帳號:guest(13.59.255.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許哲睿
作者(外文):Hsu, Che-Jui
論文名稱(中文):聚乙烯醇之分子微結構對其溶液特性及結晶行為影響之研究
論文名稱(外文):Effort of the Microstructure of PVA on its Solution Property and Crystallization Behavior
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):朱哲毅
蘇群仁
口試委員(外文):Chu, Che-Yi
Su, Chun-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032501
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:聚乙烯醇高分子水溶液結晶動力學
外文關鍵詞:PVApolymer solutionkinetics of crystallization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:298
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
聚乙烯醇 (PVA, Poly(vinyl alcohol))為聚醋酸乙烯酯(PVAc, Poly(vinyl acetate))經由鹼化得來,所以未完全鹼化的聚乙烯醇是一個共聚物(copolymer),此共聚物中的醋酸乙烯酯高分子鏈段,由於具有醋酸基(-OCCH3),因而擁有親油的特性,而乙烯醇高分子鏈段,因為擁有羥基(-OH),所以擁有親水的特性。因此,鹼化度對於PVA而言,是一個重要的指標,PVA的樣品可以根據鹼化度的不同而有極其廣泛的應用。
本篇論文探討在嵌段性(blockiness)上有些許差異的PVA樣品的水溶液特性以及結晶性質,為了定量分析PVA樣品的嵌段性,本研究利用13CNMR定量分析一系列PVA樣品。根據嵌段參數η,其嵌段參數與高分子之嵌段性質呈現負相關的變化趨勢。
而在高分子溶液中,高分子鏈除了本身intrachain的交互作用力外,還必須考慮intermolecular的交互作用力,本研究藉由動態光散射儀(Dynamic Light Scattering, DLS)來了解高分子在水溶液中的分布情形。根據DLS的分析結果,高分子的嵌段性程度越大,在高分子溶液中呈現聚集的傾向。
PVA是一種結晶性高分子,本研究透過示差掃描量熱儀(Differential scanning calorimetry, DSC)探討不同嵌段性的PVA之結晶性。根據DSC的分析結果,高分子的嵌段性與結晶速度呈現正相關的趨勢。
最後,本研究在部分鹼化的PVA樣品中加入超高鹼化度的PVA(鹼化程度99%以上)探討高分子間的交互作用力與結晶之行為。依據DLS的分析結果,PVA的鹼化度越高,高分子會傾向於聚集。此外,根據DSC的分析結果,摻混會使PVA的結晶速率變快,且摻混兩種鹼化度有差異的PVA樣品,樣品皆會產生共結晶的現象。
Poly(vinyl alcohol) (PVA) is a polymer obtained from the hydrolyzation of poly(vinyl acetate) (PVAc). The commercial products of PVA are usually not completely hydrolyzed and hence they are the copolymers of VA and VAc. A PVA chain composed of hydrophobic VAc unit and hydrophilic VA unit can be considered as amphiphilic polymer. The degree of hydrolyzation determines the content of VAc comonomer and hence the application window of the polymer.
This thesis is centered on elucidating the effect of a minor difference in the blockiness of the VA sequence on the solution structure and crystallization behavior of PVA in the bulks state. We used 13C NMR spectroscopy to determine the blockiness indices of a series of PVA bearing approximately the same VAc content. A small difference in the blockiness of the comonomer sequence was observed in spite of very similar overall composition.
Interestingly, it was found that the small difference in blockiness of sequence can lead to obviously different solution structure. For the PVA with more blocky VA sequence, the PVA chains showed stronger tendency to aggregate into inter-chain clusters in aqueous solution, as demonstrated by dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) results. Moreover, the nonisothermal crystallization experiment conducted by differential scanning calorimetry (DSC) revealed that the PVA with more blocky sequence displayed faster crystallization kinetics. Our results thus disclosed that a seemingly insignificant difference in sequence blockiness can be amplified, leading to drastically different solution structure and crystallization rate of PVA.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 文獻回顧 1
1.1 前言 1
1.2 PVA之基本性質 1
1.3 PVA微結構分析 4
1.3.1利用紅外光譜儀(IR)以及紫外光譜儀(UV)分析PVA分子微結構 4
1.3.2 利用核磁共振光譜儀分析PVA分子微結構 7
1.3.3 利用示差掃描熱量分析儀分析PVA分子微結構 11
1.4 PVA之應用 13
1.4.1 PVA做為包裝膜 13
1.4.2 PVA作為保護膠體 14
1.5 高分子溶液性質 15
1.6 研究動機 17
第二章 實驗部分 18
2.1實驗藥品 18
2.2 實驗流程 20
2.3 實驗項目 21
2.4 實驗方法與儀器原理 22
2.4.1 核磁共振光譜儀(NMR) 22
2.4.2 奈米粒徑分析儀 22
2.4.3 示差掃描熱分析儀 24
2.4.4小角度X光散射 24
第三章 結果與討論 26
3.1 PVA分子微結構分析 26
3.2溶液態分析 31
3.3 PVA之結晶行為 45
3.4 部分鹼化之PVA摻入高鹼化度PVA性質探討 51
3.4.1 部分鹼化之PVA摻入高鹼化度PVA之水溶液性質 51
3.4.2部分鹼化之PVA摻入高鹼化度PVA之結晶性質探討 56
第四章 結論 58
第五章 參考文獻 59

1 Horiike, S. & Matsuzawa, S. Application of syndiotacticity‐rich PVA hydrogels to drug delivery system. Journal of applied polymer science 58, 1335-1340 (1995).
2 WANG, G.-h. & HUANG, Y. Application of soluble PVA fiber in the product's design and development [J]. Wool Textile Journal 6, 010 (2006).
3 Wang, B., Mukataka, S., Kokufuta, E., Ogiso, M. & Kodama, M. Viscometric, light scattering, and size‐exclusion chromatography studies on the structural changes of aqueous poly (vinyl alcohol) induced by γ‐ray irradiation. Journal of Polymer Science Part B: Polymer Physics 38, 214-221 (2000).
4 Peppas, N. A. Hydrogels in medicine and pharmacy: properties and applications. Vol. 3 (CRC PressI Llc, 1987).
5 Yang, X., Tong, Y.-Y., Li, Z.-C. & Liang, D. Aggregation-induced microgelation: a new approach to prepare gels in solution. Soft Matter 7, 978-985 (2011).
6 Koike, A., Nemoto, N., Inoue, T. & Osaki, K. Dynamic light scattering and dynamic viscoelasticity of poly (vinyl alcohol) in aqueous borax solutions. 1. Concentration effect. Macromolecules 28, 2339-2344 (1995).
7 Hong, P.-D., Chou, C.-M. & He, C.-H. Solvent effects on aggregation behavior of polyvinyl alcohol solutions. Polymer 42, 6105-6112 (2001).
8 Tubbs, R. K. Sequence distribution of partially hydrolyzed poly (vinyl acetate). Journal of Polymer Science Part A: Polymer Chemistry 4, 623-629 (1966).
9 Xiao, C. & Yang, M. Controlled preparation of physical cross-linked starch-g-PVA hydrogel. Carbohydrate Polymers 64, 37-40 (2006).
10 Hirai, T., Maruyama, H., Suzuki, T. & Hayashi, S. Effect of chemical cross‐linking under elongation on shape restoring of poly (vinyl alcohol) hydrogel. Journal of applied polymer science 46, 1449-1451 (1992).
11 Jiang, S., Liu, S. & Feng, W. PVA hydrogel properties for biomedical application. Journal of the mechanical behavior of biomedical materials 4, 1228-1233 (2011).
12 Budhlall, B., Sudol, E., Dimonie, V., Klein, A. & El‐Aasser, M. Role of grafting in the emulsion polymerization of vinyl acetate with poly (vinyl alcohol) as an emulsifier. I. Effect of the degree of blockiness on the kinetics and mechanism of grafting. Journal of Polymer Science Part A: Polymer Chemistry 39, 3633-3654 (2001).
13 Gilmore, C., Poehlein, G. & Schork, F. Modeling poly (vinyl alcohol)‐stabilized vinyl acetate emulsion polymerization. I. Theory. Journal of applied polymer science 48, 1449-1460 (1993).
14 Marten, F. L. Vinyl alcohol polymers. Encyclopedia of polymer science and technology (2002).
15 Noro, K. Emulsion polymerisation of vinyl acetate in relation to the chemical structure of polyvinyl alcohol. Polymer International 2, 128-134 (1970).
16 Finch, C. A. Polyvinyl alcohol; properties and applications. (John Wiley & Sons, 1973).
17 Ahmed, I. & Pritchard, J. Partly alcoholized poly (vinyl acetate) polymers: properties of polymers hydrolysed by different routes. Polymer 20, 1492-1496 (1979).
18 Minsk, L., Priest, W. & Kenyon, W. The alcoholysis of polyvinyl acetate. Journal of the American Chemical Society 63, 2715-2721 (1941).
19 Joshi, D. & Pritchard, J. Partly alcoholized poly (vinyl acetate) polymers: kinetics of formation and reaction with iodine. Polymer 19, 427-430 (1978).
20 Yamada, K., Nakano, T. & Okamoto, Y. Synthesis of syndiotactic poly (vinyl alcohol) from fluorine-containing vinyl esters. Polymer journal 30, 641-645 (1998).
21 Van der Velden, G. & Beulen, J. 300-MHz Proton NMR and 25-MHz carbon-13 NMR investigations of sequence distributions in vinyl alcohol-vinyl acetate copolymers. Macromolecules 15, 1071-1075 (1982).
22 Bugada, D. C. & Rudin, A. Characterization of poly (vinyl alcohol—acetate) by 13C nmr and thermal analyses. Polymer 25, 1759-1766 (1984).
23 Flory, P. J. Theory of crystallization in copolymers. Transactions of the Faraday Society 51, 848-857 (1955).
24 Tubbs, R. K. Melting point and heat of fusion of poly (vinyl alcohol). Journal of Polymer Science Part A: Polymer Chemistry 3, 4181-4189 (1965).
25 Scholtens, B. & Bijsterbosch, B. Molecular architecture and physicochemical properties of some vinyl alcohol‐vinyl acetate copolymers. Journal of Polymer Science Part B: Polymer Physics 17, 1771-1787 (1979).
26 Tubbs, R., Inskip, H. & Subramanian, P. Properties and Applications of Poly (vinyl Alcohol). London: Society of the Chemical Industry, 88 (1968).
27 Axelrod, R. & Phillips, J. (From:(Marten, 2002), 1991).
28 Casey, J. & Manly, D. in Proceedings of the Third International Biodegradation Symposium. Appl Sci: Barking, England. 819-833.
29 Tripathi, S., Mehrotra, G. & Dutta, P. Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. International Journal of Biological Macromolecules 45, 372-376 (2009).
30 Bingham, E., Cohrssen, B. & Powell, C. H. (New York: John Wiley and Sons, 2001).
31 Lewis, R. J. & Irving, N. Sax's dangerous properties of industrial materials. Vol. 3 (Van Nostrand Reinhold, 2003).
32 Mokwena, K. K. & Tang, J. Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods. Critical reviews in food science and nutrition 52, 640-650 (2012).
33 Shaw, D. J. Introduction to Colloid and Surface Chemistry,
3rd ed. (1980).
34 Napper, D. H. Polymeric stabilization of colloidal dispersions. Vol. 3 (Academic Pr, 1983).
35 Fox, T., Kinsinger, J., Mason, H. & Schuele, E. Properties of dilute polymer solutions I—Osmotic and viscometric properties of solutions of conventional polymethyl methacrylate. Polymer 3, 71-95 (1962).
36 Graessley, W. W. Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21, 258-262 (1980).
37 Dickinson, E., McClements, D. J. & Povey, M. J. Ultrasonic investigation of the particle size dependence of crystallization in n-hexadecane-in-water emulsions. Journal of colloid and interface science 142, 103-110 (1991).
38 McClements, D. & Coupland, J. Theory of droplet size distribution measurements in emulsions using ultrasonic spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 117, 161-170 (1996).
39 Holmes, A. & Challis, R. Ultrasonic scattering in concentrated colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 77, 65-74 (1993).
40 Geissler, E., Horkay, F. & Hecht, A. M. Osmotic and scattering properties of chemically crosslinked poly (vinyl alcohol) hydrogels. Macromolecules 24, 6006-6011 (1991).
41 Horkay, F., Burchard, W., Geissler, E. & Hecht, A. M. Thermodynamic properties of poly (vinyl alcohol) and poly (vinyl alcohol-vinyl acetate) hydrogels. Macromolecules 26, 1296-1303 (1993).
42 Horkay, F., Burchard, W., Geissler, E., Hecht, A. M. & Zrinyi, M. in Macromolecular Symposia. 145-154 (Wiley Online Library).
43 Gottlieb, H. E. et al. Development of GSK's NMR guides–a tool to encourage the use of more sustainable solvents. Green Chemistry 18, 3867-3878 (2016).
44 Garnaik, B. & Thombre, S. M. Self‐association through hydrogen bonding and sequence distribution in poly (vinyl acetate‐co‐vinyl alcohol) copolymers. Journal of applied polymer science 72, 123-133 (1999).
45 Berne, B. & Pecora, R. Dynamic Light Scattering RE Krieger. Malabar, Fla (1990).
46 Brown, W. Dynamic light scattering: the method and some applications. Vol. 49 (Oxford University Press, USA, 1993).
47 Frisken, B. J. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Applied Optics 40, 4087-4091 (2001).
48 Patel, S. S. & Takahashi, K. M. Polymer dynamics in dilute and semidilute solutions. Macromolecules 25, 4382-4391 (1992).
49 Chodankar, S., Aswal, V., Kohlbrecher, J., Vavrin, R. & Wagh, A. Structural study of coacervation in protein-polyelectrolyte complexes. Physical Review E 78, 031913 (2008).
50 Moritani, T. & Fujiwara, Y. 13C-and 1H-NMR investigations of sequence distribution in vinyl alcohol-vinyl acetate copolymers. Macromolecules 10, 532-535 (1977).

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *