帳號:guest(3.144.30.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡昊原
作者(外文):Tsai, Hao-Yuan
論文名稱(中文):利用立體超材料達成負磁導係數、散射角度控制、高指向性完美吸收體及放光體之應用
論文名稱(外文):Achieving Mid-Infrared Negative Permeability, Angular Reconfiguration, Directive Perfect Absorption/Emission with Vertical Metamaterials
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):黃承彬
田中拓男
陳哲勤
曾銘綸
口試委員(外文):Huang, Chen-Bin
Tanaka, Takuo
Chen, Che-Chin
Tseng, Ming-Lun
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031903
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:106
中文關鍵詞:超材料完美吸收體中紅外線奈米天線負磁導率三維超材料紅外線光源完美放光體高指向性輻射方向調控
外文關鍵詞:MetamaterialsPerfect absorberMid InfraredNanoantennaNegative permeability3D-metamaterialsIR sourcePerfect emitterHigh directiveAngular reconfigurationGeneralized Kerker condition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:518
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,超材料的基本特性發展已經逐漸飽和,越來越多團隊逐漸轉向如光偵測器、感測器、超材料透鏡以及天線等實際應用,且以可見光、微波及射頻為主,在紅外線波段的應用相當稀少,較為常見的僅有利用超材料製作吸收體以及黑體。其原因主要受限於製作紅外線波段超材料主要需要使用微影鍍膜方式製作,在僅有單層平面的超材料的情況下,電磁波與超材料的交互作用相當有限。也因為受限於製作平面超材料的關係,在紅外線波段超材料的基本特性的研究相較其他波段稀少許多。故本作利用金屬應力自組法製作三維共振器,藉由雙裂環共振器可降低電響應之特性,利用高密度堆疊增強共振器磁響應,並在垂直入射情況下達成零磁導係數以及負磁導係數。同時也定量地比較立體及平面結構在與電磁波耦合之特性,證明立體結構在磁響應共振上可比平面結構有1至3個級距的提升。在應用相關的研究上,我們利用立體超材料可在空間設計結構的特性,製作了輻射角度可控的超材料天線,以及具指向性的超材料完美吸收體以及完美放光體。在輻射角度可控的超材料中,我們利用對稱以及非對稱的裂環共振器,藉控制裂環角度來調控電偶極方向使得輻射方向隨之改變,並藉由單裂環以及雙裂環不同的極矩干涉,使得利用此方式設計的天線可達成在立體面上達成0至180的全角度調控。我們也利用電偶極及電四極的干涉,製作在反射方向無散射的完美吸收體,並利用加熱超材料方式製做完高指向性完美放光體,並藉由對稱性以及混成的結構設計,我們可達到具極化等向性/異向性、單波段/多波段、高指向性的完美吸收體及發光體。
在本論文所述之原創研究中,我們是第一組利用以實驗證明強磁共振以及負磁導係數關係,也是第一組利用立體超材料的磁矩控制來達成輻射角度控制,也是首次完美放光體的角度放光來驗證超材料完美吸收體的超材料散射特性的團隊,可望對於後續研究超材料散射特性研究以及其相關應用具有舉足輕重的地位。
In recent years, the development of the fundamental properties of the metamaterials have been well developed, more and more groups are gradually turning to practical applications such as photodetectors, sensors, metasurfaces, and antennas, mainly focusing on visible light, microwave and radio frequency. The application of the infrared band is quite rare, and the only common ones are the use of metamaterials to make absorbers and emitters. The reason for this is mainly due to the fact that the fabrication of metamaterials in the infrared region, which requires the use of lithography and coating. In the case of the planner metamaterials with single layer, the interaction between electromagnetic waves and metamaterials is quite weak. Also because of the fabrication limitation, the research on the basic properties of planner metamaterials in the infrared band is much rarer than in other bands. Therefore, this work uses the metal-stress driven self-folding method to fabricate three-dimensional metamaterials. We present the vertical double split-ring resonators to reduce the electric response, and use high-density stacking to enhance the magnetic response of the resonator, and achieve zero permeability and negative permeability under normal incidence. At the same time, the coupling properties between the normal incident light and the three-dimensional and planar structures are also quantitatively compared. Our results show that the three-dimensional structure has 1 to 3 orders enhancement in the magnetic response compared with the planar structure. In application-related research, we provide solutions for angular reconfiguration, directional metamaterial perfect absorber, and perfect emitter. In angular reconfigurable metamaterials, we use symmetric and asymmetric split-ring resonators to control the direction of the electric dipole by controlling the split angle to change the radiation direction accordingly. Different dipole moment interference enables the antenna to achieve full-angular control from 0o to 180o in vertical direction. We also make use of the interference of electric dipoles and electric quadrupoles to design a perfect absorber whose scattering in the reflection direction is near zero. Moreover, we heat up the metamaterial to make the perfect absorber into highly directive perfect emitter. Through the symmetric/asymmetric and hybrid structures design, we can achieve polarization isotropic / anisotropic, single-band/multi-band, and high directivity perfect absorbers and emitters.
In the original researches described in this thesis, we are the first group to unveil the relationship between strong magnetic resonance and negative permeability, and the first group to control the electric dipole vectors of three-dimensional metamaterials to achieve radiation angular reconfiguration. Moreover, with the equality of the spectral directional in emissivity and absorption, we first realize the perfect absorption scattering properties with the perfect emitter. We believe our effort in three-dimensional metamaterials could pave a way for the follow-up study of metamaterial scattering properties, such as chirality, toroidal, and anapole, and the related applications in molecule sensing, color routing, photodetector, light source, metasurfaces, and waveplates in MIR region.
Abstract ii
摘要 iv
致謝 v
Content vii
Chapter 1: Introduction and thesis statements 1
1.1 Metamaterial 1
1.2 Artificial magnetism 3
1.3 From two-dimensional to three-dimensional metamaterials 6
1.4 Scattering direction control with nanoantenna 8
1.5 Perfect absorber 12
1.6 Thesis statements 15
Chapter 2: Fabrication process and analytical framework 19
2.1 The metal-stress self-folding method 19
2.2 Bianisotropy retrieval method 20
2.3 Multipole decomposition 22
2.4 The Kerker condition and the generalized Kerker condition 23
2.5 Optical properties characterization 26
Chapter 3: Achieve artificial magnetism under normal incidence 30
3.1 Introduction 30
3.2 Observation of the magnetic response in DSRRs 31
3.3 Macro-scale: origin of negative permeability with DSRRs 35
3.4 Micro-scale: strong magnetic response with normal incidence in 3D geometry 37
3.5 Conclusion 42
Chapter 4: Angular reconfiguration 43
4.1 Introduction 43
4.2 Motivation and Design 45
4.3 Optical properties characterization 48
4.4 Substrate effect 50
4.5 Connecting the transmittance and reflectance with the analytical far-field radiation 52
4.6 Extract scattering direction 55
4.7 Conclusion 59
Chapter 5: High directive metamaterials perfect absorber and perfect emitter 61
5.1 Introduction 61
5.2 Origin and design of the vertical metamaterial perfect absorber and emitter 62
5.3 Experimentally verify the perfect absorption and angular dispersion and achieve polarization insensitive 69
5.4 Emissivity characterization under straight direction 74
5.5 Examine the generalized Kerker condition and retrieve the scattering pattern by emission 78
5.6 Conclusion 82
Chapter 6: Summary and Outlook 83
Chapter 7: Reference 97
1. Chai, M.; Wang, Y.; Chen, C.; Zhao, Z.; Jin, M.; He, T., Metamaterials‐Based Photoelectric Conversion: From Microwave to Optical Range. Laser & Photonics Reviews 2021, 16 (3).
2. Xiao, S.; Chettiar, U. K.; Kildishev, A. V.; Drachev, V. P.; Shalaev, V. M., Yellow-light negative-index metamaterials. Opt Lett 2009, 34 (22), 3478-80.
3. Penciu, R. S.; Aydin, K.; Kafesaki, M.; Koschny, T.; Ozbay, E.; Economou, E. N.; Soukoulis, C. M., Multi-gap individual and coupled split-ring resonator structures. Opt Express 2008, 16 (22), 18131-44.
4. Achouri, K.; Caloz, C., Design, concepts, and applications of electromagnetic metasurfaces. Nanophotonics 2018, 7 (6), 1095-1116.
5. Mariani, S.; Andronico, A.; Lemaitre, A.; Favero, I.; Ducci, S.; Leo, G., Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt Lett 2014, 39 (10), 3062-5.
6. Mariani, S.; Andronico, A.; Mauguin, O.; Lemaitre, A.; Favero, I.; Ducci, S.; Leo, G., AlGaAs microdisk cavities for second-harmonic generation. Opt Lett 2013, 38 (19), 3965-8.
7. Abdulkarim, Y. I.; Mohanty, A.; Acharya, O. P.; Appasani, B.; Khan, M. S.; Mohapatra, S. K.; Muhammadsharif, F. F.; Dong, J., A Review on Metamaterial Absorbers: Microwave to Optical. Frontiers in Physics 2022, 10.
8. Bait-Suwailam, M. M.; Boybay, M. S.; Ramahi, O. M., Electromagnetic Coupling Reduction in High-Profile Monopole Antennas Using Single-Negative Magnetic Metamaterials for MIMO Applications. IEEE Transactions on Antennas and Propagation 2010, 58 (9), 2894-2902.
9. Bayatpur, F.; Amirkhizi, A. V.; Nemat-Nasser, S., Experimental Characterization of Chiral Uniaxial Bianisotropic Composites at Microwave Frequencies. IEEE Transactions on Microwave Theory and Techniques 2012, 60 (4), 1126-1135.
10. Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Kumar Mishra, Y., Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Materials Today 2020, 32, 108-130.
11. Al-Naib, I., Evaluation of amplitude difference referencing technique with terahertz metasurfaces for sub-micron analytes sensing. Journal of King Saud University - Science 2019, 31 (4), 1384-1387.
12. Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z., Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors. Nanoscale 2019, 11 (27), 13108-13116.
13. Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z.; Ghoreishi, S. A., Demonstration of Robust Plexcitonic Coupling in Organic Molecules‐Mediated Toroidal Meta‐Atoms. Advanced Optical Materials 2019, 7 (24).
14. Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z.; Ghoreishi, S. A., Attomolar Detection of Low-Molecular Weight Antibiotics Using Midinfrared-Resonant Toroidal Plasmonic Metachip Technology. Physical Review Applied 2019, 12 (3).
15. Yoon, G.; Kim, I.; Rho, J., Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering 2016, 163, 7-20.
16. Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J., Active metamaterials and metadevices: a review. Journal of Physics D: Applied Physics 2020, 53 (50).
17. González-Alcalde, A. K.; G. Mandujano, M. A.; Salas-Montiel, R.; Le Cunff, L. O.; Lerondel, G.; Méndez, E. R., Magnetic mirror metasurface based on the in-phase excitation of magnetic dipole and electric quadrupole resonances. Journal of Applied Physics 2019, 125 (24).
18. Chen, X.; Wu, B. I.; Kong, J. A.; Grzegorczyk, T. M., Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys Rev E Stat Nonlin Soft Matter Phys 2005, 71 (4 Pt 2), 046610.
19. Shalaev, V. M., Optical negative-index metamaterials. Nature Photonics 2007, 1 (1), 41-48.
20. Qin, P.; Yang, Y.; Musa, M. Y.; Zheng, B.; Wang, Z.; Hao, R.; Yin, W.; Chen, H.; Li, E., Toroidal Localized Spoof Plasmons on Compact Metadisks. Adv Sci (Weinh) 2018, 5 (3), 1700487.
21. Aydin, K.; Pryce, I. M.; Atwater, H. A., Symmetry breaking and strong coupling in planar optical metamaterials. Opt Express 2010, 18 (13), 13407-17.
22. Linden, S.; Enkrich, C.; Wegener, M.; Zhou, J.; Koschny, T.; Soukoulis, C. M., Magnetic response of metamaterials at 100 terahertz. Science 2004, 306 (5700), 1351-3.
23. Dolling, G.; Enkrich, C.; Wegener, M.; Zhou, J. F.; Soukoulis, C. M.; Linden, S., Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt Lett 2005, 30 (23), 3198-200.
24. Dolling, G.; Wegener, M.; Soukoulis, C. M.; Linden, S., Negative-index metamaterial at 780 nm wavelength. Opt Lett 2007, 32 (1), 53-5.
25. Garcia-Meca, C.; Ortuno, R.; Rodriguez-Fortuno, F. J.; Marti, J.; Martinez, A., Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Opt Lett 2009, 34 (10), 1603-5.
26. Soukoulis, C. M.; Wegener, M., Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics 2011, 5 (9), 523-530.
27. Zhou, J.; Koschny, T.; Kafesaki, M.; Economou, E. N.; Pendry, J. B.; Soukoulis, C. M., Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 2005, 95 (22), 223902.
28. Boltasseva, A.; Atwater, H. A., Materials science. Low-loss plasmonic metamaterials. Science 2011, 331 (6015), 290-1.
29. Katsarakis, N.; Koschny, T.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M., Electric coupling to the magnetic resonance of split ring resonators. Applied Physics Letters 2004, 84 (15), 2943-2945.
30. Chen, S.; Li, Z.; Liu, W.; Cheng, H.; Tian, J., From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces. Adv Mater 2019, 31 (16), e1802458.
31. Liu, Z.; Cui, A.; Li, J.; Gu, C., Folding 2D Structures into 3D Configurations at the Micro/Nanoscale: Principles, Techniques, and Applications. Adv Mater 2019, 31 (4), e1802211.
32. Liu, Z.; Du, S.; Cui, A.; Li, Z.; Fan, Y.; Chen, S.; Li, W.; Li, J.; Gu, C., High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials. Adv Mater 2017, 29 (17).
33. Prinz, V. Y.; Naumova, E. V.; Golod, S. V.; Seleznev, V. A.; Bocharov, A. A.; Kubarev, V. V., Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties. Sci Rep 2017, 7, 43334.
34. Zhang, S.; Fan, W.; Minhas, B. K.; Frauenglass, A.; Malloy, K. J.; Brueck, S. R., Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys Rev Lett 2005, 94 (3), 037402.
35. Liu, N.; Guo, H.; Fu, L.; Kaiser, S.; Schweizer, H.; Giessen, H., Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 2008, 7 (1), 31-7.
36. Liu, N.; Liu, H.; Zhu, S.; Giessen, H., Stereometamaterials. Nature Photonics 2009, 3 (3), 157-162.
37. Staude, I.; Decker, M.; Ventura, M. J.; Jagadish, C.; Neshev, D. N.; Gu, M.; Kivshar, Y. S., Hybrid high-resolution three-dimensional nanofabrication for metamaterials and nanoplasmonics. Adv Mater 2013, 25 (9), 1260-4.
38. Fan, K.; Strikwerda, A. C.; Zhang, X.; Averitt, R. D., Three-dimensional broadband tunable terahertz metamaterials. Physical Review B 2013, 87 (16).
39. Wu, M.; Zhao, X.; Zhang, J.; Schalch, J.; Duan, G.; Cremin, K.; Averitt, R. D.; Zhang, X., A three-dimensional all-metal terahertz metamaterial perfect absorber. Applied Physics Letters 2017, 111 (5).
40. Chen, W. T.; Chen, C. J.; Wu, P. C.; Sun, S.; Zhou, L.; Guo, G. Y.; Hsiao, C. T.; Yang, K. Y.; Zheludev, N. I.; Tsai, D. P., Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. Opt Express 2011, 19 (13), 12837-42.
41. Wu, P. C.; Chen, W. T.; Yang, K.-Y.; Hsiao, C. T.; Sun, G.; Liu, A. Q.; Zheludev, N. I.; Tsai, D. P., Magnetic plasmon induced transparency in three-dimensional metamolecules. Nanophotonics 2012, 1 (2), 131-138.
42. Wu, P. C.; Sun, G.; Chen, W. T.; Yang, K.-Y.; Huang, Y.-W.; Chen, Y.-H.; Huang, H. L.; Hsu, W.-L.; Chiang, H. P.; Tsai, D. P., Vertical split-ring resonator based nanoplasmonic sensor. Applied Physics Letters 2014, 105 (3).
43. Agarwal, K.; Liu, C.; Joung, D.; Park, H.-R.; Jeong, J.; Kim, D.-S.; Cho, J.-H., Three-Dimensionally Coupled THz Octagrams as Isotropic Metamaterials. ACS Photonics 2017, 4 (10), 2436-2445.
44. Jiang, Z. H.; Lin, L.; Ma, D.; Yun, S.; Werner, D. H.; Liu, Z.; Mayer, T. S., Broadband and wide field-of-view plasmonic metasurface-enabled waveplates. Sci Rep 2014, 4, 7511.
45. Cui, A.; Liu, Z.; Li, J.; Shen, T. H.; Xia, X.; Li, Z.; Gong, Z.; Li, H.; Wang, B.; Li, J.; Yang, H.; Li, W.; Gu, C., Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances. Light: Science & Applications 2015, 4 (7), e308-e308.
46. Baryshnikova, K. V.; Smirnova, D. A.; Luk'yanchuk, B. S.; Kivshar, Y. S., Optical Anapoles: Concepts and Applications. Advanced Optical Materials 2019, 7 (14).
47. Both, S.; Schaferling, M.; Sterl, F.; Muljarov, E. A.; Giessen, H.; Weiss, T., Nanophotonic Chiral Sensing: How Does It Actually Work? ACS Nano 2022, 16 (2), 2822-2832.
48. Busch, K.; von Freymann, G.; Linden, S.; Mingaleev, S. F.; Tkeshelashvili, L.; Wegener, M., Periodic nanostructures for photonics. Physics Reports 2007, 444 (3-6), 101-202.
49. Li, N.; Lai, Y.; Lam, S. H.; Bai, H.; Shao, L.; Wang, J., Directional Control of Light with Nanoantennas. Advanced Optical Materials 2020, 9 (1).
50. Campione, S.; Guclu, C.; Ragan, R.; Capolino, F., Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles. ACS Photonics 2014, 1 (3), 254-260.
51. Lai, Y.; Cui, X.; Li, N.; Shao, L.; Zhang, W.; Wang, J.; Lin, H. Q., Asymmetric Light Scattering on Heterodimers Made of Au Nanorods Vertically Standing on Au Nanodisks. Advanced Optical Materials 2020, 9 (3).
52. Yao, K.; Liu, Y., Controlling Electric and Magnetic Resonances for Ultracompact Nanoantennas with Tunable Directionality. ACS Photonics 2016, 3 (6), 953-963.
53. Alaee, R.; Rockstuhl, C.; Fernandez-Corbaton, I., Exact Multipolar Decompositions with Applications in Nanophotonics. Advanced Optical Materials 2019, 7 (1).
54. Li, J.; Verellen, N.; Vercruysse, D.; Bearda, T.; Lagae, L.; Van Dorpe, P., All-Dielectric Antenna Wavelength Router with Bidirectional Scattering of Visible Light. Nano Lett 2016, 16 (7), 4396-403.
55. Kerker, M.; Wang, D. S.; Giles, C. L., Electromagnetic scattering by magnetic spheres. Journal of the Optical Society of America 1983, 73 (6).
56. Chen, W.; Chen, Y.; Liu, W., Multipolar Conversion Induced Subwavelength High‐Q Kerker Supermodes with Unidirectional Radiations. Laser & Photonics Reviews 2019, 13 (9).
57. Hancu, I. M.; Curto, A. G.; Castro-Lopez, M.; Kuttge, M.; van Hulst, N. F., Multipolar interference for directed light emission. Nano Lett 2014, 14 (1), 166-71.
58. Liu, W.; Kivshar, Y. S., Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt Express 2018, 26 (10), 13085-13105.
59. Yin, W.; Liang, X.; Chen, A.; Zhang, Z.; Shi, L.; Guan, F.; Liu, X.; Zi, J., Cross-polarization suppression for patch array antennas via generalized Kerker effects. Opt Express 2020, 28 (1), 40-47.
60. Tsilipakos, O.; Tasolamprou, A. C.; Koschny, T.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M., Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection. Adv Opt Mater 2018, 6 (22), 1800633.
61. Gurunarayanan, S. P.; Verellen, N.; Zharinov, V. S.; James Shirley, F.; Moshchalkov, V. V.; Heyns, M.; Van de Vondel, J.; Radu, I. P.; Van Dorpe, P., Electrically Driven Unidirectional Optical Nanoantennas. Nano Lett 2017, 17 (12), 7433-7439.
62. Slovick, B. A.; Bean, J. A.; Krenz, P. M.; Boreman, G. D., Directional control of infrared antenna-coupled tunnel diodes. Opt Express 2010, 18 (20), 20960-7.
63. Bekshaev, A. Y.; Bliokh, K. Y.; Nori, F., Mie scattering and optical forces from evanescent fields: a complex-angle approach. Opt Express 2013, 21 (6), 7082-95.
64. Liu, W.; Zhang, J.; Lei, B.; Ma, H.; Xie, W.; Hu, H., Ultra-directional forward scattering by individual core-shell nanoparticles. Opt Express 2014, 22 (13), 16178-87.
65. Dregely, D.; Taubert, R.; Dorfmuller, J.; Vogelgesang, R.; Kern, K.; Giessen, H., 3D optical Yagi-Uda nanoantenna array. Nat Commun 2011, 2, 267.
66. Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C., A generalized Kerker condition for highly directive nanoantennas. Opt Lett 2015, 40 (11), 2645-8.
67. Alaee, R.; Albooyeh, M.; Tretyakov, S.; Rockstuhl, C., Phase-change material-based nanoantennas with tunable radiation patterns. Opt Lett 2016, 41 (17), 4099-102.
68. Cheng, L.; Alaee, R.; Safari, A.; Karimi, M.; Zhang, L.; Boyd, R. W., Superscattering, Superabsorption, and Nonreciprocity in Nonlinear Antennas. ACS Photonics 2021, 8 (2), 585-591.
69. Pitchappa, P.; Ho, C. P.; Qian, Y.; Dhakar, L.; Singh, N.; Lee, C., Microelectromechanically tunable multiband metamaterial with preserved isotropy. Sci Rep 2015, 5, 11678.
70. Pitchappa, P.; Kumar, A.; Liang, H.; Prakash, S.; Wang, N.; Bettiol, A. A.; Venkatesan, T.; Lee, C.; Singh, R., Frequency‐Agile Temporal Terahertz Metamaterials. Advanced Optical Materials 2020, 8 (12).
71. Chen, X.; Fan, W., Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing. Opt Lett 2019, 44 (23), 5876-5879.
72. Chen, X.; Fan, W.; Yan, H., Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing. Opt Express 2020, 28 (11), 17102-17112.
73. Lu, J. Y.; Raza, A.; Noorulla, S.; Alketbi, A. S.; Fang, N. X.; Chen, G.; Zhang, T., Near-Perfect Ultrathin Nanocomposite Absorber with Self-Formed Topping Plasmonic Nanoparticles. Advanced Optical Materials 2017, 5 (18).
74. Yoo, S.; Park, Q. H., Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics 2019, 8 (2), 249-261.
75. Yu, P.; Besteiro, L. V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H. H.; Jagadish, C.; Wiederrecht, G. P.; Govorov, A. O.; Wang, Z., Broadband Metamaterial Absorbers. Advanced Optical Materials 2018, 7 (3).
76. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nat Mater 2008, 7 (6), 442-53.
77. Chen, T.; Li, S.; Sun, H., Metamaterials application in sensing. Sensors (Basel) 2012, 12 (3), 2742-65.
78. Dayal, G.; Chin, X. Y.; Soci, C.; Singh, R., High-QPlasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing. Advanced Optical Materials 2017, 5 (2).
79. Tanaka, T.; Yano, T.-a.; Kato, R., Nanostructure-enhanced infrared spectroscopy. Nanophotonics 2022, 11 (11), 2541-2561.
80. Kim, J.; Park, C.; Hahn, J. W., Metal–Semiconductor–Metal Metasurface for Multiband Infrared Stealth Technology Using Camouflage Color Pattern in Visible Range. Advanced Optical Materials 2022, 10 (6).
81. Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H., Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 2010, 10 (7), 2342-8.
82. Xiong, X.; Jiang, S. C.; Hu, Y. H.; Peng, R. W.; Wang, M., Structured metal film as a perfect absorber. Adv Mater 2013, 25 (29), 3994-4000.
83. Akin, B.; Linford, M. R.; Ahmadivand, A.; Altindal, S., All‐Dielectric Fabry–Pérot Cavity Design for Spectrally Selective Mid‐Infrared Absorption. physica status solidi (b) 2021, 259 (3).
84. Li, H.; Wang, L.; Zhai, X., Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber. Sci Rep 2016, 6, 36651.
85. Yang, C.-Y.; Yang, J.-H.; Yang, Z.-Y.; Zhou, Z.-X.; Sun, M.-G.; Babicheva, V. E.; Chen, K.-P., Nonradiating Silicon Nanoantenna Metasurfaces as Narrowband Absorbers. ACS Photonics 2018, 5 (7), 2596-2601.
86. Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X., Identifying the perfect absorption of metamaterial absorbers. Physical Review B 2018, 97 (3).
87. Hao, J.; Wang, J.; Liu, X.; Padilla, W. J.; Zhou, L.; Qiu, M., High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters 2010, 96 (25).
88. Ogawa, S.; Kimata, M., Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review. Materials (Basel) 2018, 11 (3).
89. Ma, W.; Wen, Y.; Yu, X., Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Opt Express 2013, 21 (25), 30724-30.
90. Shrestha, S.; Wang, Y.; Overvig, A. C.; Lu, M.; Stein, A.; Negro, L. D.; Yu, N., Indium Tin Oxide Broadband Metasurface Absorber. ACS Photonics 2018, 5 (9), 3526-3533.
91. Shamkhi, H. K.; Baryshnikova, K. V.; Sayanskiy, A.; Kapitanova, P.; Terekhov, P. D.; Belov, P.; Karabchevsky, A.; Evlyukhin, A. B.; Kivshar, Y.; Shalin, A. S., Transverse Scattering and Generalized Kerker Effects in All-Dielectric Mie-Resonant Metaoptics. Phys Rev Lett 2019, 122 (19), 193905.
92. Chen, C. C.; Hsiao, C. T.; Sun, S.; Yang, K. Y.; Wu, P. C.; Chen, W. T.; Tang, Y. H.; Chau, Y. F.; Plum, E.; Guo, G. Y.; Zheludev, N. I.; Tsai, D. P., Fabrication of three dimensional split ring resonators by stress-driven assembly method. Opt Express 2012, 20 (9), 9415-20.
93. Kriegler, C. E.; Rill, M. S.; Linden, S.; Wegener, M., Bianisotropic Photonic Metamaterials. IEEE Journal of Selected Topics in Quantum Electronics 2010, 16 (2), 367-375.
94. Marqués, R.; Medina, F.; Rafii-El-Idrissi, R., Role of bianisotropy in negative permeability and left-handed metamaterials. Physical Review B 2002, 65 (14).
95. Cong, L.; Savinov, V.; Srivastava, Y. K.; Han, S.; Singh, R., A Metamaterial Analog of the Ising Model. Adv Mater 2018, e1804210.
96. Nanz, S., Why another Multipole Family? In Toroidal Multipole Moments in Classical Electrodynamics, 2016; pp 5-11.
97. Radescu, E. E.; Vaman, G., Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys Rev E Stat Nonlin Soft Matter Phys 2002, 65 (4 Pt 2B), 046609.
98. Fan, K.; Shadrivov, I. V.; Miroshnichenko, A. E.; Padilla, W. J., Infrared all-dielectric Kerker metasurfaces. Opt Express 2021, 29 (7), 10518-10526.
99. Evlyukhin, A. B.; Fischer, T.; Reinhardt, C.; Chichkov, B. N., Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Physical Review B 2016, 94 (20).
100. Terekhov, P. D.; Baryshnikova, K. V.; Greenberg, Y.; Fu, Y. H.; Evlyukhin, A. B.; Shalin, A. S.; Karabchevsky, A., Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation. Sci Rep 2019, 9 (1), 3438.
101. Gladyshev, S.; Frizyuk, K.; Bogdanov, A., Symmetry analysis and multipole classification of eigenmodes in electromagnetic resonators for engineering their optical properties. Physical Review B 2020, 102 (7).
102. Krishnamoorthy, H. N. S.; Adamo, G.; Yin, J.; Savinov, V.; Zheludev, N. I.; Soci, C., Infrared dielectric metamaterials from high refractive index chalcogenides. Nat Commun 2020, 11 (1), 1692.
103. Ginn, J. C.; Brener, I.; Peters, D. W.; Wendt, J. R.; Stevens, J. O.; Hines, P. F.; Basilio, L. I.; Warne, L. K.; Ihlefeld, J. F.; Clem, P. G.; Sinclair, M. B., Realizing optical magnetism from dielectric metamaterials. Phys Rev Lett 2012, 108 (9), 097402.
104. Alaee, R.; Lehr, D.; Filter, R.; Lederer, F.; Kley, E.-B.; Rockstuhl, C.; Tünnermann, A., Scattering Dark States in Multiresonant Concentric Plasmonic Nanorings. ACS Photonics 2015, 2 (8), 1085-1090.
105. Ishikawa, A.; Kato, T.; Takeyasu, N.; Fujimori, K.; Tsuruta, K., Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials. Applied Physics Letters 2017, 111 (18).
106. Jain, A.; James, A. R.; Nogan, J.; Luk, T. S.; Subramania, G.; Liu, S.; Brener, I.; Shen, N.-H.; Koschny, T.; Soukoulis, C. M., Dark-State-Based Low-Loss Metasurfaces with Simultaneous Electric and Magnetic Resonant Response. ACS Photonics 2019, 7 (1), 241-248.
107. Ren, Z.; Chang, Y.; Ma, Y.; Shih, K.; Dong, B.; Lee, C., Leveraging of MEMS Technologies for Optical Metamaterials Applications. Advanced Optical Materials 2019, 8 (3).
108. Moritake, Y.; Tanaka, T., Bi-anisotropic Fano resonance in three-dimensional metamaterials. Sci Rep 2018, 8 (1), 9012.
109. Moritake, Y.; Tanaka, T., Controlling bi-anisotropy in infrared metamaterials using three-dimensional split-ring-resonators for purely magnetic resonance. Sci Rep 2017, 7 (1), 6726.
110. Chen, C.-C.; Ishikawa, A.; Tang, Y.-H.; Shiao, M.-H.; Tsai, D. P.; Tanaka, T., Uniaxial-isotropic Metamaterials by Three-Dimensional Split-Ring Resonators. Advanced Optical Materials 2015, 3 (1), 44-48.
111. Mudachathi, R.; Moritake, Y.; Tanaka, T., Controlling coulomb interactions in infrared stereometamaterials for unity light absorption. Applied Physics Letters 2018, 112 (20).
112. Chen, Y. H.; Chen, C. C.; Ishikawa, A.; Shiao, M. H.; Lin, Y. S.; Hsiao, C. N.; Chiang, H. P.; Tanaka, T., Interplay of mutual electric and magnetic couplings between three-dimensional split-ring resonators. Opt Express 2017, 25 (3), 2909-2917.
113. Tsai, H.-Y.; Chen, C.-C.; Chen, T.-A.; Tsai, D. P.; Tanaka, T.; Yen, T.-J., Realization of Negative Permeability in Vertical Double Split-Ring Resonators with Normal Incidence. ACS Photonics 2020, 7 (12), 3298-3304.
114. Nishijima, Y.; To, N.; Balcytis, A.; Juodkazis, S., Absorption and scattering in perfect thermal radiation absorber-emitter metasurfaces. Opt Express 2022, 30 (3), 4058-4070.
115. Wang, B.; Zhou, J.; Koschny, T.; Kafesaki, M.; Soukoulis, C. M., Chiral metamaterials: simulations and experiments. Journal of Optics A: Pure and Applied Optics 2009, 11 (11).
116. Yang, S.; Liu, Z.; Hu, S.; Jin, A. Z.; Yang, H.; Zhang, S.; Li, J.; Gu, C., Spin-Selective Transmission in Chiral Folded Metasurfaces. Nano Lett 2019, 19 (6), 3432-3439.
117. Chen, S.; Liu, W.; Li, Z.; Cheng, H.; Tian, J., Metasurface-Empowered Optical Multiplexing and Multifunction. Adv Mater 2020, 32 (3), e1805912.
118. Vaskin, A.; Kolkowski, R.; Koenderink, A. F.; Staude, I., Light-emitting metasurfaces. Nanophotonics 2019, 8 (7), 1151-1198.
119. Wang, L.; Liu, Z.; Yi, X.; Zhang, Y.; Li, H.; Li, J.; Wang, G., Analysis of symmetry breaking configurations in metal nanocavities: Identification of resonances for generating high-order magnetic modes and multiple tunable magnetic-electric Fano resonances. Journal of Applied Physics 2016, 119 (17).
120. Moritake, Y.; Tanaka, T., Impact of substrate etching on plasmonic elements and metamaterials: preventing red shift and improving refractive index sensitivity. Opt Express 2018, 26 (3), 3674-3683.
121. Saifullah, Y.; He, Y.; Boag, A.; Yang, G. M.; Xu, F., Recent Progress in Reconfigurable and Intelligent Metasurfaces: A Comprehensive Review of Tuning Mechanisms, Hardware Designs, and Applications. Adv Sci (Weinh) 2022, e2203747.
122. Walia, S.; Shah, C. M.; Gutruf, P.; Nili, H.; Chowdhury, D. R.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S., Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. Applied Physics Reviews 2015, 2 (1).
123. Rahmani, M.; Xu, L.; Miroshnichenko, A. E.; Komar, A.; Camacho‐Morales, R.; Chen, H.; Zárate, Y.; Kruk, S.; Zhang, G.; Neshev, D. N.; Kivshar, Y. S., Reversible Thermal Tuning of All‐Dielectric Metasurfaces. Advanced Functional Materials 2017, 27 (31).
124. Ji, C.; Lee, K. T.; Xu, T.; Zhou, J.; Park, H. J.; Guo, L. J., Engineering Light at the Nanoscale: Structural Color Filters and Broadband Perfect Absorbers. Advanced Optical Materials 2017, 5 (20).
125. He, Q.; Sun, S.; Zhou, L., Tunable/Reconfigurable Metasurfaces: Physics and Applications. Research (Wash D C) 2019, 2019, 1849272.
126. Li, W.; Xu, M.; Xu, H. X.; Wang, X.; Huang, W., Metamaterial Absorbers: From Tunable Surface to Structural Transformation. Adv Mater 2022, 34 (38), e2202509.
127. Hoa, N. T. Q.; Tung, P. D.; Dung, N. D.; Nguyen, H.; Tuan, T. S., Numerical study of a wide incident angle- and polarisation-insensitive microwave metamaterial absorber based on a symmetric flower structure. AIP Advances 2019, 9 (6).
128. Huang, W.-X.; Zhao, G.-R.; Guo, J.-J.; Wang, M.-S.; Shi, J.-P., Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range. Chinese Physics Letters 2016, 33 (8).
129. Huang, X. T.; Lu, C. H.; Rong, C. C.; Wang, S. M.; Liu, M. H., Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations. Materials (Basel) 2018, 11 (5).
130. Im, K.; Kang, J.-H.; Park, Q. H., Universal impedance matching and the perfect transmission of white light. Nature Photonics 2018, 12 (3), 143-149.
131. Zhang, Q.; Wen, X.; Li, G.; Ruan, Q.; Wang, J.; Xiong, Q., Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano 2013, 7 (12), 11071-8.
132. Zhang, X.; Li, Q.; Liu, F.; Qiu, M.; Sun, S.; He, Q.; Zhou, L., Controlling angular dispersions in optical metasurfaces. Light Sci Appl 2020, 9, 76.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *