|
[1] Y. Wang, C. Yan, S.-Y. Cheng, Z.Q. Xu, X. Sun, Y.H. Xu, J.J. Chen, Z. Jiang, K. Liang, Z.S. Feng, Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology, Advanced Functional Materials (29), 2019, p. 1902579. [2] R. Want, An introduction to RFID technology, IEEE Pervasive Computing 5(1), 2006, pp. 25-33. [3] H. Zhu, S. Lai, H. Dai, Solutions of metal surface effect for HF RFID systems, 2007 International Conference on Wireless Communications, Networking and Mobile Computing, 2007, pp. 2089-2092. [4] W.J. Yoon, S.H. Chung, S.J. Lee, Implementation and performance evaluation of an active RFID system for fast tag collection, Computer Communications 31(17), 2008, pp. 4107-4116. [5] J. Zhu, Z. Li, Analysis of magnetic shielding effect on an RFID coil antenna in metallic environments with a ferrite toroid, IEEE Transactions on Electromagnetic Compatibility 62(6), 2020, pp. 2613-2620. [6] Tashi, M.S. Hasan, H. Yu, Design, simulation, prototyping and experimentation of planar micro-strip patch antenna for passive UHF RFID to tag for metallic objects, 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), 2016, pp. 243-249. [7] S. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band, Carbon (152), 2019, pp. 159-187. [8] K. Zhao, S. Gupta, C. Chang, J. Wei, N.H. Tai, Layered composites composed of multi-walled carbon nanotubes/manganese dioxide/carbon fiber cloth for microwave absorption in the X-band, Royal Society of Chemistry Advances 9(33), 2019, pp. 19217-19225. [9] S. Gupta, C. Chang, A.K. Anbalagan, C.H. Lee, N.H. Tai, Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption, Composites Science and Technology (188), 2020, p. 107994. [10] K. Y. Chen, S. Gupta, N. H. Tai, Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites, Composites Communications (23), 2021, p. 100572 [11] C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon (140), 2018, pp. 696-733. [12] Y. J. Chen, Y. A. Li, M. Yip, N. H. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles, Composites Science and Technology (80), 2013, pp. 80-86. [13] D. K. Cheng, Field and Wave Electromagnetics, Second edition, 1989, Pearson, United States [14] W. L. Song, M. S. Cao, M. M. Lu, S. Bi, C. Y. Wang, J. Liu, J. Yuan, L. Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding, Carbon (66), 2014, pp. 67-76 [15] M. H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites, Carbon (47), 2009, pp. 1738-1746 [16] David J. Griffiths, Introduction to electrodynamics, Fourth edition, 2014, Pearson, United States [17] H. T. Liu, Y. Liu, B. S. Wang, C. S. Li, Microwave absorption properties of polyester composites incorporated with heterostructure nanofillers with carbon nanotubes as carriers, Chinese Physics Letters 32(4), 2015, p. 044102. [18] T. Wang, Y. Li, L. Wang, C. Liu, S. Geng, X. Jia, F. Yang, L. Zhang, L. Liu, B. You, X. Ren, H. Yang, Synthesis of graphene/α-Fe2O3 composites with excellent electromagnetic wave absorption properties, Royal Society of Chemistry Advances 5(74), 2015, pp. 60114-60120. [19] S. Gupta, S.K. Sharma, D. Pradhan, N. H. Tai, Ultra-light 3D reduced graphene oxide aerogels decorated with cobalt ferrite and zinc oxide perform excellent electromagnetic interference shielding effectiveness, Composites Part A: Applied Science and Manufacturing (123), 2019, pp. 232-241. [20] D.G.R. William D. Callister, Materials science and engineering: An Introduction, Seventh Edition, 2007, John Wiley & Sons Inc., United States [21] H. M. Kim, K. Kim, C. Y. Lee, and J. Joo, Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst, Applied Physics Letters(84), 2004, pp. 589-591 [22] C. Y. Huang, C. C. Wu, The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites, European Polymer Journal(36), 2000, pp. 2729-2737 [23] Y. J. Yim, K. Y. Rhee, S. J. Park, Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites, Composites Part B: Engineering (98), 2016, pp. 120-125 [24] B. Shen, Y. Li, D. Yi, W. Zhai, X. C. Wei, W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding, Carbon(102), 2016, pp. 154-160 [25] B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding, Advanced Functional Materials(24), 2014, pp. 4542-4548 [26] J. Lee, Y. Liu, Y. Liu, S. J. Park, M. Park, H. Y. Kim, Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics, Journal of Materials Chemistry C, 2017, pp. 7853-7861 [27] Y. J. Wan, P. L. Zhu, S. H. Yu, R. Sun, C. P. Wong, W. H. Liao, Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy, Carbon, 2017, pp. 74-81 [28] P. Yin, L. Zhang, Y. Wang, H. Rao, Y. Wang, J. Wang, X. Feng, Y. Tang, J. Dai, H. Cheng, Combination of pumpkin-derived biochar with nickel ferrite/FeNi3 toward low frequency electromagnetic absorption, Journal of Materials Science: Materials in Electronics, 2020 [29] S. Acharya, J. Ray, T. U. Patro, P. Alegaonkar, S. Datar, Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly(methyl methacrylate) composites, Nanotechnology, 2018, p. 115605 [30] H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials, Journal of Materials Chemistry C 5(3), 2017, pp. 491-512. [31] H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance, ACS Applied Materials & Interfaces 7(8), 2015, pp. 4744-4750. [32] H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties, Powder Technology(269), 2015, pp. 443-451. [33] H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen, X. Tian, Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption, Journal of Materials Chemistry A 1(30), 2013, pp. 8547-8552. [34] Y. Chen, X. Liu, X. Mao, Q. Zhuang, Z. Xie, Z. Han, γ-Fe2O3–MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability, Nanoscale 6(12), 2014, pp. 6440-6447. [35] Daniel M. Dobkin and Steven M. Weigand, Environmental effects on RFID tag antennas, IEEE MTT-S International Microwave Symposium, 2005, pp. 135-138 [36] K. V. S. Rao, Sander F. Lam, Pavel V. Nikitin, UHF RFID tag for metal containers, Proceedings of Asia-Pacific Microwave Conference, 2010, pp. 179-182 [37] M. Kim, K. Kim, Automated RFID-Based identification system for steel coils, Progress In Electromagnetics Research(131), 2012, pp. 1-17 [38] J.T. Prothro, G.D. Durgin, J.D. Griffin, The effects of a metal ground plane on RFID tag antennas, IEEE Antennas and Propagation Society International Symposium, 2006, pp. 3241-3244 [39] L. F. Mo, H. J. Zhang, RFID antenna near the surface of metal, IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies For Wireless Communications, 2007, pp. 803-806 [40] Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption, Nano Research 11(3), 2018, pp. 1426-1436. [41] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites, Journal of Magnetism and Magnetic Materials 321(14), 2009, pp. 2035-2047. [42] M. H. Ullah, M.T. Islam, A compact square loop patch antenna on high dielectric ceramic–PTFE composite material, Applied Physics A(113), 2013, pp. 185-193 [43] A. I. Petrariu, V. Popa, Analysis and design of a long range PTFE substrate UHF RFID tag for cargo container identification, Journal of Electrical Engineering(67), 2016, pp. 42-47 [44] A. A. Babar, T. Björninen,V. A. Bhagavati, L. Sydänheimo, P. Kallio, L. Ukkonen, Small and flexible metal mountable passive UHF RFID tag on high-dielectric polymer-ceramic composite substrate, IEEE Antennas and Wireless Propagation Letters(67), 2012, pp. 1319-1322 [45] M. Y. Li, S. Gupta, C. Chang, N. H. Tai, Layered hybrid composites using multi-walled carbon nanotube film as reflection layer and multi-walled carbon nanotubes/neodymium magnet/ epoxy as absorption layer perform selective electromagnetic interference shielding, Composites Part B: Engineering(161), 2019, pp. 617-626 [46] S. Gupta, C. Chang, C. H. Lai, N. H. Tai, Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding, Composites Part B: Engineering(164), 2019, pp. 447-457 [47] C. C. Huang, S. Gupta, C. Y. Lo, N. H. Tai, Highly transparent and excellent electromagnetic interference shielding hybrid films composed of sliver-grid/(silver nanowires and reduced graphene oxide), Materials Letters (253), 2019, pp. 152-155 [48] 汪建民主編, 材料分析(第二版), 2014, 中國材料科學學會, 新竹
|