and CeO2, ChemPhysChem, 16 (2015) 2415-2423. [97] S. Zeng, T. Chen, K. Liu, H. Su, Promotion effect of metal oxides on inverse CeO2/CuO catalysts for preferential oxidation of CO, Catalysis Communications, 45 (2014) 16-20. [98] G. Avgouropoulos, T. Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method, Applied Catalysis A: General, 244 (2003) 155-167. [99] C.S. Polster, H. Nair, C.D. Baertsch, Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst, Journal of Catalysis, 266 (2009) 308-319. [100] G. Avgouropoulos, T. Ioannides, H. Matralis, Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO, Applied Catalysis B: Environmental, 56 (2005) 87-93. [101] H. Zou, X. Dong, W. Lin, Selective CO oxidation in hydrogen-rich gas over CuO/CeO2 catalysts, Applied Surface Science, 253 (2006) 2893-2898. [102] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schlögl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions, Journal of Catalysis, 237 (2006) 1-16. [103] W. Liu, M. Flytzani-Stephanopoulos, Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over CuCeO2, The Chemical Engineering Journal and the Biochemical Engineering Journal, 64 (1996) 283-294. [104] J.H. Lee, D.L. Trimm, Catalytic combustion of methane, Fuel Processing Technology, 42 (1995) 339-359. [105] P.A. Bui, D.G. Vlachos, P.R. Westmoreland, Catalytic ignition of methane/oxygen mixtures over platinum surfaces: comparison of detailed simulations and experiments, Surface Science, 385 (1997) L1029-L1034. [106] H.-Q. Lin, Y.-W. Chen, Complete oxidation of toluene on Pd/modified-CeO2 catalysts, Journal of the Taiwan Institute of Chemical Engineers, 67 (2016) 69-73. [107] Y.G. Jin, C.H. Sun, S. Su, Experimental and theoretical study of the oxidation of ventilation air methane over Fe2O3 and CuO, Physical Chemistry Chemical Physics, 17 (2015) 16277-16284. [108] W.R. Schwartz, D. Ciuparu, L.D. Pfefferle, Combustion of Methane over Palladium-Based Catalysts: Catalytic Deactivation and Role of the Support, The Journal of Physical Chemistry C, 116 (2012) 8587-8593. [109] F.H. Ribeiro, M. Chow, R.A. Dallabetta, Kinetics of the Complete Oxidation of Methane over Supported Palladium Catalysts, Journal of Catalysis, 146 (1994) 537-544. [110] X. Tang, B. Zhang, Y. Li, Y. Xu, Q. Xin, W. Shen, Carbon monoxide oxidation over CuO/CeO2 catalysts, Catalysis Today, 93 (2004) 191-198. [111] X. Tang, B. Zhang, Y. Li, Y. Xu, Q. Xin, W. Shen, CuO/CeO2 catalysts: redox features and catalytic behaviors, Applied Catalysis A: General, 288 (2005) 116-125. [112] W.-P. Dow, Y.-P. Wang, T.-J. Huang, Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst: I. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction, Journal of Catalysis, 160 (1996) 155-170. [113] J. Deng, W. Chu, B. Wang, W. Yang, X.S. Zhao, Mesoporous Ni/Ce1-xNixO2-y heterostructure as an efficient catalyst for converting greenhouse gas to H2 and syngas, Catalysis Science & Technology, 6 (2016) 851-862. [114] R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Substrate–support interactions in metal-catalyzed carbon nanofiber growth, Carbon, 39 (2001) 2277-2289. [115] Y.T. Tseng, W.H. Tseng, C.H. Lin, R.M. Ho, Fabrication of Double‐Length‐Scale Patterns via Lithography, Block Copolymer Templating, and Electrodeposition, Advanced Materials, 19 (2007) 3584-3588. [116] C. Papadopoulou, H. Matralis, X. Verykios, Utilization of Biogas as a Renewable Carbon Source: Dry Reforming of Methane, in: L. Guczi, A. Erdôhelyi (Eds.) Catalysis for Alternative Energy Generation, Springer New York, New York, NY, 2012, pp. 57-127. [117] A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios, C. Mirodatos, Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3Catalyst, Journal of Catalysis, 172 (1997) 118-126. [118] V.A. Tsipouriari, X.E. Verykios, Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst, Catalysis Today, 64 (2001) 83-90. [119] H.-L. Wang, H. Yeh, Y.-C. Chen, Y.-C. Lai, C.-Y. Lin, K.-Y. Lu, R.-M. Ho, B.-H. Li, C.-H. Lin, D.-H. Tsai, Thermal Stability of Metal–Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis, ACS Applied Materials & Interfaces, 10 (2018) 9332-9341. [120] H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks, Chemical Reviews, 112 (2012) 673-674. [121] S.T. Oyama, P. Hacarlioglu, Y. Gu, D. Lee, Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors, International Journal of Hydrogen Energy, 37 (2012) 10444-10450. [122] W. Wu, C. Tungpanututh, H.-T. Yang, A conceptual design of a stand-alone hydrogen production system with low carbon dioxide emissions, International Journal of Hydrogen Energy, 37 (2012) 10145-10155. [123] H. Wu, V. La Parola, G. Pantaleo, F. Puleo, A. Venezia, L. Liotta, Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems, Catalysts, 3 (2013) 563. [124] A. Baiker, D. Monti, Y.S. Fan, Deactivation of copper, nickel, and cobalt catalysts by interaction with aliphatic amines, Journal of Catalysis, 88 (1984) 81-88
|