帳號:guest(18.217.209.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王培儒
作者(外文):Wang, Peir-Ru
論文名稱(中文):超導性與臨界耦合常數關係的理論模型以及此理論指引製備多元高熵氧化物的電性研究
論文名稱(外文):Study on Critical Coupling Constant Theory of Superconductivity and on the Electrical Property of High-Entropy Oxides Designed with the Theory
指導教授(中文):葉均蔚
李奕賢
指導教授(外文):Yeh, Jien‐Wei
Lee, Yi‐Hsien
口試委員(中文):李勝隆
洪健龍
陳士勛
蔡哲瑋
口試委員(外文):Lee, Sheng-Long
Horng, Jian-Long
Chen, Shih-Hsun
Tsai, Che-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031901
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:184
中文關鍵詞:超導耦合常數
外文關鍵詞:SuperconductivityCoupling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文針對提升超導性的手法,提出物理學模型,來擴展McMillan關於耦合強度等於2的結果。本文研究通過調整聲子頻率、載子數或壓力,來增加超導臨界溫度的策略。特別是,我們展示了與聲子頻率、載子數或壓力對應的臨界耦合常數,其決定了超導溫度變化的趨勢是上升還是下降。本文解釋了弱耦合和強耦合超導體之間相反行為的原因,且與文獻研究一致。本文還展示了載子數效應和壓力效應中觀察到的「穹頂」現象。此外,本文藉由臨界耦合常數,系統性地將超導體分為三個類別:弱耦合、中等耦合和強耦合。本文發現,弱耦合超導和強耦合超導的增強策略是完全相反的,但都不可避免地將超導性帶入中等耦合性。最後,我們提出了用於進一步增加中等耦合超導體臨界溫度的一般性方法:Zigzag方法。

藉由此物理學模型的指引,本研究以粉末燒結法製備多元高熵氧化物塊材,研究其低溫電性質。設計成份由前述超導理論指引,據此選用高德拜溫度、多電子元素、小原子元素且多元高熵化配方,製備含多元的高熵氧化物塊材,分為兩個系列,稱為DCC、DCCC系列,共計16種氧化物。兩系列化合物皆是由鉍-鍶-鈣-銅-氧系統比例出發,DCC選用碳化鈦、磷酸鋁、氮化硼、矽、氟化鈉、銅、氧化釔、氧化鉍等元素;DCCC較DCC增加氧化鑭、鈮、碳酸鋰、硫化鎢。兩系列粉末皆以銅作為變量,量測其在800、850℃大氣燒結48小時後的電性。低溫電阻率量測結果皆呈現半導體行為,電阻隨銅含量增加而下降。聲速量測發現,電阻率的大小與聲速有相關性,電阻率越小、聲速越大。
In this study, we propose a phenomenological model to extend McMillan's results on a coupling strength equal to 2. We investigate possible strategies to enhance superconductivity by tuning the phonon frequency, carrier number, or pressure. In particular, we show that the critical coupling constants corresponding to the phonon frequency, carrier number, or pressure determine whether the variation of the critical temperature is positive or negative. These observations explain the contrasting behavior between weak and strong coupling superconductors and are consistent with experimental observations. We also demonstrate the dome observed in the carrier number effect and pressure effect. Additionally, these critical coupling constants systematically separate superconductivity into three regions: weak, intermediate, and strong coupling. We find that the enhancement strategies for weak and strong coupling regions are opposite, but both inevitably bring superconductivity into the intermediate coupling region. Finally, we propose general zigzag methods for intermediate coupling superconductors to further enhance the critical temperature.
Using this physical model as a guide, the experiments prepared multi-component high-entropy oxide bulk materials through powder sintering and studied their low-temperature electrical properties. The composition was designed based on superconductivity theory, selecting high-Debye temperature, multi-electron elements, and a mixture of diverse elements to prepare high-entropy oxide bulk materials, divided into two series, totaling 16 oxide materials. Both series of compounds started with the bismuth-strontium-calcium-copper-oxygen system, referred to as the DCC and DCCC series. DCC included elements such as titanium carbide, aluminum phosphate, boron nitride, silicon, sodium fluoride, copper, yttrium oxide, and bismuth oxide, while DCCC, in addition to DCC elements, added lanthanum oxide, niobium, and lithium carbonate. Copper content was varied in both series, and their electrical properties were measured after sintering in the atmosphere at 800℃ and 850℃ for 48 hours. The low-temperature electrical resistivity measurements showed semiconductor behavior, with resistance decreasing as the copper content increased.
第一章 前言 19
第二章 文獻回顧 21
2.1 超導物理現象 21
2.1.1 超導發現的歷史進程 21
2.1.2 高溫超導與近年超導的發展 24
2.1.3 Type I、Type II超導與理論的關係 25
2.2 超導材料的介紹 27
2.2.1 元素超導 27
2.2.1 合金超導 28
2.2.2 金屬化合物超導 29
2.2.3 碳基超導和有機超導 30
2.2.4 銅氧化物超導 32
2.2.5 鐵基超導 33
2.2.6 二硼化鎂 34
2.2.7 富氫超導 35
2.2.8 鎳基超導 39
2.2.9 高熵合金與高熵合金超導 40
2.2.10 高熵氧化物超導的研究 44
2.3 文獻上改變Tc的研究 46
2.3.1 同位素效應 46
2.3.2 聲子頻率 49
2.3.3 壓力 53
2.3.4 單位晶包大小 61
2.3.5 銅氧面數量 63
2.3.6 氫摻雜 64
2.3.7 異質載子摻雜 68
2.3.8 閘控偏壓 70
2.3.9 多元元數 73
2.3.10 膜厚 74
2.4 統整增加超導性方法的分類與分析 77
2.5 超導理論 79
2.5.1 BCS理論 79
2.5.2 BCS修正理論 80
2.5.3 BCS的理論上限? 83
2.5.4 超導密度泛函理論 84
2.5.5 超導性對一般態電導的影響 86
2.5.6 超導趨勢與相關變數的關係 87
2.5.7 超導趨勢在不同超導材料中的差異、穹頂現象 88
第三章 超導性的臨界耦合常數理論建模 89
3.1 理論建模 89
3.1.1 理論分析 89
3.1.2 超導電聲交互作用 93
3.1.3 超導與聲子頻率Ω的關係 94
3.1.4 超導與載子數Z的關係 96
3.1.5 超導與壓力P的關係 98
第四章 超導性的臨界耦合常數理論分析 100
4.1 穹頂的成因 100
4.2 臨界溫度Tc與聲子頻率Ω的關係 102
4.3 臨界溫度Tc與載子數量Z的關係 104
4.4 臨界溫度Tc與壓力效應P的關係 106
4.5 提高臨界溫度Tc的策略 108
第五章 DCC高熵氧化物製備與電性研究 113
5.1 研究規劃 113
5.1.1 高熵氧化物材料作為尋找常溫超導之優勢 113
5.1.2 DCC高熵氧化物配方設計理念 116
5.1.3 研究過程 121
5.1.4 電性分析 121
5.1.5 材料分析 121
5.2 DCC系列電性量測研究 122
5.2.1 DCC6 122
5.2.2 DCC7 123
5.2.3 DCC8 124
5.2.4 DCC9 125
5.2.5 DCC10 126
5.2.6 DCC11 128
5.2.7 DCC12 130
5.2.8 DCC13 132
5.2.9 DCC14 134
5.2.10 DCC電阻表 136
5.3 SEM電子顯微鏡量測 140
5.4 DCC聲速量測 141
5.5 DCC系列研究討論 143
第六章 DCCC高熵氧化物製備與電性研究 145
6.1 研究規劃 145
6.1.1 DCCC高熵氧化物配方設計理念 145
6.1.2 研究過程 146
6.1.3 電性分析 146
6.1.4 材料分析 146
6.2 DCCC系列電性量測研究 148
6.2.1 DCCC6 148
6.2.2 DCCC7 149
6.2.3 DCCC8 150
6.2.4 DCCC9 151
6.2.5 DCCC10 152
6.2.6 DCCC11 153
6.2.7 DCCC12 154
6.2.8 DCCC13 155
6.2.9 DCCC14 156
6.2.10 DCCC電阻表 157
6.3 SEM-EDS電子顯微鏡量測 160
6.4 DCCC聲速量測 161
6.5 DCCC系列研究討論 162
6.6 未來建議研究方向 163
第七章 結論 166
第八章 本研究的貢獻 168
第九章 附表 170
9.1 DCC7-EDS 170
9.2 DCC12-EDS 171
9.1 DCCC7-EDS 172
9.2 DCCC12-EDS 173
9.3 DCC與DCCC EDS比較 174
第十章 參考文獻 175
[1] F.J. DiSalvo, Challenges and opportunities in solid-state chemistry, Pure and applied chemistry, 72 (2000) 1799-1807.
[2] A. Maeda, M. Hase, I. Tsukada, K. Noda, S. Takebayashi, K. Uchinokura, Physical properties of Bi 2 Sr 2 Ca n− 1 Cu n O y (n= 1, 2, 3), Physical Review B, 41 (1990) 6418.
[3] H.K. Onnes, Investigations into the properties of substances at low temperatures, which have led, amongst other things, to the preparation of liquid helium, Nobel lecture, 4 (1913) 306-336.
[4] R. Hott, R. Kleiner, T. Wolf, G. Zwicknagl, Review on superconducting materials, arXiv preprint arXiv:1306.0429, DOI (2013).
[5] W. Meissner, R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit, Naturwissenschaften, 21 (1933) 787-788.
[6] J.G. Bednorz, K.A. Müller, Possible highT c superconductivity in the Ba− La− Cu− O system, Zeitschrift für Physik B Condensed Matter, 64 (1986) 189-193.
[7] M.-K. Wu, J.R. Ashburn, C. Torng, P.-H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y. Wang, a. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Physical review letters, 58 (1987) 908.
[8] A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, 525 (2015) 73-76.
[9] C. Buzea, K. Robbie, Assembling the puzzle of superconducting elements: a review, Superconductor Science and Technology, 18 (2004) R1.
[10] H.R. Khan, Superconducting gold alloys, Gold Bulletin, 17 (1984) 94-100.
[11] R. Hoyt, A. Mota, Superconductivity in α-phase alloys of Cu, Ag and Au, Solid State Communications, 18 (1976) 139-142.
[12] R. Somasundaram, L. Toth, H. Spitzer, Superconducting T/sub c/'s in the Nb/sub 3/Al-Nb/sub 3/Ge-Nb/sub 3/Ga system, J. Appl. Phys.;(United States), 47 (1976).
[13] G.R. Stewart, Superconductivity in the A15 structure, Physica C: Superconductivity and its Applications, 514 (2015) 28-35.
[14] P. Sreenivasa Reddy, V. Kanchana, G. Vaitheeswaran, P. Modak, A.K. Verma, Electronic topological transitions in Nb3X (X= Al, Ga, In, Ge, and Sn) under compression investigated by first principles calculations, Journal of Applied Physics, 119 (2016) 075901.
[15] A. Mourachkine, Room-temperature superconductivity, Cambridge Int Science Publishing2004.
[16] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Magic-angle graphene superlattices: a new platform for unconventional superconductivity, arXiv preprint arXiv:1803.02342, DOI (2018).
[17] W. Little, Possibility of synthesizing an organic superconductor, Physical Review, 134 (1964) A1416.
[18] J. Bednorz, K. Miiller, Z Phys B-Condensed Matter, I, 986 (1986) 189-193.
[19] A. Tokiwa-Yamamoto, K. Isawa, M. Itoh, S. Adachi, H. Yamauchi, Composition, crystal structure and superconducting properties of Hg Ba Cu O and Hg Ba Ca Cu O superconductors, Physica C: Superconductivity, 216 (1993) 250-256.
[20] M. Monteverde, M. Nunez-Regueiro, C. Acha, K. Lokshin, D.A. Pavlov, S. Putilin, E. Antipov, Fluorinated Hg-1223 under pressure: the ultimate Tc of the cuprates?, Physica C: Superconductivity, 408 (2004) 23-24.
[21] H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs, nature, 453 (2008) 376-378.
[22] Y. Kamihara, w. watanabe and M. hirano, J. Am. Chem. Soc, 130 (2008) 3293.
[23] J. Paglione, R.L. Greene, High-temperature superconductivity in iron-based materials, Nature physics, 6 (2010) 645-658.
[24] H. Jiang, Y.-L. Sun, Z.-A. Xu, G.-H. Cao, Crystal chemistry and structural design of iron-based superconductors, Chinese Physics B, 22 (2013) 087410.
[25] P.C. Canfield, S.L. Bud’ko, Low-temperature superconductivity is warming up, Scientific American, 292 (2005) 80-87.
[26] P.M. Abanador, A. Villagracia, N. Arboleda, M. David, First principle investigation of atomic hydrogen adsorption on Pd-doped MgB2, Philippine Science Letters, 6 (2013) 176-181.
[27] P.C. Canfield, S.L. Bud'ko, Magnesium diboride: one year on, Physics world, 15 (2002) 29.
[28] C. Buzea, T. Yamashita, Superconductors, Science and Technology 14, R115, DOI (2001).
[29] P. Canfield, S. Bud’Ko, D. Finnemore, An overview of the basic physical properties of MgB2, Physica C: Superconductivity, 385 (2003) 1-7.
[30] N.W. Ashcroft, Metallic hydrogen: A high-temperature superconductor?, Physical Review Letters, 21 (1968) 1748.
[31] N. Ashcroft, Hydrogen dominant metallic alloys: high temperature superconductors?, Physical Review Letters, 92 (2004) 187002.
[32] M. Somayazulu, M. Ahart, A.K. Mishra, Z.M. Geballe, M. Baldini, Y. Meng, V.V. Struzhkin, R.J. Hemley, Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures, Physical review letters, 122 (2019) 027001.
[33] A. Drozdov, P. Kong, V. Minkov, S. Besedin, M. Kuzovnikov, S. Mozaffari, L. Balicas, F. Balakirev, D. Graf, V. Prakapenka, Superconductivity at 250 K in lanthanum hydride under high pressures, Nature, 569 (2019) 528-531.
[34] E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K.V. Lawler, A. Salamat, R.P. Dias, Room-temperature superconductivity in a carbonaceous sulfur hydride, Nature, 586 (2020) 373-377.
[35] A.R. Oganov, C.W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, The Journal of chemical physics, 124 (2006) 244704.
[36] F. Peng, Y. Sun, C.J. Pickard, R.J. Needs, Q. Wu, Y. Ma, Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity, Physical review letters, 119 (2017) 107001.
[37] E. Zurek, T. Bi, High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective, The Journal of chemical physics, 150 (2019) 050901.
[38] H.H. Mohammed, Study of the Isotope Effects of Novel Superconducting LaH10-LaD10 and H3S-D3S Systems, Journal of High Energy Physics, Gravitation and Cosmology, 7 (2021) 1219-1229.
[39] F. Belli, T. Novoa, J. Contreras-García, I. Errea, Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors, Nature communications, 12 (2021) 5381.
[40] D. Li, K. Lee, B.Y. Wang, M. Osada, S. Crossley, H.R. Lee, Y. Cui, Y. Hikita, H.Y. Hwang, Superconductivity in an infinite-layer nickelate, Nature, 572 (2019) 624-627.
[41] W.E. Pickett, The dawn of the nickel age of superconductivity, Nature Reviews Physics, 3 (2021) 7-8.
[42] B. Wiendlocha, R. Szczȩśniak, A. Durajski, M. Muras, Pressure effects on the unconventional superconductivity of noncentrosymmetric LaNiC 2, Physical Review B, 94 (2016) 134517.
[43] P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, Discovery of a superconducting high-entropy alloy, Physical review letters, 113 (2014) 107001.
[44] F. Von Rohr, M.J. Winiarski, J. Tao, T. Klimczuk, R.J. Cava, Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor, Proceedings of the National Academy of Sciences, 113 (2016) E7144-E7150.
[45] M.R. Koblischka, A. Koblischka-Veneva, Superconductivity 2022, MDPI, 2022, pp. 568.
[46] J. Kitagawa, S. Hamamoto, N. Ishizu, Cutting edge of high-entropy alloy superconductors from the perspective of materials research, Metals, 10 (2020) 1078.
[47] A. Yamashita, T.D. Matsuda, Y. Mizuguchi, Synthesis of new high-entropy alloy-type Nb3 (Al, Sn, Ge, Ga, Si) superconductors, Journal of Alloys and Compounds, 868 (2021) 159233.
[48] Y. Shukunami, A. Yamashita, Y. Goto, Y. Mizuguchi, Synthesis of RE123 high-Tc superconductors with a high-entropy-alloy-type RE site, Physica C: Superconductivity and its Applications, 572 (2020) 1353623.
[49] J. Kwo, T. Geballe, Superconducting tunneling into the A 15 Nb 3 Al thin films, Physical Review B, 23 (1981) 3230.
[50] K. Kudo, M. Takasuga, Y. Okamoto, Z. Hiroi, M. Nohara, Giant phonon softening and enhancement of superconductivity by phosphorus doping of BaNi 2 As 2, Physical Review Letters, 109 (2012) 097002.
[51] H. Ledbetter, S. Kim, A. Roshko, Critical-temperature/Debye-temperature correlation in (La-M)2CuO4 superconductors, Physica C: Superconductivity, 190 (1991) 129-130.
[52] J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus, W.K. Kwok, Structural properties of oxygen-deficient YBa2Cu3O7- delta, Phys Rev B Condens Matter, 41 (1990) 1863-1877.
[53] R. Cava, B. Batlogg, C. Chen, E. Rietman, S. Zahurak, D. Werder, Oxygen stoichiometry, superconductivity and normal-state properties of YBa 2 Cu 3 O 7–δ, Nature, 329 (1987) 423-425.
[54] T. Frello, Structural and superconducting properties of high T c superconductors, Risø National Laboratory, 1999.
[55] P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors, Journal of Crystal Growth, 269 (2004) 625-629.
[56] H. Ledbetter, Dependence of Tc on Debye temperature θD for various cuprates, Physica C: Superconductivity, 235 (1994) 1325-1326.
[57] B. Lorenz, C. Chu, High pressure effects on superconductivity, Frontiers in Superconducting Materials, Springer2005, pp. 459-497.
[58] S. Sadewasser, J. Schilling, A. Paulikas, B. Veal, Pressure dependence of T c to 17 GPa with and without relaxation effects in superconducting YBa 2 Cu 3 O x, Physical Review B, 61 (2000) 741.
[59] D.R. Harshman, A.T. Fiory, On the isotope effect in compressed superconducting H $ _\textrm {3} $ S and D $ _\textrm {3} $ S, arXiv preprint arXiv:1703.04034, DOI (2017).
[60] A.P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Scientific reports, 6 (2016) 1-8.
[61] J. Guo, H. Wang, F. Von Rohr, Z. Wang, S. Cai, Y. Zhou, K. Yang, A. Li, S. Jiang, Q. Wu, Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa, Proceedings of the National Academy of Sciences, 114 (2017) 13144-13147.
[62] M. Kasem, Y. Nakahira, H. Yamaoka, R. Matsumoto, A. Yamashita, H. Ishii, N. Hiraoka, Y. Takano, Y. Goto, Y. Mizuguchi, Robustness of superconductivity to external pressure in high-entropy-alloy-type metal telluride AgInSnPbBiTe5, Scientific reports, 12 (2022) 1-9.
[63] A. Charnukha, Optical conductivity of iron-based superconductors, Journal of Physics: Condensed Matter, 26 (2014) 253203.
[64] C. Chu, Alive and kicking, Nature Physics, 5 (2009) 787-789.
[65] A. Rahman, A. Hossen, Brief Review on Iron-Based Superconductors Including Their Characteristics and Applications, American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 11 (2015) 104-126.
[66] W.Y. Kwok, P.C.W. Fung, T c trend in high-T c superconductors, Journal of Superconductivity, 5 (1992) 153-158.
[67] T. Takabatake, W. Ye, S. Orimo, T. Tamegai, H. Fujii, Hydrogen intercalation in some superconducting copper oxides, Physica C: Superconductivity and its Applications, 162 (1989) 65-66.
[68] T. Takabatake, W. Ye, S. Orimo, H. Kawanaka, H. Fujii, H. Sasakura, S. Minamigawa, Enhancement of superconductivity in Bi2Sr2CaCu2O8+ δ, Physica C: Superconductivity, 157 (1989) 263-266.
[69] H. Drulis, J. Klamut, Hydrogen in high-T c superconductors, Recent Developments in High Temperature Superconductivity, Springer1996, pp. 115-130.
[70] N. Yamada, M. Ido, Pressure effects on superconductivity and structural phase transitions in La2− xMxCuO4 (M Ba, Sr), Physica C: Superconductivity, 203 (1992) 240-246.
[71] A. Maignan, C. Martin, M. Huve, J. Provost, M. Hervieu, C. Michel, B. Raveau, The “2201” thallium cuprate: Tc's up to 92 K can be achieved by “hydrogen” annealing, Physica C: Superconductivity, 170 (1990) 350-360.
[72] H.M. Syed, C. Webb, E.M. Gray, Hydrogen-modified superconductors: A review, Progress in Solid State Chemistry, 44 (2016) 20-34.
[73] H. Aoki, H. Hosono, A superconducting surprise comes of age, Physics World, 28 (2015) 31.
[74] K. Arpino, B. Wasser, T. McQueen, Superconducting dome and crossover to an insulating state in [Tl4] Tl1− xSnxTe3, APL materials, 3 (2015) 041507.
[75] W. Shi, J. Ye, Y. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki, N. Inoue, Y. Saito, Y. Iwasa, Superconductivity series in transition metal dichalcogenides by ionic gating, Scientific reports, 5 (2015) 1-10.
[76] B. Lei, J. Cui, Z. Xiang, C. Shang, N. Wang, G. Ye, X. Luo, T. Wu, Z. Sun, X. Chen, Evolution of high-temperature superconductivity from a low-T c phase tuned by carrier concentration in FeSe thin flakes, Physical review letters, 116 (2016) 077002.
[77] J. Ye, Y.J. Zhang, R. Akashi, M.S. Bahramy, R. Arita, Y. Iwasa, Superconducting dome in a gate-tuned band insulator, Science, 338 (2012) 1193-1196.
[78] A. Bianconi, N. Poccia, Superstripes and complexity in high-temperature superconductors, Journal of superconductivity and novel magnetism, 25 (2012) 1403-1412.
[79] H. Zhai, W. Chu, Effect of interfacial strain on critical temperature of YBa 2 Cu 3 O 7− δ thin films, Applied Physics Letters, 76 (2000) 3469-3471.
[80] J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, J.-F. Jia, Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3, Nature materials, 14 (2015) 285-289.
[81] S. Gariglio, N. Reyren, A. Caviglia, J.-M. Triscone, Superconductivity at the LaAlO3/SrTiO3 interface, Journal of Physics: Condensed Matter, 21 (2009) 164213.
[82] I. Bozovic, C. Ahn, A new frontier for superconductivity, Nature Physics, 10 (2014) 892-895.
[83] W.L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Physical Review, 167 (1968) 331-344.
[84] P.B. Allen, R. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Physical Review B, 12 (1975) 905.
[85] V.Z. Kresin, On the critical temperature for any strength of the electron-phonon coupling, Physics Letters A, 122 (1987) 434-438.
[86] J.F. Annett, Superconductivity, superfluids and condensates, Oxford University Press2004.
[87] H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction, OUP Oxford2004.
[88] P.B. Allen, R.C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Physical Review B, 12 (1975) 905-922.
[89] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical review, 136 (1964) B864.
[90] A. Sanna, J.A. Flores-Livas, A. Davydov, G. Profeta, K. Dewhurst, S. Sharma, E. Gross, Ab initio Eliashberg theory: making genuine predictions of superconducting features, Journal of the Physical Society of Japan, 87 (2018) 041012.
[91] M. Tinkham, Introduction to superconductivity, Courier Corporation2004.
[92] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity, Physical review, 108 (1957) 1175.
[93] K. Kihlstrom, T. Geballe, Tunneling α 2 F (ω) as a function of composition in A 15 NbGe, Physical Review B, 24 (1981) 4101.
[94] T. Smith, C. Chu, Will pressure destroy superconductivity?, Physical Review, 159 (1967) 353.
[95] A.S. Sefat, Pressure effects on two superconducting iron-based families, Reports on progress in physics, 74 (2011) 124502.
[96] L. Sang, Z. Li, G. Yang, Z. Yue, J. Liu, C. Cai, T. Wu, S. Dou, Y. Ma, X. Wang, Pressure effects on iron-based superconductor families: Superconductivity, flux pinning and vortex dynamics, Materials Today Physics, 19 (2021) 100414.
[97] B.T. Matthias, Empirical relation between superconductivity and the number of valence electrons per atom, Physical review, 97 (1955) 74.
[98] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials, 6 (2004) 299-303.
[99] P.A. Lee, N. Nagaosa, X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Reviews of modern physics, 78 (2006) 17.
[100] E. Van Heumen, E. Muhlethaler, A. Kuzmenko, H. Eisaki, W. Meevasana, M. Greven, D. Van Der Marel, Optical determination of the relation between the electron-boson coupling function and the critical temperature in high-T c cuprates, Physical Review B, 79 (2009) 184512.
[101] J.E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Physical Review B, 31 (1985) 4403.
[102] S. Raghu, S. Kivelson, D. Scalapino, Superconductivity in the repulsive Hubbard model: An asymptotically exact weak-coupling solution, Physical Review B, 81 (2010) 224505.
[103] V. Moshchalkov, M. Menghini, T. Nishio, Q. Chen, A. Silhanek, V.H. Dao, L. Chibotaru, N. Zhigadlo, J. Karpinski, Type-1.5 Superconductivity, Physical review letters, 102 (2009) 117001.
[104] P.W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, science, 235 (1987) 1196-1198.
[105] J. Schrieffer, X.-G. Wen, S.-C. Zhang, Spin-bag mechanism of high-temperature superconductivity, Physical review letters, 60 (1988) 944.
[106] P. Monthoux, G. Lonzarich, p-wave and d-wave superconductivity in quasi-two-dimensional metals, Physical Review B, 59 (1999) 14598.
[107] M.S. Laad, L. Craco, Theory of multiband superconductivity in Iron pnictides, Physical review letters, 103 (2009) 017002.
[108] F.P. Laussy, A.V. Kavokin, I.A. Shelykh, Exciton-polariton mediated superconductivity, Physical review letters, 104 (2010) 106402.
[109] G.-m. Zhao, H. Keller, K. Conder, Unconventional isotope effects in the high-temperature cuprate superconductors, Journal of Physics: Condensed Matter, 13 (2001) R569.
[110] C. Zhang, Z. Liu, Z. Chen, Y. Xie, R. He, S. Tang, J. He, W. Li, T. Jia, S.N. Rebec, Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO3, Nature communications, 8 (2017) 1-6.
[111] C. Kittel, Solid state physics, Shell Development Company1955.
[112] H. Ledbetter, M. Lei, S. Kim, Elastic constants, debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides, Phase Transitions, 23 (1990) 61-70.
[113] B. Cort, G. Stewart, C. Snead Jr, A. Sweedler, S. Moehlecke, Specific-heat studies of neutron-irradiated A 15 Nb 3 Al, Physical Review B, 24 (1981) 3794.
[114] I. Shein, A. Ivanovskii, Electronic and structural properties of low-temperature superconductors and ternary pnictides A Ni 2 P n 2 (A= Sr, Ba and P n= P, As), Physical review B, 79 (2009) 054510.
[115] Y.I. Vesnin, Y.F. Eltsev, S. Zakovryashin, M. Starikov, Superconductivity and Decay Phenomena of Nb3Al Nb3Ge Solid Solutions, physica status solidi (a), 77 (1983) 759-764.
[116] C. Chu, Superconductivity at higher temperatures in the Hg-Ba-Ca-Cu-O compound system, Journal of superconductivity, 7 (1994) 1-7.
[117] W. Liu, Y. Wu, X. Li, S.L. Bud'ko, P.C. Canfield, C. Panagopoulos, P. Li, G. Mu, T. Hu, C. Almasan, Pressure-tuned superconductivity and normal-state behavior in Ba (Fe 0.943 Co 0.057) 2 As 2 near the antiferromagnetic boundary, Physical Review B, 97 (2018) 144515.
[118] G. Ummarino, Multiband s±Eliashberg theory and temperature-dependent spin-resonance energy in iron pnictide superconductors, Physical Review B, 83 (2011) 092508.
[119] J. Kortus, I. Mazin, K.D. Belashchenko, V.P. Antropov, L. Boyer, Superconductivity of metallic boron in MgB 2, Physical Review Letters, 86 (2001) 4656.
[120] S. Coh, M.L. Cohen, S.G. Louie, Large electron–phonon interactions from FeSe phonons in a monolayer, New Journal of Physics, 17 (2015) 073027.
[121] S. Mozaffari, D. Sun, V.S. Minkov, A.P. Drozdov, D. Knyazev, J.B. Betts, M. Einaga, K. Shimizu, M.I. Eremets, L. Balicas, Superconducting phase diagram of H3S under high magnetic fields, Nature Communications, 10 (2019) 2522.
[122] L. Deng, T. Bontke, R. Dahal, Y. Xie, B. Gao, X. Li, K. Yin, M. Gooch, D. Rolston, T. Chen, Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals, Proceedings of the National Academy of Sciences, 118 (2021) e2108938118.
[123] F. Körmann, Y. Ikeda, B. Grabowski, M.H. Sluiter, Phonon broadening in high entropy alloys, npj Computational Materials, 3 (2017) 1-9.
[124] W. Lawless, T. Shrout, B. Patton, E. Kim, Low temperature thermal properties of orthorhombic and tetragonal YBa2Cu3O x, Phase Transitions: A Multinational Journal, 23 (1990) 47-59.
[125] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides, Nature communications, 6 (2015) 8485.
[126] C. Chu, L. Gao, F. Chen, Z. Huang, R. Meng, Y. Xue, Superconductivity above 150 K in HgBa2Ca2Cu3O8+ δ at high pressures, Nature, 365 (1993) 323-325.
[127] P.H. Hor, R. Meng, Y.Q. Wang, L. Gao, Z. Huang, J. Bechtold, K. Forster, C. Chu, Superconductivity above 90 K in the square-planar compound system A Ba 2 Cu 3 O 6+ x with A= Y, La, Nd, Sm, Eu, Gd, Ho, Er and Lu, Physical review letters, 58 (1987) 1891.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *