|
[1] F.J. DiSalvo, Challenges and opportunities in solid-state chemistry, Pure and applied chemistry, 72 (2000) 1799-1807. [2] A. Maeda, M. Hase, I. Tsukada, K. Noda, S. Takebayashi, K. Uchinokura, Physical properties of Bi 2 Sr 2 Ca n− 1 Cu n O y (n= 1, 2, 3), Physical Review B, 41 (1990) 6418. [3] H.K. Onnes, Investigations into the properties of substances at low temperatures, which have led, amongst other things, to the preparation of liquid helium, Nobel lecture, 4 (1913) 306-336. [4] R. Hott, R. Kleiner, T. Wolf, G. Zwicknagl, Review on superconducting materials, arXiv preprint arXiv:1306.0429, DOI (2013). [5] W. Meissner, R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit, Naturwissenschaften, 21 (1933) 787-788. [6] J.G. Bednorz, K.A. Müller, Possible highT c superconductivity in the Ba− La− Cu− O system, Zeitschrift für Physik B Condensed Matter, 64 (1986) 189-193. [7] M.-K. Wu, J.R. Ashburn, C. Torng, P.-H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y. Wang, a. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Physical review letters, 58 (1987) 908. [8] A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, 525 (2015) 73-76. [9] C. Buzea, K. Robbie, Assembling the puzzle of superconducting elements: a review, Superconductor Science and Technology, 18 (2004) R1. [10] H.R. Khan, Superconducting gold alloys, Gold Bulletin, 17 (1984) 94-100. [11] R. Hoyt, A. Mota, Superconductivity in α-phase alloys of Cu, Ag and Au, Solid State Communications, 18 (1976) 139-142. [12] R. Somasundaram, L. Toth, H. Spitzer, Superconducting T/sub c/'s in the Nb/sub 3/Al-Nb/sub 3/Ge-Nb/sub 3/Ga system, J. Appl. Phys.;(United States), 47 (1976). [13] G.R. Stewart, Superconductivity in the A15 structure, Physica C: Superconductivity and its Applications, 514 (2015) 28-35. [14] P. Sreenivasa Reddy, V. Kanchana, G. Vaitheeswaran, P. Modak, A.K. Verma, Electronic topological transitions in Nb3X (X= Al, Ga, In, Ge, and Sn) under compression investigated by first principles calculations, Journal of Applied Physics, 119 (2016) 075901. [15] A. Mourachkine, Room-temperature superconductivity, Cambridge Int Science Publishing2004. [16] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Magic-angle graphene superlattices: a new platform for unconventional superconductivity, arXiv preprint arXiv:1803.02342, DOI (2018). [17] W. Little, Possibility of synthesizing an organic superconductor, Physical Review, 134 (1964) A1416. [18] J. Bednorz, K. Miiller, Z Phys B-Condensed Matter, I, 986 (1986) 189-193. [19] A. Tokiwa-Yamamoto, K. Isawa, M. Itoh, S. Adachi, H. Yamauchi, Composition, crystal structure and superconducting properties of Hg Ba Cu O and Hg Ba Ca Cu O superconductors, Physica C: Superconductivity, 216 (1993) 250-256. [20] M. Monteverde, M. Nunez-Regueiro, C. Acha, K. Lokshin, D.A. Pavlov, S. Putilin, E. Antipov, Fluorinated Hg-1223 under pressure: the ultimate Tc of the cuprates?, Physica C: Superconductivity, 408 (2004) 23-24. [21] H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs, nature, 453 (2008) 376-378. [22] Y. Kamihara, w. watanabe and M. hirano, J. Am. Chem. Soc, 130 (2008) 3293. [23] J. Paglione, R.L. Greene, High-temperature superconductivity in iron-based materials, Nature physics, 6 (2010) 645-658. [24] H. Jiang, Y.-L. Sun, Z.-A. Xu, G.-H. Cao, Crystal chemistry and structural design of iron-based superconductors, Chinese Physics B, 22 (2013) 087410. [25] P.C. Canfield, S.L. Bud’ko, Low-temperature superconductivity is warming up, Scientific American, 292 (2005) 80-87. [26] P.M. Abanador, A. Villagracia, N. Arboleda, M. David, First principle investigation of atomic hydrogen adsorption on Pd-doped MgB2, Philippine Science Letters, 6 (2013) 176-181. [27] P.C. Canfield, S.L. Bud'ko, Magnesium diboride: one year on, Physics world, 15 (2002) 29. [28] C. Buzea, T. Yamashita, Superconductors, Science and Technology 14, R115, DOI (2001). [29] P. Canfield, S. Bud’Ko, D. Finnemore, An overview of the basic physical properties of MgB2, Physica C: Superconductivity, 385 (2003) 1-7. [30] N.W. Ashcroft, Metallic hydrogen: A high-temperature superconductor?, Physical Review Letters, 21 (1968) 1748. [31] N. Ashcroft, Hydrogen dominant metallic alloys: high temperature superconductors?, Physical Review Letters, 92 (2004) 187002. [32] M. Somayazulu, M. Ahart, A.K. Mishra, Z.M. Geballe, M. Baldini, Y. Meng, V.V. Struzhkin, R.J. Hemley, Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures, Physical review letters, 122 (2019) 027001. [33] A. Drozdov, P. Kong, V. Minkov, S. Besedin, M. Kuzovnikov, S. Mozaffari, L. Balicas, F. Balakirev, D. Graf, V. Prakapenka, Superconductivity at 250 K in lanthanum hydride under high pressures, Nature, 569 (2019) 528-531. [34] E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K.V. Lawler, A. Salamat, R.P. Dias, Room-temperature superconductivity in a carbonaceous sulfur hydride, Nature, 586 (2020) 373-377. [35] A.R. Oganov, C.W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, The Journal of chemical physics, 124 (2006) 244704. [36] F. Peng, Y. Sun, C.J. Pickard, R.J. Needs, Q. Wu, Y. Ma, Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity, Physical review letters, 119 (2017) 107001. [37] E. Zurek, T. Bi, High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective, The Journal of chemical physics, 150 (2019) 050901. [38] H.H. Mohammed, Study of the Isotope Effects of Novel Superconducting LaH10-LaD10 and H3S-D3S Systems, Journal of High Energy Physics, Gravitation and Cosmology, 7 (2021) 1219-1229. [39] F. Belli, T. Novoa, J. Contreras-García, I. Errea, Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors, Nature communications, 12 (2021) 5381. [40] D. Li, K. Lee, B.Y. Wang, M. Osada, S. Crossley, H.R. Lee, Y. Cui, Y. Hikita, H.Y. Hwang, Superconductivity in an infinite-layer nickelate, Nature, 572 (2019) 624-627. [41] W.E. Pickett, The dawn of the nickel age of superconductivity, Nature Reviews Physics, 3 (2021) 7-8. [42] B. Wiendlocha, R. Szczȩśniak, A. Durajski, M. Muras, Pressure effects on the unconventional superconductivity of noncentrosymmetric LaNiC 2, Physical Review B, 94 (2016) 134517. [43] P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, Discovery of a superconducting high-entropy alloy, Physical review letters, 113 (2014) 107001. [44] F. Von Rohr, M.J. Winiarski, J. Tao, T. Klimczuk, R.J. Cava, Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor, Proceedings of the National Academy of Sciences, 113 (2016) E7144-E7150. [45] M.R. Koblischka, A. Koblischka-Veneva, Superconductivity 2022, MDPI, 2022, pp. 568. [46] J. Kitagawa, S. Hamamoto, N. Ishizu, Cutting edge of high-entropy alloy superconductors from the perspective of materials research, Metals, 10 (2020) 1078. [47] A. Yamashita, T.D. Matsuda, Y. Mizuguchi, Synthesis of new high-entropy alloy-type Nb3 (Al, Sn, Ge, Ga, Si) superconductors, Journal of Alloys and Compounds, 868 (2021) 159233. [48] Y. Shukunami, A. Yamashita, Y. Goto, Y. Mizuguchi, Synthesis of RE123 high-Tc superconductors with a high-entropy-alloy-type RE site, Physica C: Superconductivity and its Applications, 572 (2020) 1353623. [49] J. Kwo, T. Geballe, Superconducting tunneling into the A 15 Nb 3 Al thin films, Physical Review B, 23 (1981) 3230. [50] K. Kudo, M. Takasuga, Y. Okamoto, Z. Hiroi, M. Nohara, Giant phonon softening and enhancement of superconductivity by phosphorus doping of BaNi 2 As 2, Physical Review Letters, 109 (2012) 097002. [51] H. Ledbetter, S. Kim, A. Roshko, Critical-temperature/Debye-temperature correlation in (La-M)2CuO4 superconductors, Physica C: Superconductivity, 190 (1991) 129-130. [52] J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus, W.K. Kwok, Structural properties of oxygen-deficient YBa2Cu3O7- delta, Phys Rev B Condens Matter, 41 (1990) 1863-1877. [53] R. Cava, B. Batlogg, C. Chen, E. Rietman, S. Zahurak, D. Werder, Oxygen stoichiometry, superconductivity and normal-state properties of YBa 2 Cu 3 O 7–δ, Nature, 329 (1987) 423-425. [54] T. Frello, Structural and superconducting properties of high T c superconductors, Risø National Laboratory, 1999. [55] P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors, Journal of Crystal Growth, 269 (2004) 625-629. [56] H. Ledbetter, Dependence of Tc on Debye temperature θD for various cuprates, Physica C: Superconductivity, 235 (1994) 1325-1326. [57] B. Lorenz, C. Chu, High pressure effects on superconductivity, Frontiers in Superconducting Materials, Springer2005, pp. 459-497. [58] S. Sadewasser, J. Schilling, A. Paulikas, B. Veal, Pressure dependence of T c to 17 GPa with and without relaxation effects in superconducting YBa 2 Cu 3 O x, Physical Review B, 61 (2000) 741. [59] D.R. Harshman, A.T. Fiory, On the isotope effect in compressed superconducting H $ _\textrm {3} $ S and D $ _\textrm {3} $ S, arXiv preprint arXiv:1703.04034, DOI (2017). [60] A.P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Scientific reports, 6 (2016) 1-8. [61] J. Guo, H. Wang, F. Von Rohr, Z. Wang, S. Cai, Y. Zhou, K. Yang, A. Li, S. Jiang, Q. Wu, Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa, Proceedings of the National Academy of Sciences, 114 (2017) 13144-13147. [62] M. Kasem, Y. Nakahira, H. Yamaoka, R. Matsumoto, A. Yamashita, H. Ishii, N. Hiraoka, Y. Takano, Y. Goto, Y. Mizuguchi, Robustness of superconductivity to external pressure in high-entropy-alloy-type metal telluride AgInSnPbBiTe5, Scientific reports, 12 (2022) 1-9. [63] A. Charnukha, Optical conductivity of iron-based superconductors, Journal of Physics: Condensed Matter, 26 (2014) 253203. [64] C. Chu, Alive and kicking, Nature Physics, 5 (2009) 787-789. [65] A. Rahman, A. Hossen, Brief Review on Iron-Based Superconductors Including Their Characteristics and Applications, American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 11 (2015) 104-126. [66] W.Y. Kwok, P.C.W. Fung, T c trend in high-T c superconductors, Journal of Superconductivity, 5 (1992) 153-158. [67] T. Takabatake, W. Ye, S. Orimo, T. Tamegai, H. Fujii, Hydrogen intercalation in some superconducting copper oxides, Physica C: Superconductivity and its Applications, 162 (1989) 65-66. [68] T. Takabatake, W. Ye, S. Orimo, H. Kawanaka, H. Fujii, H. Sasakura, S. Minamigawa, Enhancement of superconductivity in Bi2Sr2CaCu2O8+ δ, Physica C: Superconductivity, 157 (1989) 263-266. [69] H. Drulis, J. Klamut, Hydrogen in high-T c superconductors, Recent Developments in High Temperature Superconductivity, Springer1996, pp. 115-130. [70] N. Yamada, M. Ido, Pressure effects on superconductivity and structural phase transitions in La2− xMxCuO4 (M Ba, Sr), Physica C: Superconductivity, 203 (1992) 240-246. [71] A. Maignan, C. Martin, M. Huve, J. Provost, M. Hervieu, C. Michel, B. Raveau, The “2201” thallium cuprate: Tc's up to 92 K can be achieved by “hydrogen” annealing, Physica C: Superconductivity, 170 (1990) 350-360. [72] H.M. Syed, C. Webb, E.M. Gray, Hydrogen-modified superconductors: A review, Progress in Solid State Chemistry, 44 (2016) 20-34. [73] H. Aoki, H. Hosono, A superconducting surprise comes of age, Physics World, 28 (2015) 31. [74] K. Arpino, B. Wasser, T. McQueen, Superconducting dome and crossover to an insulating state in [Tl4] Tl1− xSnxTe3, APL materials, 3 (2015) 041507. [75] W. Shi, J. Ye, Y. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki, N. Inoue, Y. Saito, Y. Iwasa, Superconductivity series in transition metal dichalcogenides by ionic gating, Scientific reports, 5 (2015) 1-10. [76] B. Lei, J. Cui, Z. Xiang, C. Shang, N. Wang, G. Ye, X. Luo, T. Wu, Z. Sun, X. Chen, Evolution of high-temperature superconductivity from a low-T c phase tuned by carrier concentration in FeSe thin flakes, Physical review letters, 116 (2016) 077002. [77] J. Ye, Y.J. Zhang, R. Akashi, M.S. Bahramy, R. Arita, Y. Iwasa, Superconducting dome in a gate-tuned band insulator, Science, 338 (2012) 1193-1196. [78] A. Bianconi, N. Poccia, Superstripes and complexity in high-temperature superconductors, Journal of superconductivity and novel magnetism, 25 (2012) 1403-1412. [79] H. Zhai, W. Chu, Effect of interfacial strain on critical temperature of YBa 2 Cu 3 O 7− δ thin films, Applied Physics Letters, 76 (2000) 3469-3471. [80] J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, J.-F. Jia, Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3, Nature materials, 14 (2015) 285-289. [81] S. Gariglio, N. Reyren, A. Caviglia, J.-M. Triscone, Superconductivity at the LaAlO3/SrTiO3 interface, Journal of Physics: Condensed Matter, 21 (2009) 164213. [82] I. Bozovic, C. Ahn, A new frontier for superconductivity, Nature Physics, 10 (2014) 892-895. [83] W.L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Physical Review, 167 (1968) 331-344. [84] P.B. Allen, R. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Physical Review B, 12 (1975) 905. [85] V.Z. Kresin, On the critical temperature for any strength of the electron-phonon coupling, Physics Letters A, 122 (1987) 434-438. [86] J.F. Annett, Superconductivity, superfluids and condensates, Oxford University Press2004. [87] H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction, OUP Oxford2004. [88] P.B. Allen, R.C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Physical Review B, 12 (1975) 905-922. [89] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical review, 136 (1964) B864. [90] A. Sanna, J.A. Flores-Livas, A. Davydov, G. Profeta, K. Dewhurst, S. Sharma, E. Gross, Ab initio Eliashberg theory: making genuine predictions of superconducting features, Journal of the Physical Society of Japan, 87 (2018) 041012. [91] M. Tinkham, Introduction to superconductivity, Courier Corporation2004. [92] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity, Physical review, 108 (1957) 1175. [93] K. Kihlstrom, T. Geballe, Tunneling α 2 F (ω) as a function of composition in A 15 NbGe, Physical Review B, 24 (1981) 4101. [94] T. Smith, C. Chu, Will pressure destroy superconductivity?, Physical Review, 159 (1967) 353. [95] A.S. Sefat, Pressure effects on two superconducting iron-based families, Reports on progress in physics, 74 (2011) 124502. [96] L. Sang, Z. Li, G. Yang, Z. Yue, J. Liu, C. Cai, T. Wu, S. Dou, Y. Ma, X. Wang, Pressure effects on iron-based superconductor families: Superconductivity, flux pinning and vortex dynamics, Materials Today Physics, 19 (2021) 100414. [97] B.T. Matthias, Empirical relation between superconductivity and the number of valence electrons per atom, Physical review, 97 (1955) 74. [98] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials, 6 (2004) 299-303. [99] P.A. Lee, N. Nagaosa, X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Reviews of modern physics, 78 (2006) 17. [100] E. Van Heumen, E. Muhlethaler, A. Kuzmenko, H. Eisaki, W. Meevasana, M. Greven, D. Van Der Marel, Optical determination of the relation between the electron-boson coupling function and the critical temperature in high-T c cuprates, Physical Review B, 79 (2009) 184512. [101] J.E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Physical Review B, 31 (1985) 4403. [102] S. Raghu, S. Kivelson, D. Scalapino, Superconductivity in the repulsive Hubbard model: An asymptotically exact weak-coupling solution, Physical Review B, 81 (2010) 224505. [103] V. Moshchalkov, M. Menghini, T. Nishio, Q. Chen, A. Silhanek, V.H. Dao, L. Chibotaru, N. Zhigadlo, J. Karpinski, Type-1.5 Superconductivity, Physical review letters, 102 (2009) 117001. [104] P.W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, science, 235 (1987) 1196-1198. [105] J. Schrieffer, X.-G. Wen, S.-C. Zhang, Spin-bag mechanism of high-temperature superconductivity, Physical review letters, 60 (1988) 944. [106] P. Monthoux, G. Lonzarich, p-wave and d-wave superconductivity in quasi-two-dimensional metals, Physical Review B, 59 (1999) 14598. [107] M.S. Laad, L. Craco, Theory of multiband superconductivity in Iron pnictides, Physical review letters, 103 (2009) 017002. [108] F.P. Laussy, A.V. Kavokin, I.A. Shelykh, Exciton-polariton mediated superconductivity, Physical review letters, 104 (2010) 106402. [109] G.-m. Zhao, H. Keller, K. Conder, Unconventional isotope effects in the high-temperature cuprate superconductors, Journal of Physics: Condensed Matter, 13 (2001) R569. [110] C. Zhang, Z. Liu, Z. Chen, Y. Xie, R. He, S. Tang, J. He, W. Li, T. Jia, S.N. Rebec, Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO3, Nature communications, 8 (2017) 1-6. [111] C. Kittel, Solid state physics, Shell Development Company1955. [112] H. Ledbetter, M. Lei, S. Kim, Elastic constants, debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides, Phase Transitions, 23 (1990) 61-70. [113] B. Cort, G. Stewart, C. Snead Jr, A. Sweedler, S. Moehlecke, Specific-heat studies of neutron-irradiated A 15 Nb 3 Al, Physical Review B, 24 (1981) 3794. [114] I. Shein, A. Ivanovskii, Electronic and structural properties of low-temperature superconductors and ternary pnictides A Ni 2 P n 2 (A= Sr, Ba and P n= P, As), Physical review B, 79 (2009) 054510. [115] Y.I. Vesnin, Y.F. Eltsev, S. Zakovryashin, M. Starikov, Superconductivity and Decay Phenomena of Nb3Al Nb3Ge Solid Solutions, physica status solidi (a), 77 (1983) 759-764. [116] C. Chu, Superconductivity at higher temperatures in the Hg-Ba-Ca-Cu-O compound system, Journal of superconductivity, 7 (1994) 1-7. [117] W. Liu, Y. Wu, X. Li, S.L. Bud'ko, P.C. Canfield, C. Panagopoulos, P. Li, G. Mu, T. Hu, C. Almasan, Pressure-tuned superconductivity and normal-state behavior in Ba (Fe 0.943 Co 0.057) 2 As 2 near the antiferromagnetic boundary, Physical Review B, 97 (2018) 144515. [118] G. Ummarino, Multiband s±Eliashberg theory and temperature-dependent spin-resonance energy in iron pnictide superconductors, Physical Review B, 83 (2011) 092508. [119] J. Kortus, I. Mazin, K.D. Belashchenko, V.P. Antropov, L. Boyer, Superconductivity of metallic boron in MgB 2, Physical Review Letters, 86 (2001) 4656. [120] S. Coh, M.L. Cohen, S.G. Louie, Large electron–phonon interactions from FeSe phonons in a monolayer, New Journal of Physics, 17 (2015) 073027. [121] S. Mozaffari, D. Sun, V.S. Minkov, A.P. Drozdov, D. Knyazev, J.B. Betts, M. Einaga, K. Shimizu, M.I. Eremets, L. Balicas, Superconducting phase diagram of H3S under high magnetic fields, Nature Communications, 10 (2019) 2522. [122] L. Deng, T. Bontke, R. Dahal, Y. Xie, B. Gao, X. Li, K. Yin, M. Gooch, D. Rolston, T. Chen, Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals, Proceedings of the National Academy of Sciences, 118 (2021) e2108938118. [123] F. Körmann, Y. Ikeda, B. Grabowski, M.H. Sluiter, Phonon broadening in high entropy alloys, npj Computational Materials, 3 (2017) 1-9. [124] W. Lawless, T. Shrout, B. Patton, E. Kim, Low temperature thermal properties of orthorhombic and tetragonal YBa2Cu3O x, Phase Transitions: A Multinational Journal, 23 (1990) 47-59. [125] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides, Nature communications, 6 (2015) 8485. [126] C. Chu, L. Gao, F. Chen, Z. Huang, R. Meng, Y. Xue, Superconductivity above 150 K in HgBa2Ca2Cu3O8+ δ at high pressures, Nature, 365 (1993) 323-325. [127] P.H. Hor, R. Meng, Y.Q. Wang, L. Gao, Z. Huang, J. Bechtold, K. Forster, C. Chu, Superconductivity above 90 K in the square-planar compound system A Ba 2 Cu 3 O 6+ x with A= Y, La, Nd, Sm, Eu, Gd, Ho, Er and Lu, Physical review letters, 58 (1987) 1891.
|