帳號:guest(18.224.59.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):希亞姆
作者(外文):Yadav, Shyam Narayan Singh
論文名稱(中文):電漿子增強型二維材料光偵測器具優異光電性能於中紅外光及可見光區域
論文名稱(外文):Plasmonically Enhanced 2D Materials-Based Photodetectors with Superior Optoelectronic Performance in Mid-Infrared and Visible Regions
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):劉昌樺
梁啟德
呂宥蓉
謝雅萍
鄭文惠
口試委員(外文):Liu, Chang-Hua
Liang, Chi-Te
Lu, Yu-Jung
Hsieh, Ya-Ping
Cheng, Wen-Hui
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031893
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:139
中文關鍵詞:等離子體結構等離子體超表面幾種二維材料石墨烯黑磷MoS2鈣鈦礦量子點和銅基硫族化物 Cu2NiSnS4中紅外光電探測器可見光電探測器
外文關鍵詞:Plasmonic StructuresPlasmonic Metasurface2D MaterialsGrapheneBlack PhosphorusMoS2Perovskite Quantum Dots (PQDs)Copper-Based Chalcogenides Cu2NiSnS4Mid-Infrared PhotodetectorVisible Photodetector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:112
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
工程驅動的光偵測器在各種科學和工業應用中發揮著重要作用,包括通信、生物成像、遙測和環境監測。在光偵測器中,光生電荷載流子在外部電壓的作用下從光活性通道向相反的電極移動,或者在異質界面處被內建電勢驅動以產生光電流。理想的光偵測器必須具有高光譜選擇性、超靈敏性和高信噪比。傳統上,Si、Ge、ZnO-CdS 及其異質結構已被用於可見光偵測器。此外,InGaAs、InSb、GaSb、HgCdTe等窄帶隙III-V族半導體材料被用於包括從近紅外到長波紅外區域的探測範圍。然而,由於其複雜且漫長的製造過程,它們的成本很高。因此,正在研究許多材料以簡化結構並製造具有成本效益的光偵測器。其中,幾種二維材料(例如,石墨烯、黑磷 (BP)、MoS2、鈣鈦礦量子點 (PQD) 和銅基硫族化物 Cu2NiSnS4 (CNTS))表現出優異的光學特性,包括具厚度和元素成分相關性的可調帶隙、環境溫度下的高載流子遷移率和 CMOS 兼容性,使它們成為中紅外 (MIR) 和可見光偵測應用的有力候選者。
儘管上述光敏材料具有優異的光學特性,但由於光與物質的相互作用較弱,它們的光偵測器仍然存在較差的光電性能。電漿子和超材料可能是增強光與物質相互作用的潛在工具。在電漿子中,主要是金屬銀 (Ag)、金 (Au) 和銅 (Cu) 納米結構被用於可見到紅外頻率區域。這些電漿子納米結構將附近的入射電磁場局域化,並通過局域表面電漿子共振 (LSPR) 實現強烈的光-物質相互作用。同時,超材料的光學特性取決於其設計和結構參數。因此,將電漿子納米結構和超材料整合到不同的光活性材料中已經被研究以提高光電性能。牢記這一事實,在這篇論文中我們探索了使用電漿子納米結構和電漿子超表面與上述光活性半導體材料混合,並設計了光偵測器以進一步增強其光電性能。
對於第一篇研究,我們展示了一種電漿子超表面整合的基於黑磷 (BP) 的中紅外 (MIR) 光偵測器,具有高響應度和速度。由於結構和光學各向異性特性,BP 表現出 0.3-2.0 eV 的層數相關之可調直接帶隙、環境溫度下的高載流子遷移率 (5×103 cm2 V−1S−1) ,這使其成為MIR光偵測器應用的強力候選者。儘管已經提出了幾種基於 BP 的 MIR 光偵測器,但由於環境溫度下的小光吸收截面,它們的性能仍然受到限制。在此,我們設計了一個在 3.7 µm 處具有局域表面電漿子共振 (LSPR) 的電漿子超表面,如 FTIR 測量結果所示,它與 BP 薄片的能帶邊緣完美匹配。在設計的電漿子超表面的共振波長下,使用有限差分模擬結果觀察了 Au 盤邊緣周圍的場限制。此外,我們將 BP 薄片與電漿子超表面整合在一起,並觀察到顯著的光致發光猝滅(≈ 12 倍),這是由於激子和電漿子激元之間的偶極-偶極耦合引起的 Förster 共振能量轉移效應。此外,我們製造了一個電漿子超表面整合石墨烯/BP/石墨烯基夾層垂直結構光偵測器,並探測了中紅外波長的光電響應。我們展示了在 3.7 µm 波長下以 8.55 µW 的入射功率實現 495.85 mAW−1 的高響應度和超高運行速度 (>10MHz)。展出的電漿子整合基於 BP 的混合光偵測器為中紅外光譜中的光電應用創造了新的選擇。
對於可見電漿子光偵測器裝置的第二項研究,我們研究了電漿子增強量子點/石墨烯光偵測。由於其出色的載流子遷移率、高吸收係數、出色的量子效率和低成本的溶液可加工性,鈣鈦礦量子點 (PQD) 是光偵測有前途的候選者。然而,基於 PQD 的光偵測器通常表現出較差的光電性能,主要受限於它們弱的光-物質相互作用。在這項工作中,我們將 MAPbBr3 PQD 與石墨烯和形態控制的電漿子金納米晶體 (AuNC) 混合,以通過協同效應在 432 nm 處展示出卓越的光偵測器。我們的實驗結果表明,三種形狀的 AuNC(即球形、八面體 (OD) 和菱形十二面體 (RD))都有助於更好的光電探測行為,這是由於表面陷阱態鈍化和增強的電荷載流子密度,與原始 AuNC 相比具有更長的壽命PQD。特別是,PQDs/RD-AuNCs/Gr 系統表現出創紀錄的 2.7×105 AW−1 響應率、4.9×1013 瓊斯探測率和 1.6 µWcm−2 下 7.9×107% 的外量子效率 (EQE) 在432 nm 波長的 1.6 µWcm−2 照明功率密度下以最低施加電壓為 1.0 V,對於基於無閘極的 PQD/AuNCs/Gr光偵測器。此外,據我們所知,我們的設備在基於 PQD/AuNC/Gr 的靜電無閘極橫向配置光偵測器中顯示出最高的響應度。
對於電漿子器件的第三項研究,我們展示了將電漿子金屬納米結構以核-殼結構的形式結合到半導體化合物中,為顯著提高光偵測器的性能提供了一條新途徑。在此,我們首次報告了 Cu2NiSnS4 (CNTS) 納米晶體 (NCs) 和 Au/CNTS 核-殼 NCs 的開發,作為使用膠體熱注入法的概念驗證實驗,因為它對尺寸、形狀和元素組成的出色控制。此外,我們將 Au/CNTS 核-殼 NC 與 Gr 薄膜混合,以在可見光範圍內呈現超高光電響應。這些光活性 Au/CNTS 核-殼 NC 表現出增強的光吸收、載流子提取效率和改進的光敏性能。增強的光電性能主要歸功於Au核的電漿子誘導共振能量轉移(PIRET)效應; Au 核和 CNTS 殼之間的載流子密度顯著增加。因此,測得的響應率、比探測率和外量子效率 (EQE) 分別達到 1.2×103 AW─1、6.2×1011 瓊斯和 3.8×105 %(在 318.5 µWcm─2 的照明功率密度下),優於受控的原始 CNTS/石墨烯基光偵測器。此外,使用 Au/CNTS 的器件具有 2.58秒/11.14 秒的快速響應時間/恢復時間和出色的運行可靠性。這些結果開啟了用於成像應用的基於電漿子核殼納米結構的可見光傳感設備的製造和開發的新時代。
對於電漿子裝置的最後研究,我們展示了一個基於 Au 納米盤陣列/MoS2 的超靈敏光偵測器。由於其原子級薄的厚度、依賴於層的可調帶隙、柔韌性和 CMOS 兼容性,MoS2 是光電探測的有前途的候選者。然而,基於單層 MoS2 的光偵測器通常表現出較差的光電性能,主要受限於它們低的光吸收。在這項工作中,我們將 CVD 生長的單層 MoS2 與金納米盤 (AuND) 陣列結合,以通過協同效應展示出卓越的可見光偵測器。從我們的實驗結果可以明顯看出,AuND 和單層 MoS2 之間存在強烈的光物質相互作用,與原始 MoS2 相比,由於表面陷阱態鈍化和更短的電荷載流子壽命,這導致更好的光偵測。特別是,AuND/MoS2 系統在 632 nm 波長的 31.84 µWcm−2 照明功率密度和施加電壓為4.0 V基於 AuND/MoS2 的光偵測器為,表現出創紀錄的 8.7× 104AW−1 響應率、6.9× 1013 瓊斯探測率和1.7× 105 的增益。據我們所知,這些光電響應比文獻中基於 CVD MoS2 的光偵測器的報告結果高一個數量級。
進一步地,這些展示的混合器件顯示出出色的操作可靠性、低成本的可加工性,以及在中紅外和可見光區域用作低光成像光電傳感器器件的潛力。
Engineering-driven photodetectors play an essential role in various scientific and industrial applications, including communications, bioimaging, remote sensing, and environmental monitoring. It is necessary to be highly spectral selective, ultrasensitive, and have a high signal-to-noise ratio for an ideal photodetector. Traditionally, Si, Ge, ZnO-CdS, and their heterostructures have been used for visible photodetectors. Moreover, narrow bandgaps III-V semiconductor materials such as InGaAs, InSb, GaSb, and HgCdTe are used to cover the detection range from near-infrared to long-wave infrared region. However, they are costly because of their complicated and prolonged fabrication process. Therefore, many materials are being investigated to simplify the structures and fabricate cost-effective photodetectors. Among them, several 2D materials (e.g., Graphene (Gr), Black Phosphorus (BP), MoS2), Perovskite Quantum Dots (PQDs), and copper-based chalcogenides Cu2NiSnS4 (CNTS)) exhibits superior optical properties, including a thickness and elemental constituents-dependent tunable band gap, high carrier mobility at ambient temperature, and CMOS compatibility, making them a strong candidate for mid-infrared (MIR) and visible photodetector applications.
Although the aforementioned photoactive materials possess superior optical characteristics, their photodetectors still suffer from poor optoelectronic performance due to weak light-matter interaction. Plasmonic and metamaterials could be potential tools to enhance light-matter interaction. In plasmonic, mostly metallic silver (Ag), gold (Au), and copper (Cu) nanostructures are being used for visible to infrared frequency regions. These plasmonic nanostructures localized incident electromagnetic field in the vicinity and enabled strong light-matter interaction via localized surface plasmon resonance (LSPR). At the same time, the optical properties of the metamaterials depend on their designs and structure parameters. Therefore, the integration of plasmonic nanostructures and metamaterials in different photoactive materials has been studied to boost optoelectronic performance. Keeping this fact in mind, in this dissertation, we explored using plasmonic nanostructures and plasmonic metasurface to hybridize with those above photoactive semiconducting materials and designed photodetectors to enhance further their optoelectronic performance.
For the first study, we demonstrated a plasmonic metasurface integrated Black Phosphorus (BP)-based mid-infrared (MIR) photodetector with high responsivity and speed. Owing to the structural and optical anisotropic properties, BP exhibits a layer-dependent tunable direct band gap from 0.3-2.0 eV, and a high carrier mobility (5×103 cm2 V−1S−1) at ambient temperature is a strong candidate for MIR photodetector applications. Although several BP-based MIR photodetectors have been proposed, their performance is still constrained due to the small optical absorption cross-section at ambient temperature. Herein, we designed a plasmonic metasurface with localized surface plasmon resonance (LSPR) at 3.7 µm, which demonstrates an excellent match with the band edge of a BP flake as shown by FTIR measurement results. The field confinement around the edge of the Au-disk was observed using finite difference simulation results at the resonance wavelength of the designed plasmonic metasurface. Furthermore, we integrated a BP flake with the plasmonic metasurface and observed a significant photoluminescence quenching (≈ 12-fold) owing to the Förster resonance energy transfer effect induced by dipole-dipole coupling between excitons and plasmons. Moreover, we fabricated a plasmonic metasurface integrated graphene/BP/graphene-based sandwich vertical structured photodetector and probed the optoelectronic responses in MIR wavelength. We demonstrated to achieve a high responsivity of 495.85 mAW−1 and ultrahigh operation speed (>10MHz) at the incident power of 8.55 µW at the wavelength of 3.7 µm. The exhibited plasmonic integrated BP-based hybrid photodetector creates a new option for optoelectronic applications in the MIR spectrum.
For the second study of the visible plasmonic photodetector device, we studied the plasmons-enhanced QDs/Graphene photodetection. Owing to their excellent carrier mobility, high absorption coefficient, exceptional quantum efficiency, and low-cost solution processability, perovskite quantum dots (PQDs) are a promising candidate for photodetection. However, PQDs-based photodetectors typically show poor optoelectronic performances, mainly limited by their weak light-matter interaction. In this work, we hybridize MAPbBr3 PQDs with the graphene and morphologically controlled plasmonic gold nanocrystals (AuNCs) to demonstrate a superior photodetector at 432 nm through a synergetic effect. Our experimental results indicate that three shaped AuNCs (i.e., sphere, the octahedron (OD), and rhombic dodecahedron (RD) all contribute to better photodetection behaviors due to surface trap state passivation and enhanced charge carrier densities with longer lifetime compared to that of pristine PQDs. In particular, the PQDs/RD-AuNCs/Gr system demonstrated a record-high responsivity of 2.7×105 AW−1, a detectivity of 4.9×1013 Jones, and external quantum efficiency (EQE) of 7.9×107 % at 1.6 µWcm−2 illumination power density of 432 nm wavelength with a lowest applied voltage of 1.0 V for a gate-free PQDs/AuNCs/Gr-based photodetector. Furthermore, to our knowledge, our device shows the highest responsivity among the PQDs/AuNCs/Gr-based electrostatic gate-free lateral configuration photodetectors.
For the third study of the plasmonic devices, we demonstrated the incorporation of plasmonic metal nanostructures into the semiconductor compounds in the form of core-shell structures, offering a new route to significantly improve the performance of photodetectors. Herein, we report the development of Cu2NiSnS4 (CNTS) nanocrystals (NCs) and Au/CNTS core-shell NCs for the first time as a proof-of-concept experiment using the colloidal hot-injection method owing to its excellent control over size, shape, and elemental composition. Furthermore, we hybridize Au/CNTS core-shell NCs with a Gr film to present an ultrahigh optoelectronic response in a visible regime. These photoactive Au/CNTS core-shell NCs exhibit enhanced optical absorption, carrier extraction efficiency, and improved photo-sensing performance. The enhanced optoelectronic performance is mainly due to the plasmonic-induced resonance energy transfer (PIRET) effect of the Au core; carrier density is significantly increased between the Au core and CNTS shell. As a consequence, the measured responsivity, specific detectivity, and external quantum efficiency (EQE) reach 1.2 103 AW─1, 6.2×1011 Jones, and 3.8×105 %, respectively (at an illumination power density of 318.5 µWcm─2), outperforming the controlled a pristine CNTS/graphene-based photodetector. Further, the device using Au/CNTS exhibits a fast response/recovery time of 2.58/11.14 sec and excellent operational reliability. These results enlighten a new era in the fabrication and development of plasmonic core-shell nanostructures-based visible photo-sensing devices for imaging applications.
For the last study of the plasmonic device, we demonstrated an Au nanodisk array/MoS2-based ultrasensitive photodetector. Owing to its atomically thin thickness, layer-dependent tunable band gap, flexibility, and CMOS compatibility, MoS2 is a promising candidate for photodetection. However, mono-layer MoS2-based photodetectors typically show poor optoelectronic performances, mainly limited by their low optical absorption. In this work, we hybridized CVD-grown monolayer MoS2 with a gold nanodisk (AuND) array to demonstrate a superior visible photodetector through a synergetic effect. It is evident from our experimental results that there is a strong light-matter interaction between AuNDs and monolayer MoS2, which results in better photodetection due to a surface trap state passivation with a shorter charge carrier lifetime compared to pristine MoS2. In particular, the AuND/MoS2 system demonstrated a record-high responsivity of 8.7× 104 AW─1, detectivity of 6.9× 1013Jones, and gain 1.7× 105 at 31.84 µWcm−2 illumination power density of 632 nm wavelength with an applied voltage of 4.0 V for AuND/MoS2-based photodetector. To our knowledge, these optoelectronic responses are one order higher than reported results for CVD MoS2-based photodetector in the literature.
Further, these demonstrated hybrid devices show excellent operational reliability, low-cost processability, and potential to be used as low-light imaging photosensor devices in MIR and visible regions.
Table of Contents
Chapter 1 1
Introduction 1
1.1 Photodetectors 1
1.2 Photoactive Materials 3
1.3 Plasmonic and Metamaterials 10
1.4 Dissertation Structure 14
Chapter 2 15
Literature Review 15
2.1 Black Phosphorus-Based Photodetectors 15
2.2 Perovskite Quantum Dots-Based Photodetectors 16
2.3 Cu2NiSnS4 (CNTS)-Based Photodetectors 18
2.4 MoS2-Based Photodetectors 18
Chapter 3 21
Plasmonic Metasurface Integrated Black Phosphorus-Based Photodetector 21
3.1 Introduction and Motivation 21
3.2 Numerical Methods and Optimization of Plasmonic Metasurface 23
3.3 Plasmonic Metasurface and Photodetector Fabrication Process 25
3.4 Optical Characterization 27
3.5 Optoelectronic Characterization 32
3.6 Conclusions 43
Chapter 4 44
Perovskite QDs/Graphene Hybrid Gate -Free Photodetector 44
4.1 Introduction and Motivation 44
4.2 Design of Photodetector 46
4.3 Synthesis of PQDs, Structural and Optical Characterization 47
4.4 Synthesis, Structural and Optical Characterization of AuNCs 50
4.5 Synthesis of Graphene and Characterizations 54
4.6 Optical Properties of Hybrid Structure 55
4.7 Surface Electronic Properties of Hybrid Structure 59
4.8 Energy Band Diagram of Hybrid Structure 60
4.9 Device Fabrication Process 62
4.10 Optoelectronic Characterization 63
4.11 Conclusions 72
Chapter 5 73
Core-Shell Au/Cu2NiSnS4/Graphene-Based Gate-Free Photodetector 73
5.1 Introduction and Motivation 73
5.2 Design of the Photodetector 74
5.3 Synthesis and Structural Characterization of CNTS and Au/CNTS 75
5.4 Optical Characterization 80
5.5 Energy Band Diagram 83
5.6 Device Fabrication Process 85
5.7 Optoelectronic Characterization 86
5.8 Conclusions 94
Chapter 6 95
Plasmonically Enhanced AuNDs/MoS2-Based Phototransistor 95
6.1 Introduction and Motivation 95
6.2 Design of Phototransistor 97
6.3 Gold Nanodisk Parameter Optimization 97
6.4 Synthesis of MoS2 and Transfer Process 99
6.5 Device Fabrication Process 100
6.6 Optical Characterization 101
6.7 Transfer Characteristics 104
6.8 Energy Band Diagram 105
6.9 Optoelectronic Characteristics 106
6.10 Conclusions 113
Chapter 7 114
Summary 114
Chapter 8 116
Future Prospect 116
Bibliography 117
Appendix 138

1. Koppens, F.H.L., T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 2014. 9(10): p. 780-793.
2. Huo, N. and G. Konstantatos, Recent Progress and Future Prospects of 2D-Based Photodetectors. Advanced Materials, 2018. 30(51): p. 1801164.
3. Long, M., P. Wang, H. Fang, and W. Hu, Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 2019. 29(19): p. 1803807.
4. Khan, S., A. Khan, J. Azadmanjiri, P. Kumar Roy, L. Děkanovský, Z. Sofer, and A. Numan, 2D Heterostructures for Highly Efficient Photodetectors: From Advanced Synthesis to Characterizations, Mechanisms, and Device Applications. Advanced Photonics Research, 2022. 3(8): p. 2100342.
5. Li, C., H. Wang, F. Wang, T. Li, M. Xu, H. Wang, Z. Wang, X. Zhan, W. Hu, and L. Shen, Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light: Science & Applications, 2020. 9(1): p. 31.
6. Ma, N., J. Jiang, Y. Zhao, L. He, Y. Ma, H. Wang, L. Zhang, C. Shan, L. Shen, and W. Hu, Stable and sensitive tin-lead perovskite photodetectors enabled by azobenzene derivative for near-infrared acousto-optic conversion communications. Nano Energy, 2021. 86: p. 106113.
7. Jiang, J., M. Xiong, K. Fan, C. Bao, D. Xin, Z. Pan, L. Fei, H. Huang, L. Zhou, K. Yao, X. Zheng, L. Shen, and F. Gao, Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nature Photonics, 2022. 16(8): p. 575-581.
8. Mortazavi Zanjani, S.M., M. Holt, M.M. Sadeghi, S. Rahimi, and D. Akinwande, 3D integrated monolayer graphene–Si CMOS RF gas sensor platform. npj 2D Materials and Applications, 2017. 1(1): p. 36.
9. Konstantatos, G., J. Clifford, L. Levina, and E.H. Sargent, Sensitive solution-processed visible-wavelength photodetectors. Nature Photonics, 2007. 1(9): p. 531-534.
10. Kung, P., X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, and M. Razeghi, Kinetics of photoconductivity in n‐type GaN photodetector. Applied Physics Letters, 1995. 67(25): p. 3792-3794.
11. Bora, M.O., H. Wei, M. Navneet, L. Michael, H.E. Martin, and D. Christopher. Ultra-low dark current InGaAs technology for focal plane arrays for low-light level visible-shortwave infrared imaging. in Proc.SPIE. 2007.
12. Rogalski, A., HgCdTe infrared detector material: history, status and outlook. Reports on Progress in Physics, 2005. 68(10): p. 2267.
13. Jiang, J., S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow, High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition. Applied Physics Letters, 2004. 84(12): p. 2166-2168.
14. Grein, C.H., P.M. Young, M.E. Flatté, and H. Ehrenreich, Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes. Journal of Applied Physics, 1995. 78(12): p. 7143-7152.
15. Rogalski, A., Infrared detectors: an overview. Infrared Physics & Technology, 2002. 43(3): p. 187-210.
16. Manga, K.K., S. Wang, M. Jaiswal, Q. Bao, and K.P. Loh, High-Gain Graphene-Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution. Advanced Materials, 2010. 22(46): p. 5265-5270.
17. Konstantatos, G. and E.H. Sargent, Nanostructured materials for photon detection. Nature Nanotechnology, 2010. 5(6): p. 391-400.
18. Wang, S., X. Liu, and P. Zhou, The Road for 2D Semiconductors in the Silicon Age. Advanced Materials, 2022. 34(48): p. 2106886.
19. Wang, H.-C., Z. Bao, H.-Y. Tsai, A.-C. Tang, and R.-S. Liu, Perovskite Quantum Dots and Their Application in Light-Emitting Diodes. Small, 2018. 14(1): p. 1702433.
20. Chen, D. and X. Chen, Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. Journal of Materials Chemistry C, 2019. 7(6): p. 1413-1446.
21. Wang, X., Z. Bao, Y.-C. Chang, and R.-S. Liu, Perovskite Quantum Dots for Application in High Color Gamut Backlighting Display of Light-Emitting Diodes. ACS Energy Letters, 2020. 5(11): p. 3374-3396.
22. Fu, Y., H. Zhu, J. Chen, M.P. Hautzinger, X.Y. Zhu, and S. Jin, Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nature Reviews Materials, 2019. 4(3): p. 169-188.
23. Shamsi, J., A.S. Urban, M. Imran, L. De Trizio, and L. Manna, Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chemical Reviews, 2019. 119(5): p. 3296-3348.
24. Dai, S.-W., Y.-L. Lai, L. Yang, Y.-T. Chuang, G.-H. Tan, S.-W. Shen, Y.-S. Huang, Y.-C. Lo, T.-H. Yeh, C.-I. Wu, L.-J. Chen, M.-Y. Lu, K.-T. Wong, S.-W. Liu, and H.-W. Lin, Organic Lead Halide Nanocrystals Providing an Ultra-Wide Color Gamut with Almost-Unity Photoluminescence Quantum Yield. ACS Applied Materials & Interfaces, 2021. 13(21): p. 25202-25213.
25. Nakazawa, K.I., Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films. Japanese Journal of Applied Physics, 1988. 27(11R): p. 2094.
26. Katagiri, H., K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Development of CZTS-based thin film solar cells. Thin Solid Films, 2009. 517(7): p. 2455-2460.
27. Zoppi, G., I. Forbes, R.W. Miles, P.J. Dale, J.J. Scragg, and L.M. Peter, Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Progress in Photovoltaics: Research and Applications, 2009. 17(5): p. 315-319.
28. Schurr, R., A. Hölzing, S. Jost, R. Hock, T. Voβ, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Kötschau, and H.W. Schock, The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films, 2009. 517(7): p. 2465-2468.
29. Velusamy, D.B., J.K. El-Demellawi, A.M. El-Zohry, A. Giugni, S. Lopatin, M.N. Hedhili, A.E. Mansour, E.D. Fabrizio, O.F. Mohammed, and H.N. Alshareef, MXenes for Plasmonic Photodetection. Advanced Materials, 2019. 31(32): p. 1807658.
30. Yang, Y., J. Jeon, J.-H. Park, M.S. Jeong, B.H. Lee, E. Hwang, and S. Lee, Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano, 2019. 13(8): p. 8804-8810.
31. Song, W., Q. Liu, J. Chen, Z. Chen, X. He, Q. Zeng, S. Li, L. He, Z. Chen, and X. Fang, Interface Engineering Ti3C2 MXene/Silicon Self-Powered Photodetectors with High Responsivity and Detectivity for Weak Light Applications. Small, 2021. 17(23): p. 2100439.
32. Tan, T., X. Jiang, C. Wang, B. Yao, and H. Zhang, 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Advanced Science, 2020. 7(11): p. 2000058.
33. Allen, M.J., V.C. Tung, and R.B. Kaner, Honeycomb Carbon: A Review of Graphene. Chemical Reviews, 2010. 110(1): p. 132-145.
34. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
35. Manzeli, S., D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, 2D transition metal dichalcogenides. Nature Reviews Materials, 2017. 2(8): p. 17033.
36. Castro Neto, A.H., F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
37. Geim, A.K., Graphene: Status and Prospects. Science, 2009. 324(5934): p. 1530-1534.
38. Bonaccorso, F., Z. Sun, T. Hasan, and A.C. Ferrari, Graphene photonics and optoelectronics. Nature Photonics, 2010. 4(9): p. 611-622.
39. Neto, A.C., F. Guinea, and N.M. Peres, Drawing conclusions from graphene. Physics World, 2006. 19(11): p. 33.
40. Novoselov, K.S., V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A roadmap for graphene. Nature, 2012. 490(7419): p. 192-200.
41. Morozov, S.V., K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 2008. 100(1): p. 016602.
42. Mak, K.F., J. Shan, and T.F. Heinz, Seeing Many-Body Effects in Single- and Few-Layer Graphene: Observation of Two-Dimensional Saddle-Point Excitons. Physical Review Letters, 2011. 106(4): p. 046401.
43. Mayorov, A.S., R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, and A.K. Geim, Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Letters, 2011. 11(6): p. 2396-2399.
44. Mak, K.F., L. Ju, F. Wang, and T.F. Heinz, Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Communications, 2012. 152(15): p. 1341-1349.
45. Xia, F., T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-m. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Letters, 2009. 9(3): p. 1039-1044.
46. Park, J., Y.H. Ahn, and C. Ruiz-Vargas, Imaging of Photocurrent Generation and Collection in Single-Layer Graphene. Nano Letters, 2009. 9(5): p. 1742-1746.
47. Mueller, T., F. Xia, and P. Avouris, Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010. 4(5): p. 297-301.
48. Xuekun, L., Y. Minfeng, H. Hui, and S.R. Rodney, Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 1999. 10(3): p. 269.
49. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
50. Avouris, P., Graphene: Electronic and Photonic Properties and Devices. Nano Letters, 2010. 10(11): p. 4285-4294.
51. Takao, Y., H. Asahina, and A. Morita, Electronic Structure of Black Phosphorus in Tight Binding Approach. Journal of the Physical Society of Japan, 1981. 50(10): p. 3362-3369.
52. Liu, H., A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye, Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 2014. 8(4): p. 4033-4041.
53. Das, S., W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, Tunable Transport Gap in Phosphorene. Nano Letters, 2014. 14(10): p. 5733-5739.
54. Long, G., D. Maryenko, J. Shen, S. Xu, J. Hou, Z. Wu, W.K. Wong, T. Han, J. Lin, Y. Cai, R. Lortz, and N. Wang, Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus. Nano Letters, 2016. 16(12): p. 7768-7773.
55. Chen, X., Y. Wu, Z. Wu, Y. Han, S. Xu, L. Wang, W. Ye, T. Han, Y. He, Y. Cai, and N. Wang, High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nature Communications, 2015. 6(1): p. 7315.
56. Yang, J., S. Tran, J. Wu, S. Che, P. Stepanov, T. Taniguchi, K. Watanabe, H. Baek, D. Smirnov, R. Chen, and C.N. Lau, Integer and Fractional Quantum Hall effect in Ultrahigh Quality Few-layer Black Phosphorus Transistors. Nano Letters, 2018. 18(1): p. 229-234.
57. Li, L., G.J. Ye, V. Tran, R. Fei, G. Chen, H. Wang, J. Wang, K. Watanabe, T. Taniguchi, L. Yang, X.H. Chen, and Y. Zhang, Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nature Nanotechnology, 2015. 10(7): p. 608-613.
58. Qiao, J., X. Kong, Z.-X. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014. 5(1): p. 4475.
59. Castellanos-Gomez, A., Black Phosphorus: Narrow Gap, Wide Applications. The Journal of Physical Chemistry Letters, 2015. 6(21): p. 4280-4291.
60. Yuan, H., X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A.G. Curto, G. Ye, Y. Hikita, Z. Shen, S.-C. Zhang, X. Chen, M. Brongersma, H.Y. Hwang, and Y. Cui, Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nature Nanotechnology, 2015. 10(8): p. 707-713.
61. Sofer, Z., D. Sedmidubský, Š. Huber, J. Luxa, D. Bouša, C. Boothroyd, and M. Pumera, Back Cover: Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties (Angew. Chem. Int. Ed. 10/2016). Angewandte Chemie International Edition, 2016. 55(10): p. 3516-3516.
62. Engel, M., M. Steiner, and P. Avouris, Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging. Nano Letters, 2014. 14(11): p. 6414-6417.
63. Buscema, M., D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. van der Zant, and A. Castellanos-Gomez, Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Letters, 2014. 14(6): p. 3347-3352.
64. Youngblood, N., C. Chen, S.J. Koester, and M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015. 9(4): p. 247-252.
65. Huang, W., C. Li, L. Gao, Y. Zhang, Y. Wang, Z.N. Huang, T. Chen, L. Hu, and H. Zhang, Emerging black phosphorus analogue nanomaterials for high-performance device applications. Journal of Materials Chemistry C, 2020. 8(4): p. 1172-1197.
66. Chang, T.-Y., P.-L. Chen, P.-S. Chen, W.-Q. Li, J.-X. Li, M.-Y. He, J.-T. Chao, C.-H. Ho, and C.-H. Liu, Van der Waals Heterostructure Photodetectors with Bias-Selectable Infrared Photoresponses. ACS Applied Materials & Interfaces, 2022. 14(28): p. 32665-32674.
67. Hultgren, R., N.S. Gingrich, and B.E. Warren, The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus. The Journal of Chemical Physics, 1935. 3(6): p. 351-355.
68. Tran, V., R. Soklaski, Y. Liang, and L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 2014. 89(23): p. 235319.
69. Wang, X., A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nature Nanotechnology, 2015. 10(6): p. 517-521.
70. Li, L., J. Kim, C. Jin, G.J. Ye, D.Y. Qiu, F.H. da Jornada, Z. Shi, L. Chen, Z. Zhang, F. Yang, K. Watanabe, T. Taniguchi, W. Ren, S.G. Louie, X.H. Chen, Y. Zhang, and F. Wang, Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnology, 2017. 12(1): p. 21-25.
71. Chhowalla, M., H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013. 5(4): p. 263-275.
72. Butler, S.Z., S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013. 7(4): p. 2898-2926.
73. Fiori, G., F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials. Nature Nanotechnology, 2014. 9(10): p. 768-779.
74. Mak, K.F., C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
75. Splendiani, A., L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
76. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide $T$S${}_{2}$. Physical Review B, 2011. 83(24): p. 245213.
77. Wang, Q.H., K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7(11): p. 699-712.
78. Xu, X., W. Yao, D. Xiao, and T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics, 2014. 10(5): p. 343-350.
79. Xiao, D., M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties. Reviews of Modern Physics, 2010. 82(3): p. 1959-2007.
80. Jang, D.M., K. Park, D.H. Kim, J. Park, F. Shojaei, H.S. Kang, J.-P. Ahn, J.W. Lee, and J.K. Song, Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Letters, 2015. 15(8): p. 5191-5199.
81. Suarez, B., V. Gonzalez-Pedro, T.S. Ripolles, R.S. Sanchez, L. Otero, and I. Mora-Sero, Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 2014. 5(10): p. 1628-1635.
82. Schmidt, L.C., A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H.J. Bolink, R.E. Galian, and J. Pérez-Prieto, Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 2014. 136(3): p. 850-853.
83. Cho, H., S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, and T.-W. Lee, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015. 350(6265): p. 1222-1225.
84. Protesescu, L., S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 2015. 15(6): p. 3692-3696.
85. Cui, Y., R. Deng, G. Wang, and D. Pan, A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals. Journal of Materials Chemistry, 2012. 22(43): p. 23136-23140.
86. Wang, T.-X., Y.-G. Li, H.-R. Liu, H. Li, and S.-X. Chen, Flower-like Cu2NiSnS4 nanoparticles synthesized by a facile solvothermal method. Materials Letters, 2014. 124: p. 148-150.
87. Ghosh, A., D.K. Chaudhary, A. Biswas, R. Thangavel, and G. Udayabhanu, Solution-processed Cu2XSnS4 (X = Fe, Co, Ni) photo-electrochemical and thin film solar cells on vertically grown ZnO nanorod arrays. RSC Advances, 2016. 6(116): p. 115204-115212.
88. Ghosh, A., A. Biswas, R. Thangavel, and G. Udayabhanu, Photo-electrochemical properties and electronic band structure of kesterite copper chalcogenide Cu2–II–Sn–S4 (II = Fe, Co, Ni) thin films. RSC Advances, 2016. 6(98): p. 96025-96034.
89. Ghosh, A., S. Palchoudhury, R. Thangavel, Z. Zhou, N. Naghibolashrafi, K. Ramasamy, and A. Gupta, A new family of wurtzite-phase Cu2ZnAS4−x and CuZn2AS4 (A = Al, Ga, In) nanocrystals for solar energy conversion applications. Chemical Communications, 2016. 52(2): p. 264-267.
90. Ghosh, A., D.K. Chaudhary, A. Mandal, S. Prodhan, K.K. Chauhan, S. Vihari, G. Gupta, P.K. Datta, and S. Bhattacharyya, Core/Shell Nanocrystal Tailored Carrier Dynamics in Hysteresisless Perovskite Solar Cells with ∼20% Efficiency and Long Operational Stability. The Journal of Physical Chemistry Letters, 2020. 11(3): p. 591-600.
91. Ravindiran, M. and C. Praveenkumar, Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renewable and Sustainable Energy Reviews, 2018. 94: p. 317-329.
92. Fouad, S.S., I.M. El Radaf, P. Sharma, and M.S. El-Bana, Multifunctional CZTS thin films: Structural, optoelectrical, electrical and photovoltaic properties. Journal of Alloys and Compounds, 2018. 757: p. 124-133.
93. Zhou, H., W.-C. Hsu, H.-S. Duan, B. Bob, W. Yang, T.-B. Song, C.-J. Hsu, and Y. Yang, CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy & Environmental Science, 2013. 6(10): p. 2822-2838.
94. Steinhagen, C., M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B.A. Korgel, Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics. Journal of the American Chemical Society, 2009. 131(35): p. 12554-12555.
95. Todorov, T.K., K.B. Reuter, and D.B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber. Advanced Materials, 2010. 22(20): p. E156-E159.
96. Singh, S., A. Sarkar, D.K. Goswami, and S.K. Ray, Solution-Processed Black-Si/Cu2ZnSnS4 Nanocrystal Heterojunctions for Self-Powered Broadband Photodetectors and Photovoltaic Devices. ACS Applied Energy Materials, 2021. 4(4): p. 4090-4098.
97. Yu, X., A. Shavel, X. An, Z. Luo, M. Ibáñez, and A. Cabot, Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au Heterostructured Nanoparticles for Photocatalytic Water Splitting and Pollutant Degradation. Journal of the American Chemical Society, 2014. 136(26): p. 9236-9239.
98. Khanzada, L.S., I. Levchuk, Y. Hou, H. Azimi, A. Osvet, R. Ahmad, M. Brandl, P. Herre, M. Distaso, R. Hock, W. Peukert, M. Batentschuk, and C.J. Brabec, Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells. Advanced Functional Materials, 2016. 26(45): p. 8300-8306.
99. Ozel, F., E. Aslan, B. Istanbullu, O. Akay, and I. Hatay Patir, Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals. Applied Catalysis B: Environmental, 2016. 198: p. 67-73.
100. Ghosh, A., R. Thangavel, and A. Gupta, Solution-processed Cd free kesterite Cu2ZnSnS4 thin film solar cells with vertically aligned ZnO nanorod arrays. Journal of Alloys and Compounds, 2017. 694: p. 394-400.
101. Rondiya, S., N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, and M. Kabir, Structural, Electronic, and Optical Properties of Cu2NiSnS4: A Combined Experimental and Theoretical Study toward Photovoltaic Applications. Chemistry of Materials, 2017. 29(7): p. 3133-3142.
102. Ghediya, P.R., Y.M. Palan, D.P. Bhangadiya, I.I. Nakani, T.K. Chaudhuri, K. Joshi, C.K. Sumesh, and J. Ray, Electrical properties of Ag/p-Cu2NiSnS4 thin film Schottky diode. Materials Today Communications, 2021. 28: p. 102697.
103. Kamble, A., K. Mokurala, A. Gupta, S. Mallick, and P. Bhargava, Synthesis of Cu2NiSnS4 nanoparticles by hot injection method for photovoltaic applications. Materials Letters, 2014. 137: p. 440-443.
104. Sarkar, S., B. Das, P.R. Midya, G.C. Das, and K.K. Chattopadhyay, Optical and thermoelectric properties of chalcogenide based Cu2NiSnS4 nanoparticles synthesized by a novel hydrothermal route. Materials Letters, 2015. 152: p. 155-158.
105. Sarkar, S., P. Howli, B. Das, N.S. Das, M. Samanta, G.C. Das, and K.K. Chattopadhyay, Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density. ACS Applied Materials & Interfaces, 2017. 9(27): p. 22652-22664.
106. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nature Materials, 2010. 9(3): p. 205-213.
107. Duan, H., A.I. Fernández-Domínguez, M. Bosman, S.A. Maier, and J.K.W. Yang, Nanoplasmonics: Classical down to the Nanometer Scale. Nano Letters, 2012. 12(3): p. 1683-1689.
108. Maier, S.A., M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, and H.A. Atwater, Plasmonics—A Route to Nanoscale Optical Devices. Advanced Materials, 2001. 13(19): p. 1501-1505.
109. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3): p. 131-314.
110. Fang, Z. and X. Zhu, Plasmonics in Nanostructures. Advanced Materials, 2013. 25(28): p. 3840-3856.
111. Hayashi, S. and T. Okamoto, Plasmonics: visit the past to know the future. Journal of Physics D: Applied Physics, 2012. 45(43): p. 433001.
112. Qi, J., X. Dang, P.T. Hammond, and A.M. Belcher, Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core–Shell Nanostructure. ACS Nano, 2011. 5(9): p. 7108-7116.
113. Lee, Y.H., S. Park, Y. Won, J. Mun, J.H. Ha, J.H. Lee, S.H. Lee, J. Park, J. Yeom, J. Rho, H. Ko, and J.H. Oh, Flexible high-performance graphene hybrid photodetectors functionalized with gold nanostars and perovskites. NPG Asia Materials, 2020. 12(1): p. 79.
114. Zhang, W., M. Saliba, S.D. Stranks, Y. Sun, X. Shi, U. Wiesner, and H.J. Snaith, Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano Letters, 2013. 13(9): p. 4505-4510.
115. Sun, Z., L. Aigouy, and Z. Chen, Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale, 2016. 8(14): p. 7377-7383.
116. Jackson, J.D., Classical Electrodynamics, 3rd ed. American Journal of Physics, 1999. 67(9): p. 841-842.
117. Cortés, E., F.J. Wendisch, L. Sortino, A. Mancini, S. Ezendam, S. Saris, L. de S. Menezes, A. Tittl, H. Ren, and S.A. Maier, Optical Metasurfaces for Energy Conversion. Chemical Reviews, 2022.
118. Smith, D.R., J.B. Pendry, and M.C.K. Wiltshire, Metamaterials and Negative Refractive Index. Science, 2004. 305(5685): p. 788-792.
119. Dolling, G., C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial. Science, 2006. 312(5775): p. 892-894.
120. Yen, T.J., W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, and X. Zhang, Terahertz Magnetic Response from Artificial Materials. Science, 2004. 303(5663): p. 1494-1496.
121. Hoffman, A.J., L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, and C. Gmachl, Negative refraction in semiconductor metamaterials. Nature Materials, 2007. 6(12): p. 946-950.
122. Quevedo-Teruel, O., H. Chen, A. Díaz-Rubio, G. Gok, A. Grbic, G. Minatti, E. Martini, S. Maci, G.V. Eleftheriades, M. Chen, N.I. Zheludev, N. Papasimakis, S. Choudhury, Z.A. Kudyshev, S. Saha, H. Reddy, A. Boltasseva, V.M. Shalaev, A.V. Kildishev, D. Sievenpiper, C. Caloz, A. Alù, Q. He, L. Zhou, G. Valerio, E. Rajo-Iglesias, Z. Sipus, F. Mesa, R. Rodríguez-Berral, F. Medina, V. Asadchy, S. Tretyakov, and C. Craeye, Roadmap on metasurfaces. Journal of Optics, 2019. 21(7): p. 073002.
123. Meinzer, N., W.L. Barnes, and I.R. Hooper, Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014. 8(12): p. 889-898.
124. Kuznetsov, A.I., A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, and B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science, 2016. 354(6314): p. aag2472.
125. Ren, M., B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K.F. MacDonald, A.E. Nikolaenko, J. Xu, M. Gu, and N.I. Zheludev, Nanostructured Plasmonic Medium for Terahertz Bandwidth All-Optical Switching. Advanced Materials, 2011. 23(46): p. 5540-5544.
126. Chen, X., L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, Dual-polarity plasmonic metalens for visible light. Nature Communications, 2012. 3(1): p. 1198.
127. Lee, J., M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M.A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 2014. 511(7507): p. 65-69.
128. Chen, W.T., A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018. 13(3): p. 220-226.
129. Wang, S., P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D.P. Tsai, A broadband achromatic metalens in the visible. Nature Nanotechnology, 2018. 13(3): p. 227-232.
130. Li, S.-Q., X. Xu, R. Maruthiyodan Veetil, V. Valuckas, R. Paniagua-Domínguez, and A.I. Kuznetsov, Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 2019. 364(6445): p. 1087-1090.
131. Jin, L., Z. Dong, S. Mei, Y.F. Yu, Z. Wei, Z. Pan, S.D. Rezaei, X. Li, A.I. Kuznetsov, Y.S. Kivshar, J.K.W. Yang, and C.-W. Qiu, Noninterleaved Metasurface for (26-1) Spin- and Wavelength-Encoded Holograms. Nano Letters, 2018. 18(12): p. 8016-8024.
132. Jin, L., Y.-W. Huang, Z. Jin, R.C. Devlin, Z. Dong, S. Mei, M. Jiang, W.T. Chen, Z. Wei, H. Liu, J. Teng, A. Danner, X. Li, S. Xiao, S. Zhang, C. Yu, J.K.W. Yang, F. Capasso, and C.-W. Qiu, Dielectric multi-momentum meta-transformer in the visible. Nature Communications, 2019. 10(1): p. 4789.
133. Yue, F., D. Wen, J. Xin, B.D. Gerardot, J. Li, and X. Chen, Vector Vortex Beam Generation with a Single Plasmonic Metasurface. ACS Photonics, 2016. 3(9): p. 1558-1563.
134. Li, L., Z. Liu, X. Ren, S. Wang, V.-C. Su, M.-K. Chen, C.H. Chu, H.Y. Kuo, B. Liu, W. Zang, G. Guo, L. Zhang, Z. Wang, S. Zhu, and D.P. Tsai, Metalens-array–based high-dimensional and multiphoton quantum source. Science, 2020. 368(6498): p. 1487-1490.
135. Youngblood, N. and M. Li, Integration of 2D materials on a silicon photonics platform for optoelectronics applications. 2017. 6(6): p. 1205-1218.
136. Brar, V.W., M.C. Sherrott, and D. Jariwala, Emerging photonic architectures in two-dimensional opto-electronics. Chemical Society Reviews, 2018. 47(17): p. 6824-6844.
137. Liu, C.-h., J. Zheng, Y. Chen, T. Fryett, and A. Majumdar, Van der Waals materials integrated nanophotonic devices [Invited]. Optical Materials Express, 2019. 9(2): p. 384-399.
138. Yin, Y., R. Cao, J. Guo, C. Liu, J. Li, X. Feng, H. Wang, W. Du, A. Qadir, H. Zhang, Y. Ma, S. Gao, Y. Xu, Y. Shi, L. Tong, and D. Dai, High-Speed and High-Responsivity Hybrid Silicon/Black-Phosphorus Waveguide Photodetectors at 2 µm. Laser & Photonics Reviews, 2019. 13(6): p. 1900032.
139. Deckoff-Jones, S., H. Lin, D. Kita, H. Zheng, D. Li, W. Zhang, and J. Hu, Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors. Journal of Optics, 2018. 20(4): p. 044004.
140. Carretero-Palacios, S., M.E. Calvo, and H. Míguez, Absorption Enhancement in Organic–Inorganic Halide Perovskite Films with Embedded Plasmonic Gold Nanoparticles. The Journal of Physical Chemistry C, 2015. 119(32): p. 18635-18640.
141. Venuthurumilli, P.K., P.D. Ye, and X. Xu, Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared. ACS Nano, 2018. 12(5): p. 4861-4867.
142. Lien, M.R., N. Wang, J. Wu, A. Soibel, S.D. Gunapala, H. Wang, and M.L. Povinelli, Resonant Grating-Enhanced Black Phosphorus Mid-Wave Infrared Photodetector. Nano Letters, 2022. 22(21): p. 8704-8710.
143. Wu, H., H. Si, Z. Zhang, Z. Kang, P. Wu, L. Zhou, S. Zhang, Z. Zhang, Q. Liao, and Y. Zhang, All-Inorganic Perovskite Quantum Dot-Monolayer MoS2 Mixed-Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector. Advanced Science, 2018. 5(12): p. 1801219.
144. Pan, R., H. Li, J. Wang, X. Jin, Q. Li, Z. Wu, J. Gou, Y. Jiang, and Y. Song, High-Responsivity Photodetectors Based on Formamidinium Lead Halide Perovskite Quantum Dot–Graphene Hybrid. Particle & Particle Systems Characterization, 2018. 35(4): p. 1700304.
145. Bera, K.P., G. Haider, Y.-T. Huang, P.K. Roy, C.R. Paul Inbaraj, Y.-M. Liao, H.-I. Lin, C.-H. Lu, C. Shen, W.Y. Shih, W.-H. Shih, and Y.-F. Chen, Graphene Sandwich Stable Perovskite Quantum-Dot Light-Emissive Ultrasensitive and Ultrafast Broadband Vertical Phototransistors. ACS Nano, 2019. 13(11): p. 12540-12552.
146. Kwak, D.-H., D.-H. Lim, H.-S. Ra, P. Ramasamy, and J.-S. Lee, High performance hybrid graphene–CsPbBr3−xIx perovskite nanocrystal photodetector. RSC Advances, 2016. 6(69): p. 65252-65256.
147. Gu, Q., C. Hu, J. Yang, J. Lv, Y. Ying, X. Jiang, and G. Si, Plasmon enhanced perovskite-metallic photodetectors. Materials & Design, 2021. 198: p. 109374.
148. Ma, X., Y. Xu, S. Li, T.W. Lo, B. Zhang, A.L. Rogach, and D. Lei, A Flexible Plasmonic-Membrane-Enhanced Broadband Tin-Based Perovskite Photodetector. Nano Letters, 2021.
149. Linic, S., P. Christopher, and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 2011. 10(12): p. 911-921.
150. Long, R. and O.V. Prezhdo, Instantaneous Generation of Charge-Separated State on TiO2 Surface Sensitized with Plasmonic Nanoparticles. Journal of the American Chemical Society, 2014. 136(11): p. 4343-4354.
151. Huang, X., H. Li, C. Zhang, S. Tan, Z. Chen, L. Chen, Z. Lu, X. Wang, and M. Xiao, Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals. Nature Communications, 2019. 10(1): p. 1163.
152. Orendorff, C.J., T.K. Sau, and C.J. Murphy, Shape-Dependent Plasmon-Resonant Gold Nanoparticles. Small, 2006. 2(5): p. 636-639.
153. Hao, F., C.L. Nehl, J.H. Hafner, and P. Nordlander, Plasmon Resonances of a Gold Nanostar. Nano Letters, 2007. 7(3): p. 729-732.
154. Mock, J.J., M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 2002. 116(15): p. 6755-6759.
155. Kelly, K., T. Jensen, A. Lazarides, G. Schatz, D. Feldheim, and C. Foss, Metal Nanoparticles: Synthesis, Characterization and Applications. 2002, New York: Marcel Dekker.
156. Ee, H.-S., J.-H. Kang, M.L. Brongersma, and M.-K. Seo, Shape-Dependent Light Scattering Properties of Subwavelength Silicon Nanoblocks. Nano Letters, 2015. 15(3): p. 1759-1765.
157. Giannini, V., A.I. Fernández-Domínguez, S.C. Heck, and S.A. Maier, Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews, 2011. 111(6): p. 3888-3912.
158. Singh, O.P., A. Sharma, K.S. Gour, S. Husale, and V.N. Singh, Fast switching response of Na-doped CZTS photodetector from visible to NIR range. Solar Energy Materials and Solar Cells, 2016. 157: p. 28-34.
159. Das, S., A. Sebastian, E. Pop, C.J. McClellan, A.D. Franklin, T. Grasser, T. Knobloch, Y. Illarionov, A.V. Penumatcha, J. Appenzeller, Z. Chen, W. Zhu, I. Asselberghs, L.-J. Li, U.E. Avci, N. Bhat, T.D. Anthopoulos, and R. Singh, Transistors based on two-dimensional materials for future integrated circuits. Nature Electronics, 2021. 4(11): p. 786-799.
160. Kam, K.K. and B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. The Journal of Physical Chemistry, 1982. 86(4): p. 463-467.
161. Fivaz, R. and E. Mooser, Mobility of Charge Carriers in Semiconducting Layer Structures. Physical Review, 1967. 163(3): p. 743-755.
162. Radisavljevic, B., A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
163. Lee, H.S., S.-W. Min, Y.-G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, and S. Im, MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Letters, 2012. 12(7): p. 3695-3700.
164. Tsai, D.-S., K.-K. Liu, D.-H. Lien, M.-L. Tsai, C.-F. Kang, C.-A. Lin, L.-J. Li, and J.-H. He, Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 2013. 7(5): p. 3905-3911.
165. Lopez-Sanchez, O., D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013. 8(7): p. 497-501.
166. Mak, K.F. and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 2016. 10(4): p. 216-226.
167. Bernardi, M., M. Palummo, and J.C. Grossman, Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Letters, 2013. 13(8): p. 3664-3670.
168. Lan, H.-Y., Y.-H. Hsieh, Z.-Y. Chiao, D. Jariwala, M.-H. Shih, T.-J. Yen, O. Hess, and Y.-J. Lu, Gate-Tunable Plasmon-Enhanced Photodetection in a Monolayer MoS2 Phototransistor with Ultrahigh Photoresponsivity. Nano Letters, 2021. 21(7): p. 3083-3091.
169. Lee, S., J. Park, Y. Yun, J. Lee, and J. Heo, Enhanced Photoresponsivity of Multilayer MoS2 Phototransistor Using Localized Au Schottky Junction Formed by Spherical-Lens Photolithography. Advanced Materials Interfaces, 2019. 6(8): p. 1900053.
170. Zhang, W., J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Advanced Materials, 2013. 25(25): p. 3456-3461.
171. Zecchina, A. and C.O. Areán, Diatomic molecular probes for mid-IR studies of zeolites. Chemical Society Reviews, 1996. 25(3): p. 187-197.
172. Azevedo, S. and T.E. McEwan, Micropower impulse radar. IEEE Potentials, 1997. 16(2): p. 15-20.
173. Chen, C.J., K.K. Choi, W.H. Chang, and D.C. Tsui, Two-color corrugated quantum-well infrared photodetector for remote temperature sensing. Applied Physics Letters, 1998. 72(1): p. 7-9.
174. Capasso, F., R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T.L. Myers, M.S. Taubman, R.M. Williams, C.G. Bethea, K. Unterrainer, H.Y. Hwang, D.L. Sivco, A.Y. Cho, A.M. Sergent, H.C. Liu, and E.A. Whittaker, Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE Journal of Quantum Electronics, 2002. 38(6): p. 511-532.
175. Willer, U., M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Optics and Lasers in Engineering, 2006. 44(7): p. 699-710.
176. Soref, R., Mid-infrared photonics in silicon and germanium. Nature Photonics, 2010. 4(8): p. 495-497.
177. Razeghi, M. and B.-M. Nguyen, Advances in mid-infrared detection and imaging: a key issues review. Reports on Progress in Physics, 2014. 77(8): p. 082401.
178. Petersen, C.R., U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 2014. 8(11): p. 830-834.
179. Wu, D., J. Guo, C. Wang, X. Ren, Y. Chen, P. Lin, L. Zeng, Z. Shi, X.J. Li, C.-X. Shan, and J. Jie, Ultrabroadband and High-Detectivity Photodetector Based on WS2/Ge Heterojunction through Defect Engineering and Interface Passivation. ACS Nano, 2021. 15(6): p. 10119-10129.
180. Zeng, L., D. Wu, J. Jie, X. Ren, X. Hu, S.P. Lau, Y. Chai, and Y.H. Tsang, Van der Waals Epitaxial Growth of Mosaic-Like 2D Platinum Ditelluride Layers for Room-Temperature Mid-Infrared Photodetection up to 10.6 µm. Advanced Materials, 2020. 32(52): p. 2004412.
181. Wu, D., C. Jia, F. Shi, L. Zeng, P. Lin, L. Dong, Z. Shi, Y. Tian, X. Li, and J. Jie, Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. Journal of Materials Chemistry A, 2020. 8(7): p. 3632-3642.
182. Antoni, R. and R. Manijeh. Narrow-gap semiconductor photodiodes. in Proc.SPIE. 1998.
183. Wu, D., J. Guo, J. Du, C. Xia, L. Zeng, Y. Tian, Z. Shi, Y. Tian, X.J. Li, Y.H. Tsang, and J. Jie, Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction. ACS Nano, 2019. 13(9): p. 9907-9917.
184. Wu, D., C. Guo, Z. Wang, X. Ren, Y. Tian, Z. Shi, P. Lin, Y. Tian, Y. Chen, and X. Li, A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect. Nanoscale, 2021. 13(31): p. 13550-13557.
185. Guo, Q., A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S.-J. Han, H. Wang, Q. Xia, T.-P. Ma, T. Mueller, and F. Xia, Black Phosphorus Mid-Infrared Photodetectors with High Gain. Nano Letters, 2016. 16(7): p. 4648-4655.
186. Huang, L., B. Dong, X. Guo, Y. Chang, N. Chen, X. Huang, W. Liao, C. Zhu, H. Wang, C. Lee, and K.-W. Ang, Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications. ACS Nano, 2019. 13(1): p. 913-921.
187. Bullock, J., M. Amani, J. Cho, Y.-Z. Chen, G.H. Ahn, V. Adinolfi, V.R. Shrestha, Y. Gao, K.B. Crozier, Y.-L. Chueh, and A. Javey, Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nature Photonics, 2018. 12(10): p. 601-607.
188. Chang, T.-Y., P.-L. Chen, J.-H. Yan, W.-Q. Li, Y.-Y. Zhang, D.-I. Luo, J.-X. Li, K.-P. Huang, and C.-H. Liu, Ultra-Broadband, High Speed, and High-Quantum-Efficiency Photodetectors Based on Black Phosphorus. ACS Applied Materials & Interfaces, 2020. 12(1): p. 1201-1209.
189. Suess, R.J., E. Leong, J.L. Garrett, T. Zhou, R. Salem, J.N. Munday, T.E. Murphy, and M. Mittendorff, Mid-infrared time-resolved photoconduction in black phosphorus. 2D Materials, 2016. 3(4): p. 041006.
190. Xu, M., Y. Gu, R. Peng, N. Youngblood, and M. Li, Black phosphorus mid-infrared photodetectors. Applied Physics B, 2017. 123(4): p. 130.
191. Chen, P.-L., Y. Chen, T.-Y. Chang, W.-Q. Li, J.-X. Li, S. Lee, Z. Fang, M. Li, A. Majumdar, and C.-H. Liu, Waveguide-Integrated van der Waals Heterostructure Mid-Infrared Photodetector with High Performance. ACS Applied Materials & Interfaces, 2022. 14(21): p. 24856-24863.
192. Fang, H. and W. Hu, Photogating in Low Dimensional Photodetectors. Advanced Science, 2017. 4(12): p. 1700323.
193. Shkondin, E., O. Takayama, M.E.A. Panah, P. Liu, P.V. Larsen, M.D. Mar, F. Jensen, and A.V. Lavrinenko, Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials. Optical Materials Express, 2017. 7(5): p. 1606-1627.
194. Kischkat, J., S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. Ted Masselink, Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Applied Optics, 2012. 51(28): p. 6789-6798.
195. Ciesielski, A., L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, Evidence of germanium segregation in gold thin films. Surface Science, 2018. 674: p. 73-78.
196. Liu, Y., N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices. Nature Reviews Materials, 2016. 1(9): p. 16042.
197. Chang, T.-Y., Y. Chen, D.-I. Luo, J.-X. Li, P.-L. Chen, S. Lee, Z. Fang, W.-Q. Li, Y.-Y. Zhang, M. Li, A. Majumdar, and C.-H. Liu, Black Phosphorus Mid-Infrared Light-Emitting Diodes Integrated with Silicon Photonic Waveguides. Nano Letters, 2020. 20(9): p. 6824-6830.
198. Sugai, S. and I. Shirotani, Raman and infrared reflection spectroscopy in black phosphorus. Solid State Communications, 1985. 53(9): p. 753-755.
199. Fei, R. and L. Yang, Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Applied Physics Letters, 2014. 105(8): p. 083120.
200. Li, J., S.K. Cushing, F. Meng, T.R. Senty, A.D. Bristow, and N. Wu, Plasmon-induced resonance energy transfer for solar energy conversion. Nature Photonics, 2015. 9(9): p. 601-607.
201. Zhou, X.D., X.H. Xiao, J.X. Xu, G.X. Cai, F. Ren, and C.Z. Jiang, Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling. EPL (Europhysics Letters), 2011. 93(5): p. 57009.
202. Pons, T., I.L. Medintz, K.E. Sapsford, S. Higashiya, A.F. Grimes, D.S. English, and H. Mattoussi, On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles. Nano Letters, 2007. 7(10): p. 3157-3164.
203. Kochuveedu, S.T. and D.H. Kim, Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale, 2014. 6(10): p. 4966-4984.
204. Ghosh, S., R. Su, J. Zhao, A. Fieramosca, J. Wu, T. Li, Q. Zhang, F. Li, Z. Chen, T. Liew, D. Sanvitto, and Q. Xiong, Microcavity exciton polaritons at room temperature. 2022. 1(1): p. R04.
205. Zhang, Y., S. Wang, S. Chen, Q. Zhang, X. Wang, X. Zhu, X. Zhang, X. Xu, T. Yang, M. He, X. Yang, Z. Li, X. Chen, M. Wu, Y. Lu, R. Ma, W. Lu, and A. Pan, Wavelength-Tunable Mid-Infrared Lasing from Black Phosphorus Nanosheets. Advanced Materials, 2020. 32(17): p. 1808319.
206. Morita, A., Semiconducting black phosphorus. Applied Physics A, 1986. 39(4): p. 227-242.
207. Kang, J., D. Jariwala, C.R. Ryder, S.A. Wells, Y. Choi, E. Hwang, J.H. Cho, T.J. Marks, and M.C. Hersam, Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. Nano Letters, 2016. 16(4): p. 2580-2585.
208. Yu, W.J., Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotechnology, 2013. 8(12): p. 952-958.
209. Britnell, L., R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H.C. Neto, and K.S. Novoselov, Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science, 2013. 340(6138): p. 1311-1314.
210. Wang, J., J. Han, X. Chen, and X. Wang, Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat, 2019. 1(1): p. 33-53.
211. Yadav, S.N.S., P.-L. Chen, C.H. Liu, and T.-J. Yen, Plasmonic Metasurface Integrated Black Phosphorus-Based Mid-Infrared Photodetector with High Responsivity and Speed. Advanced Materials Interfaces, 2023. n/a(n/a): p. 2202403.
212. Zhan, Z., L. Zheng, Y. Pan, G. Sun, and L. Li, Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO (rGO–ZnO) hybrid nanostructure. Journal of Materials Chemistry, 2012. 22(6): p. 2589-2595.
213. Zhang, F., S. Niu, W. Guo, G. Zhu, Y. Liu, X. Zhang, and Z.L. Wang, Piezo-phototronic Effect Enhanced Visible/UV Photodetector of a Carbon-Fiber/ZnO-CdS Double-Shell Microwire. ACS Nano, 2013. 7(5): p. 4537-4544.
214. Zheng, Z., L. Gan, H. Li, Y. Ma, Y. Bando, D. Golberg, and T. Zhai, A Fully Transparent and Flexible Ultraviolet–Visible Photodetector Based on Controlled Electrospun ZnO-CdO Heterojunction Nanofiber Arrays. Advanced Functional Materials, 2015. 25(37): p. 5885-5894.
215. Xiang, D., C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W.P. Hu, and W. Chen, Surface Transfer Doping-Induced, High-Performance Graphene/Silicon Schottky Junction-Based, Self-Powered Photodetector. Small, 2015. 11(37): p. 4829-4836.
216. García de Arquer, F.P., A. Armin, P. Meredith, and E.H. Sargent, Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2017. 2(3): p. 16100.
217. Konstantatos, G., M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. de Arquer, F. Gatti, and F.H.L. Koppens, Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 2012. 7(6): p. 363-368.
218. Guo, W., S. Xu, Z. Wu, N. Wang, M.M.T. Loy, and S. Du, Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small, 2013. 9(18): p. 3031-3036.
219. Gupta, A., D.K. Patel, S.Y. Lee, A.F. Rigosi, R.E. Elmquist, V.N.K.B. Adusumalli, C.-T. Liang, and Y.I. Park, Record-High Responsivity and High Detectivity Broadband Photodetectors Based on Upconversion/Gold/Prussian-Blue Nanocomposite. Advanced Functional Materials, 2022. n/a(n/a): p. 2206496.
220. Singh, R.K., P. Sharma, R. Kumar, S. Som, S. Dutta, N. Jain, R. Chaurasiya, M.L. Meena, J.-S. Ho, S.-W. Dai, J. Singh, C.-H. Lu, and H.-W. Lin, CH3NH3Pb1–xCoxBr3–2xCl2x Perovskite Quantum Dots for Wide-Color Backlighting. ACS Applied Nano Materials, 2021. 4(1): p. 717-728.
221. Singh, R.K., R. Kumar, A. Kumar, N. Jain, R.K. Singh, and J. Singh, Novel synthesis process of methyl ammonium bromide and effect of particle size on structural, optical and thermodynamic behavior of CH3NH3PbBr3 organometallic perovskite light harvester. Journal of Alloys and Compounds, 2018. 743: p. 728-736.
222. Wu, H.-L., C.-H. Kuo, and M.H. Huang, Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir, 2010. 26(14): p. 12307-12313.
223. Chang, C.-C., H.-L. Wu, C.-H. Kuo, and M.H. Huang, Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures. Chemistry of Materials, 2008. 20(24): p. 7570-7574.
224. Johnson, P.B. and R.W. Christy, Optical Constants of the Noble Metals. Physical Review B, 1972. 6(12): p. 4370-4379.
225. Lin, C.-H., M.-S. Tsai, W.-T. Chen, Y.-Z. Hong, P.-Y. Chien, C.-H. Huang, W.-Y. Woon, and C.-T. Lin, A low-damage plasma surface modification method of stacked graphene bilayers for configurable wettability and electrical properties. Nanotechnology, 2019. 30(24): p. 245709.
226. Onishi, K., K. Kirimoto, and Y. Sun, Coupling behaviors of graphene/SiO2/Si structure with external electric field. AIP Advances, 2017. 7(2): p. 025113.
227. Cushing, S.K. and N. Wu, Plasmon-Enhanced Solar Energy Harvesting. The Electrochemical Society Interface, 2013. 22(2): p. 63.
228. Cushing, S.K., J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, and N. Wu, Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society, 2012. 134(36): p. 15033-15041.
229. Kim, H., H.R. Byun, B. Kim, and M.S. Jeong, Gold Nanoparticles-embedded MAPbI3 Perovskite Thin Films. Journal of the Korean Physical Society, 2018. 73(11): p. 1725-1728.
230. Li, D., Y. Huang, G. Wang, Q. Lian, R. Shi, L. Zhang, X. Wang, F. Gao, W. Kong, B. Xu, C. Cheng, and S. Li, Boosting the performance of MA-free inverted perovskite solar cells via multifunctional ion liquid. Journal of Materials Chemistry A, 2021. 9(21): p. 12746-12754.
231. Yao, K., S. Li, Z. Liu, Y. Ying, P. Dvořák, L. Fei, T. Šikola, H. Huang, P. Nordlander, A.K.Y. Jen, and D. Lei, Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light: Science & Applications, 2021. 10(1): p. 219.
232. Stranks Samuel, D., E. Eperon Giles, G. Grancini, C. Menelaou, J.P. Alcocer Marcelo, T. Leijtens, M. Herz Laura, A. Petrozza, and J. Snaith Henry, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.
233. Tagliabue, G., J.S. DuChene, M. Abdellah, A. Habib, D.J. Gosztola, Y. Hattori, W.-H. Cheng, K. Zheng, S.E. Canton, R. Sundararaman, J. Sá, and H.A. Atwater, Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nature Materials, 2020. 19(12): p. 1312-1318.
234. Tsai, H.-S., Y.-H. Huang, P.-C. Tsai, Y.-J. Chen, H. Ahn, S.-Y. Lin, and Y.-J. Lu, Ultrafast Exciton Dynamics in Scalable Monolayer MoS2 Synthesized by Metal Sulfurization. ACS Omega, 2020. 5(19): p. 10725-10730.
235. Macdonald, T.J., A.J. Clancy, W. Xu, Z. Jiang, C.-T. Lin, L. Mohan, T. Du, D.D. Tune, L. Lanzetta, G. Min, T. Webb, A. Ashoka, R. Pandya, V. Tileli, M.A. McLachlan, J.R. Durrant, S.A. Haque, and C.A. Howard, Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction. Journal of the American Chemical Society, 2021. 143(51): p. 21549-21559.
236. Xiong, M., W. Zou, K. Fan, C. Qin, S. Li, L. Fei, J. Jiang, H. Huang, L. Shen, F. Gao, A.K.Y. Jen, and K. Yao, Tailoring Phase Purity in the 2D/3D Perovskite Heterostructures Using Lattice Mismatch. ACS Energy Letters, 2022. 7(1): p. 550-559.
237. Deng, X., X. Wen, S. Huang, R. Sheng, T. Harada, T.W. Kee, M. Green, and A. Ho-Baillie, Ultrafast Carrier Dynamics in Methylammonium Lead Bromide Perovskite. The Journal of Physical Chemistry C, 2016. 120(5): p. 2542-2547.
238. Shang, Z., X. An, H. Liu, C. Hu, and J. Qu, Silvered TiO2 for Facet-Dependent Photocatalytic Denitrification. ACS Applied Nano Materials, 2021. 4(12): p. 13534-13542.
239. Sriram, P., Y.-P. Wen, A. Manikandan, K.-C. Hsu, S.-Y. Tang, B.-W. Hsu, Y.-Z. Chen, H.-W. Lin, H.-T. Jeng, Y.-L. Chueh, and T.-J. Yen, Enhancing Quantum Yield in Strained MoS2 Bilayers by Morphology-Controlled Plasmonic Nanostructures toward Superior Photodetectors. Chemistry of Materials, 2020. 32(6): p. 2242-2252.
240. Haider, G., P. Roy, C.-W. Chiang, W.-C. Tan, Y.-R. Liou, H.-T. Chang, C.-T. Liang, W.-H. Shih, and Y.-F. Chen, Electrical-Polarization-Induced Ultrahigh Responsivity Photodetectors Based on Graphene and Graphene Quantum Dots. Advanced Functional Materials, 2016. 26(4): p. 620-628.
241. Bera, K.P., G. Haider, M. Usman, P.K. Roy, H.-I. Lin, Y.-M. Liao, C.R.P. Inbaraj, Y.-R. Liou, M. Kataria, K.-L. Lu, and Y.-F. Chen, Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. Advanced Functional Materials, 2018. 28(51): p. 1804802.
242. Knight Mark, W., H. Sobhani, P. Nordlander, and J. Halas Naomi, Photodetection with Active Optical Antennas. Science, 2011. 332(6030): p. 702-704.
243. Brongersma, M.L., N.J. Halas, and P. Nordlander, Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 2015. 10(1): p. 25-34.
244. Zhu, Y., H. Xu, P. Yu, and Z. Wang, Engineering plasmonic hot carrier dynamics toward efficient photodetection. Applied Physics Reviews, 2021. 8(2): p. 021305.
245. Kunwar, S., S. Pandit, J.-H. Jeong, and J. Lee, Improved Photoresponse of UV Photodetectors by the Incorporation of Plasmonic Nanoparticles on GaN Through the Resonant Coupling of Localized Surface Plasmon Resonance. Nano-Micro Letters, 2020. 12(1): p. 91.
246. Samukawa, S., M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T.J. Sommerer, M.J. Kushner, U. Czarnetzki, and N. Mason, The 2012 Plasma Roadmap. Journal of Physics D: Applied Physics, 2012. 45(25): p. 253001.
247. Lee, Y., J. Kwon, E. Hwang, C.H. Ra, W.J. Yoo, J.H. Ahn, J.H. Park, and J.H. Cho, High-performance perovskite-graphene hybrid photodetector. Adv Mater, 2015. 27(1): p. 41-6.
248. Geng, X., P. Zhang, J. Ren, G.-H. Dun, Y. Li, J. Jin, C. Wang, X. Wu, D. Xie, H. Tian, Y. Yang, and T.-L. Ren, Directly integrated mixed-dimensional van der Waals graphene/perovskite heterojunction for fast photodetection. InfoMat, 2022. n/a(n/a): p. e12347.
249. Hong, Q., Y. Cao, J. Xu, H. Lu, J. He, and J.-L. Sun, Self-Powered Ultrafast Broadband Photodetector Based on p–n Heterojunctions of CuO/Si Nanowire Array. ACS Applied Materials & Interfaces, 2014. 6(23): p. 20887-20894.
250. Butanovs, E., S. Vlassov, A. Kuzmin, S. Piskunov, J. Butikova, and B. Polyakov, Fast-Response Single-Nanowire Photodetector Based on ZnO/WS2 Core/Shell Heterostructures. ACS Applied Materials & Interfaces, 2018. 10(16): p. 13869-13876.
251. Ghamgosar, P., F. Rigoni, M.G. Kohan, S. You, E.A. Morales, R. Mazzaro, V. Morandi, N. Almqvist, I. Concina, and A. Vomiero, Self-Powered Photodetectors Based on Core–Shell ZnO–Co3O4 Nanowire Heterojunctions. ACS Applied Materials & Interfaces, 2019. 11(26): p. 23454-23462.
252. Sheehan, S.W., H. Noh, G.W. Brudvig, H. Cao, and C.A. Schmuttenmaer, Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core–Shell–Shell Nanostructures. The Journal of Physical Chemistry C, 2013. 117(2): p. 927-934.
253. Kumar, P.N., M. Deepa, and P. Ghosal, Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2015. 7(24): p. 13303-13313.
254. Ghahremanirad, E., S. Olyaee, B.A. Nejand, P. Nazari, V. Ahmadi, and K. Abedi, Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Solar Energy, 2018. 169: p. 498-504.
255. Mali, S.S., C.S. Shim, H. Kim, P.S. Patil, and C.K. Hong, In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale, 2016. 8(5): p. 2664-2677.
256. Mao, C.-H., A. Dubey, F.-J. Lee, C.-Y. Chen, S.-Y. Tang, A. Ranjan, M.-Y. Lu, Y.-L. Chueh, S. Gwo, and T.-J. Yen, An Ultrasensitive Gateless Photodetector Based on the 2D Bilayer MoS2–1D Si Nanowire–0D Ag Nanoparticle Hybrid Structure. ACS Applied Materials & Interfaces, 2021. 13(3): p. 4126-4132.
257. Yan, C., C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li, and Y. Liu, Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals. Chemical Communications, 2012. 48(20): p. 2603-2605.
258. Lu, X., Z. Zhuang, Q. Peng, and Y. Li, Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chemical Communications, 2011. 47(11): p. 3141-3143.
259. Yuan, S., S. Wang, L. Li, Y.-h. Zhu, X.-b. Zhang, and J.-m. Yan, Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2016. 8(14): p. 9178-9184.
260. Massicotte, M., G. Soavi, A. Principi, and K.-J. Tielrooij, Hot carriers in graphene – fundamentals and applications. Nanoscale, 2021. 13(18): p. 8376-8411.
261. Pataniya, P.M. and C.K. Sumesh, WS2 Nanosheet/Graphene Heterostructures for Paper-Based Flexible Photodetectors. ACS Applied Nano Materials, 2020. 3(7): p. 6935-6944.
262. Yao, J., Z. Zheng, and G. Yang, Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering. ACS Applied Materials & Interfaces, 2016. 8(20): p. 12915-12924.
263. Peng, M., X. Xie, H. Zheng, Y. Wang, Q. Zhuo, G. Yuan, W. Ma, M. Shao, Z. Wen, and X. Sun, PbS Quantum Dots/2D Nonlayered CdSxSe1–x Nanosheet Hybrid Nanostructure for High-Performance Broadband Photodetectors. ACS Applied Materials & Interfaces, 2018. 10(50): p. 43887-43895.
264. Tang, M., P. Xu, Z. Wen, X. Chen, C. Pang, X. Xu, C. Meng, X. Liu, H. Tian, N. Raghavan, and Q. Yang, Fast response CdS-CdSxTe1−x-CdTe core-shell nanobelt photodetector. Science Bulletin, 2018. 63(17): p. 1118-1124.
265. Wu, F., H. Tian, Y. Shen, Z. Hou, J. Ren, G. Gou, Y. Sun, Y. Yang, and T.-L. Ren, Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022. 603(7900): p. 259-264.
266. Cheng, R., D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes. Nano Letters, 2014. 14(10): p. 5590-5597.
267. Lee, C.-H., G.-H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, and P. Kim, Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotechnology, 2014. 9(9): p. 676-681.
268. Gonzalez Marin, J.F., D. Unuchek, K. Watanabe, T. Taniguchi, and A. Kis, MoS2 photodetectors integrated with photonic circuits. npj 2D Materials and Applications, 2019. 3(1): p. 14.
269. Flöry, N., P. Ma, Y. Salamin, A. Emboras, T. Taniguchi, K. Watanabe, J. Leuthold, and L. Novotny, Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nature Nanotechnology, 2020. 15(2): p. 118-124.
270. Li, Z., S. Hu, Q. Zhang, R. Tian, L. Gu, Y. Zhu, Q. Yuan, R. Yi, C. Li, Y. Liu, Y. Hao, X. Gan, and J. Zhao, Telecom-Band Waveguide-Integrated MoS2 Photodetector Assisted by Hot Electrons. ACS Photonics, 2022. 9(1): p. 282-289.
271. Butun, S., S. Tongay, and K. Aydin, Enhanced Light Emission from Large-Area Monolayer MoS2 Using Plasmonic Nanodisc Arrays. Nano Letters, 2015. 15(4): p. 2700-2704.
272. Miao, J., W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. Small, 2015. 11(20): p. 2392-2398.
273. Abid, I., A. Bohloul, S. Najmaei, C. Avendano, H.L. Liu, R. Péchou, A. Mlayah, and J. Lou, Resonant surface plasmon–exciton interaction in hybrid MoSe2@Au nanostructures. Nanoscale, 2016. 8(15): p. 8151-8159.
274. Petrić, M.M., M. Kremser, M. Barbone, A. Nolinder, A. Lyamkina, A.V. Stier, M. Kaniber, K. Müller, and J.J. Finley, Tuning the Optical Properties of a MoSe2 Monolayer Using Nanoscale Plasmonic Antennas. Nano Letters, 2022. 22(2): p. 561-569.
275. Shan, H., Y. Yu, X. Wang, Y. Luo, S. Zu, B. Du, T. Han, B. Li, Y. Li, J. Wu, F. Lin, K. Shi, B.K. Tay, Z. Liu, X. Zhu, and Z. Fang, Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light: Science & Applications, 2019. 8(1): p. 9.
276. Li, J., Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna. Scientific Reports, 2016. 6(1): p. 23626.
277. Li, Y., J.G. DiStefano, A.A. Murthy, J.D. Cain, E.D. Hanson, Q. Li, F.C. Castro, X. Chen, and V.P. Dravid, Superior Plasmonic Photodetectors Based on Au@MoS2 Core–Shell Heterostructures. ACS Nano, 2017. 11(10): p. 10321-10329.
278. Kumar, R., A. Sharma, M. Kaur, and S. Husale, Pt-Nanostrip-Enabled Plasmonically Enhanced Broad Spectral Photodetection in Bilayer MoS2. Advanced Optical Materials, 2017. 5(9): p. 1700009.
279. Li, G., Y. Song, S. Feng, L. Feng, Z. Liu, B. Leng, Z. Fu, J. Li, X. Jiang, B. Liu, and X. Zhang, Improved Optoelectronic Performance of MoS2 Photodetector via Localized Surface Plasmon Resonance Coupling of Double-Layered Au Nanoparticles with Sandwich Structure. ACS Applied Electronic Materials, 2022. 4(4): p. 1626-1632.
280. Jin, R., Y. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and J.G. Zheng, Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science, 2001. 294(5548): p. 1901-1903.
281. Chen, W., J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, D. Shi, X. Lin, J. Guo, X. Bai, and G. Zhang, Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2. Journal of the American Chemical Society, 2015. 137(50): p. 15632-15635.
282. Wang, Q., N. Li, J. Tang, J. Zhu, Q. Zhang, Q. Jia, Y. Lu, Z. Wei, H. Yu, Y. Zhao, Y. Guo, L. Gu, G. Sun, W. Yang, R. Yang, D. Shi, and G. Zhang, Wafer-Scale Highly Oriented Monolayer MoS2 with Large Domain Sizes. Nano Letters, 2020. 20(10): p. 7193-7199.
283. Ma, D., J. Shi, Q. Ji, K. Chen, J. Yin, Y. Lin, Y. Zhang, M. Liu, Q. Feng, X. Song, X. Guo, J. Zhang, Y. Zhang, and Z. Liu, A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015. 8(11): p. 3662-3672.
284. Liu, K.-K., W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Letters, 2012. 12(3): p. 1538-1544.
285. Lee, Y.-H., X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
286. Liang, L. and V. Meunier, First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale, 2014. 6(10): p. 5394-5401.
287. Seo, D.-B., T.N. Trung, D.-O. Kim, D.V. Duc, S. Hong, Y. Sohn, J.-R. Jeong, and E.-T. Kim, Plasmonic Ag-Decorated Few-Layer MoS2 Nanosheets Vertically Grown on Graphene for Efficient Photoelectrochemical Water Splitting. Nano-Micro Letters, 2020. 12(1): p. 172.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *