帳號:guest(18.226.4.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳劼彣
作者(外文):Chen, Chieh-Wen
論文名稱(中文):優化大腸桿菌以醋酸為碳源生產衣康酸
論文名稱(外文):Optimization of Itaconic Acid production from Acetate in Escherchia Coli by tuning flux distribution
指導教授(中文):沈若樸
指導教授(外文):Shen, Claire R.
口試委員(中文):蘭宜錚
黃煒智
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:105032401
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:41
中文關鍵詞:衣康酸醋酸代謝工程可再生化學物質
外文關鍵詞:ItaconateAcetateMetabolismRenewableBiochemical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:433
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
衣康酸是一具有多種用途之五碳二羧酸,而生物合成化學品中面臨到的主要問題是其高成本之碳源。而在細胞代謝過程中,醋酸是一個常見的副產品,醋酸不僅在細胞代謝過程中能得到,也可以由厭氧消化工業廢水中大量取得,因此希望能以醋酸做為較便宜之替代碳源。
本研究主要是調控檸檬酸合成酶之轉譯表現量,為了最適化由醋酸轉化至衣康酸之生產。由結果來看,在中等強度表現量下可得到最高產量之衣康酸0.17 g/L,而當表現量在極端條件時,衣康酸產量反而降低或保持不變,因此證明控制關鍵酵素之表現量可以優化生產效率及產量
Itaconic acid is a five carbon dicarboxylic acid with versatile uses, one of the major setbacks that most metabolic engineered biochemicals is faced with is the high production costs contributed mostly by the carbon source. Acetate, is a chemical that is usually a byproduct of metabolic processes when there is an imbalance in diabolic activities of cells, it is also abundantly available in anaerobically digested industrial waste water, making it an appealing and cheap alternative carbon source for the production of bio-based chemicals.
This study focuses on tuning the expression levels of citrate synthase on a translation level in order to obtain a translation expression that is most optimal for producing Itaconic acid from Acetate. From results obtained, expression levels that were on a medium level range showed improved productivity titers with the highest titer measured at 0.17g/L itaconic acid and when expression levels are at the extreme ends of the spectrum titer levels decreased or remained relatively unchanged, thus proving the fact that is indeed a need to control expression levels of key enzymes in order to optimize production titer and yield.
Table of Contents
1. Introduction 6
1.1 Itaconic acid 6
1.1.1.Potential as a core chemical building block 6
1.1.3 Itaconic acid production by Aspergillus Terreus 7
1.1.4 Itaconic Acid production in Escherichia Coli 9
1.2 Alternative carbon feedstocks 10
1.2.1 Waste management 10
1.3 Acetate as an alterative carbon resource 12
1.3.1 Native Acetate assimilating pathways in E.coli 12
1.3.2 Biochemicals produced from Acetate 13
1.3.3 Antimicrobial effects of Acetate 14
1.4 Altering Ribosome binding sites to enhance production 15
2. Experiment purpose 17
3. Experiment Method 20
3.1 Chemical and reagents 20
3.2 Bacterial strains 20
3.3 Plasmids 21
3.4 Synthetic RBS design 26
3.5 Production media and cultivation condition in flask 26
3.5 Screening for Acetate assimilating pathways 27
3.6 Enzyme assay 27
4. Results and Discussion 28
4.1 Screening for acetate assimilating pathways 28
4.2 Identifying suitable strain for production 30
4.3 RBS calculations 32
4.3.1 Prediction of plasmid pPC59 RBS expression level 32
4.3.2 Synthetic RBS design 33
4.4 varied expression lead to varied productivty 34
4.5 Determing enzyme activty 36
5. Conclusion 37
Reference 39

Reference
1. Corma, A., S. Iborra, and A. Velty, Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 2007. 107(6): p. 2411-2502.
2. Kumar, S., et al., Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review. Polymer International, 2017. 66(10): p. 1349-1363.
3. Saha, B.C., Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. Journal of Industrial Microbiology & Biotechnology, 2017. 44(2): p. 303-315.
4. Okamoto, S., et al., Production of itaconic acid using metabolically engineered Escherichia coli. J Gen Appl Microbiol, 2014. 60(5): p. 191-7.
5. Vuoristo, K.S., et al., Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production. Front Microbiol, 2015. 6: p. 849.
6. Otten, A., M. Brocker, and M. Bott, Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng, 2015. 30: p. 156-65.
7. Blazeck, J., et al., Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol, 2014. 98(19): p. 8155-64.
8. Blazeck, J., et al., Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng, 2015. 32: p. 66-73.
9. Chin, T., et al., Photosynthetic production of itaconic acid in Synechocystis sp PCC6803. Journal of Biotechnology, 2015. 195: p. 43-45.
10. Okamoto, S., et al., Production of itaconic acid in Escherichia coli expressing recombinant alpha-amylase using starch as substrate. J Biosci Bioeng, 2015. 119(5): p. 548-53.
11. Noh, M.H., et al., Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W. Biotechnology and Bioengineering, 2018. 115(3): p. 729-738.
12. Chang, P.C., et al., Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. Journal of Biotechnology, 2017. 249: p. 73-81.
13. Harder, B.J., K. Bettenbrock, and S. Klamt, Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metabolic Engineering, 2016. 38: p. 29-37.
14. Li, A., et al., Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. Bmc Biotechnology, 2012. 12.
15. Nghiem, L.D., R. Wickham, and D.G. Ohandja, Enhanced biogas production and performance assessment of a full-scale anaerobic digester with acid phase digestion. International Biodeterioration & Biodegradation, 2017. 124: p. 162-168.
16. Ingram, L.O., et al., Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol, 1987. 53(10): p. 2420-5.
17. Fei, Q., et al., Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnology and Bioprocess Engineering, 2011. 16(3): p. 482-487.
18. Christophe, G., et al., Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl Biochem Biotechnol, 2012. 167(5): p. 1270-9.
19. Yu, X.C., et al., Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresource Technology, 2011. 102(10): p. 6134-6140.
20. Simmons, B.A., D. Loque, and H.W. Blanch, Next-generation biomass feedstocks for biofuel production. Genome Biology, 2008. 9(12).
21. Goldemberg, J., et al., Ethanol learning curve - the Brazilian experience. Biomass & Bioenergy, 2004. 26(3): p. 301-304.
22. Rodriguez-Chiang, L., J. Llorca, and O. Dahl, Anaerobic co-digestion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition. Bioresour Technol, 2016. 218: p. 84-91.
23. Sawatdeenarunat, C., et al., Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol, 2015. 178: p. 178-86.
24. Lim, S.J., et al., Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresource Technology, 2008. 99(16): p. 7866-7874.
25. Mulchandani, A. and P. Westerhoff, Recovery opportunities for metals and energy from sewage sludges. Bioresour Technol, 2016. 215: p. 215-226.
26. Kautola, H., Itaconic Acid Production from Xylose in Repeated-Batch and Continuous Bioreactors. Applied Microbiology and Biotechnology, 1990. 33(1): p. 7-11.
27. Saha, B.C., et al., Production of Itaconic Acid from Pentose Sugars by Aspergillus terreus. Biotechnology Progress, 2017. 33(4): p. 1059-1067.
28. Trcek, J., N.P. Mira, and L.R. Jarboe, Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol, 2015. 99(15): p. 6215-29.
29. Kumari, S., et al., Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol, 2000. 182(15): p. 4173-9.
30. Kumari, S., et al., Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol, 1995. 177(10): p. 2878-86.
31. Tashiro, Y., S.H. Desai, and S. Atsumi, Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nat Commun, 2015. 6: p. 7488.
32. Li, Y., et al., Production of Succinate from Acetate by Metabolically Engineered Escherichia coli. ACS Synth Biol, 2016. 5(11): p. 1299-1307.
33. Roe, A.J., et al., Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. Journal of Bacteriology, 1998. 180(4): p. 767-772.
34. Mordukhova, E.A., H.S. Lee, and J.G. Pan, Improved Thermostability and Acetic Acid Tolerance of Escherichia coli via Directed Evolution of Homoserine o-Succinyltransferase. Applied and Environmental Microbiology, 2008. 74(24): p. 7660-7668.
35. Espah Borujeni, A., A.S. Channarasappa, and H.M. Salis, Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res, 2014. 42(4): p. 2646-59.
36. Seo, S.W., et al., Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng, 2013. 15: p. 67-74.
37. Noh, M.H., et al., Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metab Eng, 2017. 43(Pt A): p. 1-8.
38. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(12): p. 6640-6645.
39. Hirooka, K., et al., Risk factors for elevated intraocular pressure after trans-tenon retrobulbar injections of triamcinolone. Jpn J Ophthalmol, 2006. 50(3): p. 235-8.
40. Enjalbert, B., et al., Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway. Sci Rep, 2017. 7: p. 42135.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *