帳號:guest(3.144.250.160)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳澍齊
作者(外文):Wu, Shu-Chi
論文名稱(中文):新穎轉化型可充式鋁離子電極材料之研究
論文名稱(外文):Novel Conversion-type Electrode Materials for Rechargeable Aluminum Ion Batteries
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員(中文):黃炳照
張仍奎
吳恆良
葉哲寧
口試委員(外文):Hwang, Bing-Joe
Chang, Jeng-Kuei
Wu, Heng-Liang
Yeh, Che-Ning
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031802
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:158
中文關鍵詞:鋁離子電池正極材料轉化型電極三維結構深共晶電解液多碘化物錨定
外文關鍵詞:aluminum ion batteriescathode materialsconversion-type electrodesthree-dimensional structuredeep eutectic solventspolyiodide anchoring
相關次數:
  • 推薦推薦:0
  • 點閱點閱:168
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鋁離子電池具有成本低、鋁元素豐度高、無毒、安全(金屬鋁負極反應過程中不會產生支狀晶)等優勢,已成為替代鋰離子電池的下一代可充電電池的有希望的候選者。目前眾多研究者主要以石墨體系陰極為研究對象,石墨優點為價格便宜且倍率性能。但石墨電極的電容量和能量密度不足。另一種體系為使用轉化型材料作為陰極,轉化型材料具有高理論容量和能量密度,但其容量衰減快、循環性能差等問題。因此,轉化型電池正極材料需要近一步研究探索與改善。
在本論文中,透過三種策略來改善轉化型電極材料問題,包含: (1)結構設計: 利用傾斜角沉積技術和低溫等離子體輔助硒化工藝開發三維螺旋棒陣列結構的二硒化鉬正極,該製程避免使用粘結劑可有效避免電池中的副反應對整體性能影響,此外該電池優異性能表現可歸因於螺旋棒陣列結構,有利於增加電化學活性位點並加快電子傳輸;(2) 電解液設計: 鋁硒電池中硒正極與離子液體搭配使用會引發容量快速衰減,循環性能差問題,透過引入新型的深共晶溶劑作為電解液,該電解液不會產生副反應,可有效穩定電池反應進而提升循環性能;(3) 電極設計: 在有機鹵素鈣鈦礦-鋁電池體系中,正極材料中的碘在電池充放電過程中會產生大量多碘化物,引發嚴重的穿梭效應造成電池容量急速衰退,透過在有機鹵素鈣鈦礦正極中引入長鏈烷基胺,可有效錨定多碘化物抑制穿梭效應,進而提升電池壽命。總之,本論文從三個方向來改善轉化型材料缺點包含結構設計、電解液設計與電極設計,提高電池正極電化學反應效率,有效利用活性物質,減少副反應與穩定反應過程,進而提升電池性能,為新型儲能電池的下一步發展提供重要參考。
Rechargeable aluminum-ion batteries (AIBs) have developed rapidly as a promising candidate for next-generation rechargeable batteries to replace Li-ion batteries (LIBs) due to the very low cost and high abundance of aluminum (1.5 wt % in the Earth’s crust), nontoxic, a high specific capacity (Al 2980 mAh g–1, 8063 mAh cm–3), and safety (reversible dendrite-free deposition). Until now, researchers have focused on graphite-based cathode materials with the advantage of low cost and high-rate ability. However, the specific capacity and energy density of graphite-based cathode is insufficient. On the other hand, the conversion-type cathode materials have been reported in AIBs, which be expected to achieve high theoretical capacity and energy density. Nevertheless, the conversion-type materials have some critical issues still need to be resolve, including fast cycle fading and unstable long term cycling ability. Therefore, it is necessary to explore new strategies to overcome cycle fading and enhance long-term stability for conversion-type cathode materials.
In this thesis, three kinds of strategies are used to overcome the critical issue of conversion- type materials, including: (1) Structure design: A three-dimensional helical rod array structure of molybdenum diselenide was developed by using glancing angle deposition technology and low-temperature plasma-assisted selenization process. The process avoids the side reaction owing to binders-free, and helical nanorod arrays can increase the specific surface area and shorten the diffusion channel of the electric charges; (2) Electrolyte design: the rechargeable aluminum selenium battery with the ionic liquid demonstrates rapid capacity fading and poor cycle performance. Through introducing a new type of deep eutectic solvent as the electrolyte, which can effectively stabilize the battery reaction and improve the cycle performance; (3) Electrode design: the rechargeable aluminum-organic-inorganic halide perovskite battery with the ionic liquid exhibit serve capacity fading, owing to shuttle effect of polyiodides. The introduction of long-chain alkylamines in cathode can anchor polyiodides, leading to enhance battery cycling life. We propose these three strategies to improve the shortcomings of conversion materials, improve the electrochemical reaction efficiency of battery cathodes, effectively utilize active materials, and improve battery performance, providing important references for the next development of new energy storage batteries.
Abstract in Chinese i
Abstract ii
Acknowledgements iv
Chapter 1 Introduction 1
1.1 Introduction to aluminum ion batteries 1
1.2 Energy Storage Mechanism 3
1.2.1 Intercalation of AlCl4- Anions Mechanism 3
1.2.2 Intercalation of Al3+ Cations Mechanism 6
1.2.3 Conversion Mechanism 9
1.3 Novel Conversion-Type Electrode 11
1.3.1 Chalcogen Materials 11
1.3.2 Halogen Materials 17
1.3.3 Halide Perovskite Materials 21
1.4 Nonaqueous Electrolyte 25
1.4.1 Ionic liquid 25
1.4.2 Deep Eutectic Solvents 27
1.5 Material analysis method and technology 32
1.5.1 Raman Spectroscopy 32
1.5.2 X-ray Photoelectron Spectroscopy (XPS) 33
1.5.3 X-ray Diffraction (XRD) 34
1.5.4 Scanning Electron Spectroscopy (SEM) 35
1.5.5 Transmission Electron Microscopy (HR-TEM) 36
1.5.6 Coin cell testing system (LANHE CT2001A) 37
1.5.7 Potentiostat and Electrochemical Impedance Spectroscopy 38
1.6 Motivation 39
1.6 Overview of the Dissertation 40
Chapter 2 Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries 43
2.1 Methods 43
2.1.1 Glancing Angle Deposition 43
2.1.2 Low-Temperature Plasma-Assisted Selenization 43
2.1.3 Material Characterization 44
2.1.4 Cell Fabrication and Electrochemical Tests 44
2.1.5 Ex Situ Characterization 45
2.2 Results and Discussion 46
2.2.1 Schematic illustration of the MoSe2 HNRAs toward AIBs. 46
2.2.2 Characterizations of the as-grown MoSe2 HNRAs 49
2.2.3 Electrochemical performance of MoSe2 HNRA-based AIBs 54
2.2.4 Ex situ characterization of MoSe2 HNRAs in AIBs at different discharge and charge status. 61
2.3 Summary 69
Chapter 3 High-Performance Rechargeable Aluminum–Selenium Battery with a New Deep Eutectic Solvent Electrolyte: Thiourea-AlCl3 70
3.1 Methods 70
3.1.1 Materials 70
3.1.2 Growth of Se Nanowires by Selenization 70
3.1.3 Preparation of Thiourea-AlCl3 Electrolyte 71
3.1.4 Preparation of EMIC-AlCl3 Electrolyte 71
3.1.5 Electrolyte Characterization 71
3.1.6 Electrochemical Measurements 71
3.1.7 Ex Situ Battery Measurements 72
3.2 Results and Discussion 73
3.2.1 Characterizations of Se NWs@CC 73
3.2.2 Electrolyte speciation studies of Thiourea-AlCl3 Electrolyte 78
3.2.3 Electrochemical performance of Al-Se batteries 80
3.2.4 Al–Se batteries using the EMIC- and thiourea-based electrolyte. 87
3.2.5 Ex situ measurements of Al–Se batteries 91
3.3 Summary 98
Chapter 4 Long-Chain Alkylammonium Organic–Inorganic Hybrid Perovskite for High Performance Rechargeable Aluminon-ion Battery 99
4.1 Methods 99
4.1.1 Materials 99
4.1.2 Synthesis of perovskites 99
4.1.3 Preparation of EMIC(1-ethyl-3-methylimidazolium chloride)-AlCl3 electrolyte 100
4.1.4 Material characterization 100
4.1.5 Electrochemical measurements 101
4.1.6 Ex-situ battery measurements 101
4.1.7 Computational details 101
4.2 Results and Discussion 103
4.2.1 Characterization of LCA perovskite/Al battery 103
4.2.2 Electrochemical performance of LCA perovskite/Al battery 109
4.2.3 Kinetic studies of the LCA perovskite/Al battery. 122
4.2.4 Ex-situ measurements of the LCA perovskite/Al battery. 125
4.2.5 DFT calculation I3- absorption energy 138
4.3 Summary 143
Chapter 5 Conclusion 144
Chapter 6 Future Prospective 145
Chapter 7 Reference 147

1. Tu, J.; Song, W.-L.; Lei, H.; Yu, Z.; Chen, L.-L.; Wang, M.; Jiao, S., Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chemical Reviews 2021, 121 (8), 4903-4961.
2. Li, Q.; Bjerrum, N. J., Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources 2002, 110 (1), 1-10.
3. Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R.; Knipping, E.; Peters, W.; Drillet, J.-F.; Passerini, S.; Hahn, R., An Overview and Future Perspectives of Aluminum Batteries. Advanced Materials 2016, 28 (35), 7564-7579.
4. Lin, M.-C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.-Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.-J.; Dai, H., An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520 (7547), 324-328.
5. Wang, S.; Kravchyk, K. V.; Krumeich, F.; Kovalenko, M. V., Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride–Graphite Battery. ACS Applied Materials & Interfaces 2017, 9 (34), 28478-28485.
6. Angell, M.; Pan, C.-J.; Rong, Y.; Yuan, C.; Lin, M.-C.; Hwang, B.-J.; Dai, H., High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proceedings of the National Academy of Sciences 2017, 114 (5), 834-839.
7. Zhang, L.; Chen, L.; Luo, H.; Zhou, X.; Liu, Z., Large-Sized Few-Layer Graphene Enables an Ultrafast and Long-Life Aluminum-Ion Battery. Advanced Energy Materials 2017, 7 (15), 1700034.
8. Stadie, N. P.; Wang, S.; Kravchyk, K. V.; Kovalenko, M. V., Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries. ACS Nano 2017, 11 (2), 1911-1919.
9. Hudak, N. S., Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries. The Journal of Physical Chemistry C 2014, 118 (10), 5203-5215.
10. Liao, Y.; Wang, D.; Li, X.; Tian, S.; Hu, H.; Kong, D.; Cai, T.; Dai, P.; Ren, H.; Hu, H.; Li, Y.; Xue, Q.; Yan, Z.; Gao, X.; Xing, W., High performance aluminum ion battery using polyaniline/ordered mesoporous carbon composite. Journal of Power Sources 2020, 477, 228702.
11. Walter, M.; Kravchyk, K. V.; Böfer, C.; Widmer, R.; Kovalenko, M. V., Polypyrenes as High-Performance Cathode Materials for Aluminum Batteries. Advanced Materials 2018, 30 (15), 1705644.
12. Chiku, M.; Takeda, H.; Matsumura, S.; Higuchi, E.; Inoue, H., Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery. ACS Applied Materials & Interfaces 2015, 7 (44), 24385-24389.
13. Kaveevivitchai, W.; Huq, A.; Wang, S.; Park, M. J.; Manthiram, A., Rechargeable Aluminum-Ion Batteries Based on an Open-Tunnel Framework. Small 2017, 13 (34), 1701296.
14. Mei, L.; Xu, J.; Wei, Z.; Liu, H.; Li, Y.; Ma, J.; Dou, S., Chevrel Phase Mo6T8 (T = S, Se) as Electrodes for Advanced Energy Storage. Small 2017, 13 (34), 1701441.
15. Geng, L.; Scheifers, J. P.; Fu, C.; Zhang, J.; Fokwa, B. P. T.; Guo, J., Titanium Sulfides as Intercalation-Type Cathode Materials for Rechargeable Aluminum Batteries. ACS Applied Materials & Interfaces 2017, 9 (25), 21251-21257.
16. Ai, Y.; Wu, S.-C.; Wang, K.; Yang, T.-Y.; Liu, M.; Liao, H.-J.; Sun, J.; Chen, J.-H.; Tang, S.-Y.; Wu, D. C.; Su, T.-Y.; Wang, Y.-C.; Chen, H.-C.; Zhang, S.; Liu, W.-W.; Chen, Y.-Z.; Lee, L.; He, J.-H.; Wang, Z. M.; Chueh, Y.-L., Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries. ACS Nano 2020, 14 (7), 8539-8550.
17. Yang, W.; Lu, H.; Cao, Y.; Xu, B.; Deng, Y.; Cai, W., Flexible Free-Standing MoS2/Carbon Nanofibers Composite Cathode for Rechargeable Aluminum-Ion Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (5), 4861-4867.
18. Suto, K.; Nakata, A.; Murayama, H.; Hirai, T.; Yamaki, J.-i.; Ogumi, Z., Electrochemical Properties of Al/Vanadium Chloride Batteries with AlCl3-1-Ethyl-3-methylimidazolium Chloride Electrolyte. Journal of The Electrochemical Society 2016, 163 (5), A742-A747.
19. Wang, S.; Yu, Z.; Tu, J.; Wang, J.; Tian, D.; Liu, Y.; Jiao, S., A Novel Aluminum-Ion Battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene. Advanced Energy Materials 2016, 6 (13), 1600137.
20. Liu, T.; Lv, G.; Liu, M.; Zhao, C.; Liao, L.; Liu, H.; Shi, J.; Zhang, J.; Guo, J., Cation-intercalation and conversion-type cathode materials for rechargeable aluminum batteries. Materials Chemistry Frontiers 2022, 6 (3), 280-296.
21. Cai, T.; Zhao, L.; Hu, H.; Li, T.; Li, X.; Guo, S.; Li, Y.; Xue, Q.; Xing, W.; Yan, Z.; Wang, L., Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy & Environmental Science 2018, 11 (9), 2341-2347.
22. Yu, X.; Manthiram, A., Electrochemical Energy Storage with a Reversible Nonaqueous Room-Temperature Aluminum–Sulfur Chemistry. Advanced Energy Materials 2017, 7 (18), 1700561.
23. Cohn, G.; Ma, L.; Archer, L. A., A novel non-aqueous aluminum sulfur battery. Journal of Power Sources 2015, 283, 416-422.
24. Huang, X.; Liu, Y.; Liu, C.; Zhang, J.; Noonan, O.; Yu, C., Rechargeable aluminum–selenium batteries with high capacity. Chemical Science 2018, 9 (23), 5178-5182.
25. Jiao, H.; Tian, D.; Li, S.; Fu, C.; Jiao, S., A Rechargeable Al–Te Battery. ACS Applied Energy Materials 2018, 1 (9), 4924-4930.
26. Zhang, X.; Jiao, S.; Tu, J.; Song, W.-L.; Xiao, X.; Li, S.; Wang, M.; Lei, H.; Tian, D.; Chen, H.; Fang, D., Rechargeable ultrahigh-capacity tellurium–aluminum batteries. Energy & Environmental Science 2019, 12 (6), 1918-1927.
27. Hong, X.; Mei, J.; Wen, L.; Tong, Y.; Vasileff, A. J.; Wang, L.; Liang, J.; Sun, Z.; Dou, S. X., Nonlithium Metal–Sulfur Batteries: Steps Toward a Leap. Advanced Materials 2019, 31 (5), 1802822.
28. Peramunage, D.; Dillon, R.; Licht, S., Investigation of a novel aqueous aluminum/sulfur battery. Journal of Power Sources 1993, 45 (3), 311-323.
29. Yang, H.; Yin, L.; Liang, J.; Sun, Z.; Wang, Y.; Li, H.; He, K.; Ma, L.; Peng, Z.; Qiu, S.; Sun, C.; Cheng, H.-M.; Li, F., An Aluminum–Sulfur Battery with a Fast Kinetic Response. Angewandte Chemie International Edition 2018, 57 (7), 1898-1902.
30. Shkrob, I. A.; Marin, T. W.; Crowell, R. A.; Wishart, J. F., Photo- and Radiation-Chemistry of Halide Anions in Ionic Liquids. The Journal of Physical Chemistry A 2013, 117 (28), 5742-5756.
31. Abouimrane, A.; Dambournet, D.; Chapman, K. W.; Chupas, P. J.; Weng, W.; Amine, K., A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium–Sulfur as a Positive Electrode. Journal of the American Chemical Society 2012, 134 (10), 4505-4508.
32. Marassi, R.; Mamantov, G.; Chambers, J. Q., Electrochemical behavior of iodine, sulfur and selenium in AlCl3NaCl melts. Inorganic and Nuclear Chemistry Letters 1975, 11 (4), 245-252.
33. Tian, H.; Zhang, S.; Meng, Z.; He, W.; Han, W.-Q., Rechargeable Aluminum/Iodine Battery Redox Chemistry in Ionic Liquid Electrolyte. ACS Energy Letters 2017, 2 (5), 1170-1176.
34. Zhang, C.; Ding, Y.; Zhang, L.; Wang, X.; Zhao, Y.; Zhang, X.; Yu, G., A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte. Angewandte Chemie International Edition 2017, 56 (26), 7454-7459.
35. Yang, S.; Li, C.; Lv, H.; Guo, X.; Wang, Y.; Han, C.; Zhi, C.; Li, H., High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry. Small Methods 2021, 5 (10), 2100611.
36. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136 (2), 622-625.
37. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
38. Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H.-Y.; Nam, K. T., Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy 2016, 2 (1), 16185.
39. Guo, Y.; Liu, C.; Tanaka, H.; Nakamura, E., Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. The Journal of Physical Chemistry Letters 2015, 6 (3), 535-539.
40. Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; Li, J.; Xie, X.; Wang, Y.; Li, Y.; Fan, D.; Teh, D. B. L.; All, A. H.; Mohammed, O. F.; Bakr, O. M.; Wu, T.; Bettinelli, M.; Yang, H.; Huang, W.; Liu, X., All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561 (7721), 88-93.
41. Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology 2014, 9 (9), 687-692.
42. Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials 2015, 14 (6), 636-642.
43. Yoo, E. J.; Lyu, M.; Yun, J.-H.; Kang, C. J.; Choi, Y. J.; Wang, L., Resistive Switching Behavior in Organic–Inorganic Hybrid CH3NH3PbI3−xClx Perovskite for Resistive Random Access Memory Devices. Advanced Materials 2015, 27 (40), 6170-6175.
44. Vicente, N.; Garcia-Belmonte, G., Organohalide Perovskites are Fast Ionic Conductors. Advanced Energy Materials 2017, 7 (19), 1700710.
45. Xia, H.-R.; Sun, W.-T.; Peng, L.-M., Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chemical Communications 2015, 51 (72), 13787-13790.
46. Dawson, J. A.; Naylor, A. J.; Eames, C.; Roberts, M.; Zhang, W.; Snaith, H. J.; Bruce, P. G.; Islam, M. S., Mechanisms of Lithium Intercalation and Conversion Processes in Organic–Inorganic Halide Perovskites. ACS Energy Letters 2017, 2 (8), 1818-1824.
47. Tathavadekar, M.; Krishnamurthy, S.; Banerjee, A.; Nagane, S.; Gawli, Y.; Suryawanshi, A.; Bhat, S.; Puthusseri, D.; Mohite, A. D.; Ogale, S., Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries. Journal of Materials Chemistry A 2017, 5 (35), 18634-18642.
48. Ramirez, D.; Suto, Y.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K.; Jaramillo, F., Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation. Inorganic Chemistry 2018, 57 (7), 4181-4188.
49. Wang, Q.; Yang, T.; Wang, H.; Zhang, J.; Guo, X.; Yang, Z.; Lu, S.; Qin, W., Morphological and chemical tuning of lead halide perovskite mesocrystals as long-life anode materials in lithium-ion batteries. CrystEngComm 2019, 21 (6), 1048-1059.
50. Liang, Y.; Dong, H.; Aurbach, D.; Yao, Y., Current status and future directions of multivalent metal-ion batteries. Nature Energy 2020, 5 (9), 646-656.
51. Zhang, Y.; Liu, S.; Ji, Y.; Ma, J.; Yu, H., Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives. Advanced Materials 2018, 30 (38), 1706310.
52. Ferrara, C.; Dall’Asta, V.; Berbenni, V.; Quartarone, E.; Mustarelli, P., Physicochemical Characterization of AlCl3–1-Ethyl-3-methylimidazolium Chloride Ionic Liquid Electrolytes for Aluminum Rechargeable Batteries. The Journal of Physical Chemistry C 2017, 121 (48), 26607-26614.
53. Xu, H.; Bai, T.; Chen, H.; Guo, F.; Xi, J.; Huang, T.; Cai, S.; Chu, X.; Ling, J.; Gao, W.; Xu, Z.; Gao, C., Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy Storage Materials 2019, 17, 38-45.
54. Abood, H. M. A.; Abbott, A. P.; Ballantyne, A. D.; Ryder, K. S., Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+AlCl4− and comparison with imidazolium based systems. Chemical Communications 2011, 47 (12), 3523-3525.
55. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications 2001, (19), 2010-2011.
56. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews 2014, 114 (21), 11060-11082.
57. Jiao, H.; Wang, C.; Tu, J.; Tian, D.; Jiao, S., A rechargeable Al-ion battery: Al/molten AlCl3–urea/graphite. Chemical Communications 2017, 53 (15), 2331-2334.
58. Angell, M.; Zhu, G.; Lin, M.-C.; Rong, Y.; Dai, H., Ionic Liquid Analogs of AlCl3 with Urea Derivatives as Electrolytes for Aluminum Batteries. Advanced Functional Materials 2020, 30 (4), 1901928.
59. Chu, W.; Zhang, X.; Wang, J.; Zhao, S.; Liu, S.; Yu, H., A low-cost deep eutectic solvent electrolyte for rechargeable aluminum-sulfur battery. Energy Storage Materials 2019, 22, 418-423.
60. Qu, Y.; Medina, H.; Wang, S.-W.; Wang, Y.-C.; Chen, C.-W.; Su, T.-Y.; Manikandan, A.; Wang, K.; Shih, Y.-C.; Chang, J.-W.; Kuo, H.-C.; Lee, C.-Y.; Lu, S.-Y.; Shen, G.; Wang, Z. M.; Chueh, Y.-L., Wafer Scale Phase-Engineered 1T- and 2H-MoSe2/Mo Core–Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials 2016, 28 (44), 9831-9838.
61. Shi, Y.; Hua, C.; Li, B.; Fang, X.; Yao, C.; Zhang, Y.; Hu, Y.-S.; Wang, Z.; Chen, L.; Zhao, D.; Stucky, G. D., Highly Ordered Mesoporous Crystalline MoSe2 Material with Efficient Visible-Light-Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. Advanced Functional Materials 2013, 23 (14), 1832-1838.
62. Voiry, D.; Goswami, A.; Kappera, R.; Silva, C. d. C. C. e.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M., Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry 2015, 7 (1), 45-49.
63. Ambrosi, A.; Sofer, Z.; Pumera, M., 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chemical Communications 2015, 51 (40), 8450-8453.
64. Saadi, F. H.; Carim, A. I.; Velazquez, J. M.; Baricuatro, J. H.; McCrory, C. C. L.; Soriaga, M. P.; Lewis, N. S., Operando Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction. ACS Catalysis 2014, 4 (9), 2866-2873.
65. Wang, S.; Jiao, S.; Wang, J.; Chen, H.-S.; Tian, D.; Lei, H.; Fang, D.-N., High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. ACS Nano 2017, 11 (1), 469-477.
66. Toprakci, O.; Toprakci, H. A. K.; Li, Y.; Ji, L.; Xue, L.; Lee, H.; Zhang, S.; Zhang, X., Synthesis and characterization of xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources 2013, 241, 522-528.
67. Zhang, X.; Wang, S.; Tu, J.; Zhang, G.; Li, S.; Tian, D.; Jiao, S., Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries. ChemSusChem 2018, 11 (4), 709-715.
68. Wang, W.; Li, P.; Zheng, H.; Liu, Q.; Lv, F.; Wu, J.; Wang, H.; Guo, S., Ultrathin Layered SnSe Nanoplates for Low Voltage, High-Rate, and Long-Life Alkali–Ion Batteries. Small 2017, 13 (46), 1702228.
69. Liu, S.; Zhang, X.; He, S.; Tang, Y.; Wang, J.; Wang, B.; Zhao, S.; Su, H.; Ren, Y.; Zhang, L.; Huang, J.; Yu, H.; Amine, K., An advanced high energy-efficiency rechargeable aluminum-selenium battery. Nano Energy 2019, 66, 104159.
70. Wu, S.-C.; Ai, Y.; Chen, Y.-Z.; Wang, K.; Yang, T.-Y.; Liao, H.-J.; Su, T.-Y.; Tang, S.-Y.; Chen, C.-W.; Wu, D. C.; Wang, Y.-C.; Manikandan, A.; Shih, Y.-C.; Lee, L.; Chueh, Y.-L., High-Performance Rechargeable Aluminum–Selenium Battery with a New Deep Eutectic Solvent Electrolyte: Thiourea-AlCl3. ACS Applied Materials & Interfaces 2020, 12 (24), 27064-27073.
71. Zhang, B.-W.; Sheng, T.; Liu, Y.-D.; Wang, Y.-X.; Zhang, L.; Lai, W.-H.; Wang, L.; Yang, J.; Gu, Q.-F.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nature Communications 2018, 9 (1), 4082.
72. Hu, Z.; Zhu, Z.; Cheng, F.; Zhang, K.; Wang, J.; Chen, C.; Chen, J., Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy & Environmental Science 2015, 8 (4), 1309-1316.
73. Wang, D.-Y.; Wei, C.-Y.; Lin, M.-C.; Pan, C.-J.; Chou, H.-L.; Chen, H.-A.; Gong, M.; Wu, Y.; Yuan, C.; Angell, M.; Hsieh, Y.-J.; Chen, Y.-H.; Wen, C.-Y.; Chen, C.-W.; Hwang, B.-J.; Chen, C.-C.; Dai, H., Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature Communications 2017, 8 (1), 14283.
74. Chen, H.; Xu, H.; Wang, S.; Huang, T.; Xi, J.; Cai, S.; Guo, F.; Xu, Z.; Gao, W.; Gao, C., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Science Advances 3 (12), eaao7233.
75. Jayaprakash, N.; Das, S. K.; Archer, L. A., The rechargeable aluminum-ion battery. Chemical Communications 2011, 47 (47), 12610-12612.
76. Koketsu, T.; Ma, J.; Morgan, B. J.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortière, A.; Salanne, M.; Dardoize, F.; Groult, H.; Borkiewicz, O. J.; Chapman, K. W.; Strasser, P.; Dambournet, D., Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nature Materials 2017, 16 (11), 1142-1148.
77. Mori, T.; Orikasa, Y.; Nakanishi, K.; Kezheng, C.; Hattori, M.; Ohta, T.; Uchimoto, Y., Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C. Journal of Power Sources 2016, 313, 9-14.
78. Yu, Z.; Kang, Z.; Hu, Z.; Lu, J.; Zhou, Z.; Jiao, S., Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chemical Communications 2016, 52 (68), 10427-10430.
79. Geng, L.; Lv, G.; Xing, X.; Guo, J., Reversible Electrochemical Intercalation of Aluminum in Mo6S8. Chemistry of Materials 2015, 27 (14), 4926-4929.
80. Hu, Y.; Luo, B.; Ye, D.; Zhu, X.; Lyu, M.; Wang, L., An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS2 Cathode Active Material for Aluminum-Ion Batteries. Advanced Materials 2017, 29 (48), 1606132.
81. Hu, Y.; Ye, D.; Luo, B.; Hu, H.; Zhu, X.; Wang, S.; Li, L.; Peng, S.; Wang, L., A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries. Advanced Materials 2018, 30 (2), 1703824.
82. Li, Z.; Niu, B.; Liu, J.; Li, J.; Kang, F., Rechargeable Aluminum-Ion Battery Based on MoS2 Microsphere Cathode. ACS Applied Materials & Interfaces 2018, 10 (11), 9451-9459.
83. Zhao, Z.; Hu, Z.; Liang, H.; Li, S.; Wang, H.; Gao, F.; Sang, X.; Li, H., Nanosized MoSe2@Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions. ACS Applied Materials & Interfaces 2019, 11 (47), 44333-44341.
84. Robinson, J.; Gilbert, B.; Osteryoung, R. A., The acid-base chemistry of oxide and chalcogenide ions in sodium tetrachloroaluminate melts at 175. degree. C. Inorganic Chemistry 1977, 16 (12), 3040-3042.
85. Berg, R. W.; Von Winbush, S.; Bjerrum, N. J., Negative oxidation states of the chalcogens in molten salts. 1. Raman spectroscopic studies on aluminum chlorosulfides formed in chloride and chloroaluminate melts and some related solid and dissolved compounds. Inorganic Chemistry 1980, 19 (9), 2688-2698.
86. Hong, H.; Liu, J.; Huang, H.; Atangana Etogo, C.; Yang, X.; Guan, B.; Zhang, L., Ordered Macro–Microporous Metal–Organic Framework Single Crystals and Their Derivatives for Rechargeable Aluminum-Ion Batteries. Journal of the American Chemical Society 2019, 141 (37), 14764-14771.
87. Kim, J. K.; Park, G. D.; Kim, J. H.; Park, S.-K.; Kang, Y. C., Rational Design and Synthesis of Extremely Efficient Macroporous CoSe2–CNT Composite Microspheres for Hydrogen Evolution Reaction. Small 2017, 13 (27), 1700068.
88. Tsai, H.-S.; Liou, J.-W.; Wang, Y.-C.; Chen, C.-W.; Chueh, Y.-L.; Hsiao, C.-H.; Ouyang, H.; Woon, W.-Y.; Liang, J.-H., Vertical Al2Se3/MoSe2 heterojunction on sapphire synthesized using ion beam. RSC Advances 2017, 7 (17), 10154-10157.
89. Jiang, J.; Li, H.; Fu, T.; Hwang, B.-J.; Li, X.; Zhao, J., One-Dimensional Cu2–xSe Nanorods as the Cathode Material for High-Performance Aluminum-Ion Battery. ACS Applied Materials & Interfaces 2018, 10 (21), 17942-17949.
90. Ewels, P.; Sikora, T.; Serin, V.; Ewels, C. P.; Lajaunie, L., A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu. Microscopy and Microanalysis 2016, 22 (3), 717-724.
91. Lucovsky, G.; Mooradian, A.; Taylor, W.; Wright, G. B.; Keezer, R. C., Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium. Solid State Communications 1967, 5 (2), 113-117.
92. Coleman, F.; Srinivasan, G.; Swadźba-Kwaśny, M., Liquid Coordination Complexes Formed by the Heterolytic Cleavage of Metal Halides. Angewandte Chemie International Edition 2013, 52 (48), 12582-12586.
93. Li, X.; Li, Y.; Li, S.; Zhou, W.; Chu, H.; Chen, W.; Li, I. L.; Tang, Z., Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process. Crystal Growth & Design 2005, 5 (3), 911-916.
94. Hu, P.; Zhang, R.; Meng, X.; Liu, H.; Xu, C.; Liu, Z., Structural and Spectroscopic Characterizations of Amide–AlCl3-Based Ionic Liquid Analogues. Inorganic Chemistry 2016, 55 (5), 2374-2380.
95. Harris, R. K.; Mann, B. E., NMR and the Periodic Table. Academic Press: 1978.
96. Rodrigues, T. S.; Silva, V. H. C.; Lalli, P. M.; de Oliveira, H. C. B.; da Silva, W. A.; Coelho, F.; Eberlin, M. N.; Neto, B. A. D., Morita–Baylis–Hillman Reaction: ESI-MS(/MS) Investigation with Charge Tags and Ionic Liquid Effect Origin Revealed by DFT Calculations. The Journal of Organic Chemistry 2014, 79 (11), 5239-5248.
97. Gao, T.; Li, X.; Wang, X.; Hu, J.; Han, F.; Fan, X.; Suo, L.; Pearse, A. J.; Lee, S. B.; Rubloff, G. W.; Gaskell, K. J.; Noked, M.; Wang, C., A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte. Angewandte Chemie International Edition 2016, 55 (34), 9898-9901.
98. Bouroushian, M., Electrochemistry of metal chalcogenides. Springer Science & Business Media: 2010.
99. Chung, S.-H.; Manthiram, A., A Li2S-TiS2-Electrolyte Composite for Stable Li2S-Based Lithium–Sulfur Batteries. Advanced Energy Materials 2019, 9 (30), 1901397.
100. Rodríguez, H.; Gurau, G.; Holbrey, J. D.; Rogers, R. D., Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. Chemical Communications 2011, 47 (11), 3222-3224.
101. Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G., Are Ionic Liquids Chemically Stable? Chemical Reviews 2017, 117 (10), 7113-7131.
102. Steigmann, G.; Goodyear, J., The crystal structure of Al2Se3. Acta Crystallographica 1966, 20 (5), 617-619.
103. Robinson, J.; Osteryoung, R. A., The Electrochemical Behavior of Selenium and Selenium Compounds in Sodium Tetrachloroaluminate Melts. Journal of The Electrochemical Society 1978, 125 (9), 1454-1460.
104. Fehrmann, R.; Von Winbush, S.; Papatheodorou, G.; Berg, R. W.; Bjerrum, N., Negative oxidation states of chalcogens in molten salts. 2. Raman spectroscopic, spectrophotometric, and electron spin resonance studies on chloroaluminate solutions containing an S3-entity. Inorganic Chemistry 1982, 21 (9), 3396-3400.
105. Zeng, L.; Zeng, W.; Jiang, Y.; Wei, X.; Li, W.; Yang, C.; Zhu, Y.; Yu, Y., A Flexible Porous Carbon Nanofibers-Selenium Cathode with Superior Electrochemical Performance for Both Li-Se and Na-Se Batteries. Advanced Energy Materials 2015, 5 (4), 1401377.
106. Shenasa, M.; Sainkar, S.; Lichtman, D., XPS study of some selected selenium compounds. Journal of electron spectroscopy and related phenomena 1986, 40 (4), 329-337.
107. Lu, C.-Y.; Adams, J. A.; Yu, Q.; Ohta, T.; Olmstead, M. A.; Ohuchi, F. S., Heteroepitaxial growth of the intrinsic vacancy semiconductor Al 2 Se 3 on Si (111): Initial structure and morphology. Physical Review B 2008, 78 (7), 075321.
108. Jiang, Y.; Ma, X.; Feng, J.; Xiong, S., Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium–selenium batteries. Journal of Materials Chemistry A 2015, 3 (8), 4539-4546.
109. Zheng, C.; Liu, M.; Chen, W.; Zeng, L.; Wei, M., An in situ formed Se/CMK-3 composite for rechargeable lithium-ion batteries with long-term cycling performance. Journal of Materials Chemistry A 2016, 4 (35), 13646-13651.
110. Wu, F.; Zhu, N.; Bai, Y.; Gao, Y.; Wu, C., An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances. Green Energy & Environment 2018, 3 (1), 71-77.
111. Dong, R.; Lan, C.; Xu, X.; Liang, X.; Hu, X.; Li, D.; Zhou, Z.; Shu, L.; Yip, S.; Li, C.; Tsang, S.-W.; Ho, J. C., Novel Series of Quasi-2D Ruddlesden–Popper Perovskites Based on Short-Chained Spacer Cation for Enhanced Photodetection. ACS Applied Materials & Interfaces 2018, 10 (22), 19019-19026.
112. Liang, P.-W.; Chueh, C.-C.; Xin, X.-K.; Zuo, F.; Williams, S. T.; Liao, C.-Y.; Jen, A. K. Y., High-Performance Planar-Heterojunction Solar Cells Based on Ternary Halide Large-Band-Gap Perovskites. Advanced Energy Materials 2015, 5 (1), 1400960.
113. Nadege Ouedraogo, N. A.; Yang, M.; He, C.; Chen, Y.; Zhang, X.; Yan, H.; Han, C. B.; Zhang, Y., Influence of polytetrafluoroethylene (PTFE) on photovoltaic performance and perovskite solar cell stability. Sustainable Energy & Fuels 2020, 4 (8), 4257-4263.
114. Zhang, S.; Tan, X.; Meng, Z.; Tian, H.; Xu, F.; Han, W.-Q., Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. Journal of Materials Chemistry A 2018, 6 (21), 9984-9996.
115. Wang, F.-X.; Pan, G.-B.; Liu, Y.-D.; Xiao, Y., Pb deposition onto Au(111) from acidic chloroaluminate ionic liquid. Chemical Physics Letters 2010, 488 (4), 112-115.
116. Anicai, L.; Sin, I.; Brincoveanu, O.; Costovici, S.; Cotarta, A.; Cojocaru, A.; Enachescu, M.; Visan, T., Electrodeposition of lead selenide films from ionic liquids based on choline chloride. Applied Surface Science 2019, 475, 803-812.
117. Katayama, Y.; Fukui, R.; Miura, T., Electrodeposition of Lead from 1-butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide Ionic Liquid. Journal of The Electrochemical Society 2013, 160 (6), D251-D255.
118. Simons, T. J.; Pearson, A. K.; Pas, S. J.; MacFarlane, D. R., The electrochemical cycling and electrodeposition of lead from 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. Electrochimica Acta 2015, 174, 712-720.
119. Coleman, F.; Feng, G.; Murphy, R. W.; Nockemann, P.; Seddon, K. R.; Swadźba-Kwaśny, M., Lead(ii) chloride ionic liquids and organic/inorganic hybrid materials – a study of chloroplumbate(ii) speciation. Dalton Transactions 2013, 42 (14), 5025-5035.
120. Tewari, N.; Shivarudraiah, S. B.; Halpert, J. E., Photorechargeable Lead-Free Perovskite Lithium-Ion Batteries Using Hexagonal Cs3Bi2I9 Nanosheets. Nano Letters 2021, 21 (13), 5578-5585.
121. Ahmad, S.; George, C.; Beesley, D. J.; Baumberg, J. J.; De Volder, M., Photo-Rechargeable Organo-Halide Perovskite Batteries. Nano Letters 2018, 18 (3), 1856-1862.
122. Chao, L.; Niu, T.; Gu, H.; Yang, Y.; Wei, Q.; Xia, Y.; Hui, W.; Zuo, S.; Zhu, Z.; Pei, C.; Li, X.; Zhang, J.; Fang, J.; Xing, G.; Li, H.; Huang, X.; Gao, X.; Ran, C.; Song, L.; Fu, L.; Chen, Y.; Huang, W., Origin of High Efficiency and Long-Term Stability in Ionic Liquid Perovskite Photovoltaic. Research 2020, 2020, 2616345.
123. Chao, L.; Niu, T.; Xia, Y.; Chen, Y.; Huang, W., Ionic Liquid for Perovskite Solar Cells: An Emerging Solvent Engineering Technology. Accounts of Materials Research 2021, 2 (11), 1059-1070.
124. Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536 (7616), 312-316.
125. Cortecchia, D.; Neutzner, S.; Srimath Kandada, A. R.; Mosconi, E.; Meggiolaro, D.; De Angelis, F.; Soci, C.; Petrozza, A., Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. Journal of the American Chemical Society 2017, 139 (1), 39-42.
126. Zhang, X.; Zhang, G.; Wang, S.; Li, S.; Jiao, S., Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries. Journal of Materials Chemistry A 2018, 6 (7), 3084-3090.
127. Wu, S.-C.; Huang, Y.-H.; Liao, C.-R.; Tang, S.-Y.; Yang, T.-Y.; Wang, Y.-C.; Yu, Y.-J.; Perng, T.-P.; Chueh, Y.-L., Rational design of a polysulfide catholyte electrocatalyst by interfacial engineering based on novel MoS2/MoN heterostructures for superior room-temperature Na–S batteries. Nano Energy 2021, 90, 106590.
128. Li, H.; Yang, H.; Sun, Z.; Shi, Y.; Cheng, H.-M.; Li, F., A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy 2019, 56, 100-108.
129. Dhamaniya, B. P.; Chhillar, P.; Kumar, A.; Chandratre, K.; Mahato, S.; Ganesan, K. P.; Pathak, S. K., Orientation-Controlled (h0l) PbI2 Crystallites Using a Novel Pb–Precursor for Facile and Quick Sequential MAPbI3 Perovskite Deposition. ACS Omega 2020, 5 (48), 31180-31191.
130. Liang, Z.; Zhang, S.; Xu, X.; Wang, N.; Wang, J.; Wang, X.; Bi, Z.; Xu, G.; Yuan, N.; Ding, J., A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Advances 2015, 5 (74), 60562-60569.
131. Ledinský, M.; Löper, P.; Niesen, B.; Holovský, J.; Moon, S.-J.; Yum, J.-H.; De Wolf, S.; Fejfar, A.; Ballif, C., Raman Spectroscopy of Organic–Inorganic Halide Perovskites. The Journal of Physical Chemistry Letters 2015, 6 (3), 401-406.
132. Bertasi, F.; Sepehr, F.; Pagot, G.; Paddison, S. J.; Di Noto, V., Toward a Magnesium-Iodine Battery. Advanced Functional Materials 2016, 26 (27), 4860-4865.
133. Manteghetti, A.; Potier, A., Vibrational spectroscopy and normal coordinate analysis of μ halo hexahalodialuminates ions Al2X−7 (X = Cl, Br, I) in some salts and in Friedel-Crafts solutions. Spectrochimica Acta Part A: Molecular Spectroscopy 1982, 38 (2), 141-148.
134. Begun, G. M.; Boston, C. R.; Torsi, G.; Mamantov, G., Raman spectra of molten aluminum trihalide-alkali halide systems. Inorganic Chemistry 1971, 10 (5), 886-889.
135. Li, N.; Cheng, C.; Wei, H.; Liu, H.; Li, X.; Li, W.; Wang, L., Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances 2017, 7 (67), 42105-42112.
136. Ng, T.-W.; Chan, C.-Y.; Lo, M.-F.; Guan, Z. Q.; Lee, C.-S., Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. Journal of Materials Chemistry A 2015, 3 (17), 9081-9085.
137. Zhang, X.; Liu, C.; Ma, Y.; Shen, Y.; Li, H.; Chen, R.; Mai, Y., Study on the role of additional ions in CH3NH3PbI3−xClx planar solar cells. Solar Energy 2017, 148, 70-77.
138. Yu, L.; Liu, F.-C.; Fu, Z.-W., Electrochemical features of Al/I2 batteries in water and non-aqueous solution. Electrochimica Acta 2009, 54 (10), 2818-2822.
139. Ma, L.; Kim, M. S.; Archer, L. A., Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials 2017, 29 (10), 4181-4189.
140. Wang, J.; Li, Z.; Wang, Y.; Wei, C.; Ai, K.; Lu, L., Hydrogen bond-mediated strong adsorbent–I3− interactions enable high-efficiency radioiodine capture. Materials Horizons 2019, 6 (7), 1517-1525.

(此全文20271003後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *