帳號:guest(3.17.76.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):庫 廈
作者(外文):Bapna, Khushal
論文名稱(中文):非真空噴霧裂解製程技術製作地表多豐銅鋇錫硫硒太陽能電池
論文名稱(外文):Earth abundant CBTSSe solar cells by non-vacuum spray pyrolysis process
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):謝東坡
王志喨
口試委員(外文):Hsieh, Tung-Po
Wang, Chih-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031710
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:68
中文關鍵詞:太陽能電池非真空噴霧
外文關鍵詞:non-vacuumspray pyrolysisearth abundantsolar cellsCBTSCBTSSe
相關次數:
  • 推薦推薦:0
  • 點閱點閱:508
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於銅鋅錯位導致開路電壓無法上升的問題,使得效率超過12.6%的
地表多豐CZTSSe(銅鋅錫硫硒)太陽能電池是非常困難的。藉由其他地
表富有的元素且必須有更⼤的原⼦半徑來取代鋅或銅元素以利克服錯
位的問題,並更進⼀步提升開路電壓。在本研究中,我們以鋇取代鋅,
使之形成三⽅晶系的CBTSSe(銅鋇錫硫硒)太陽能電池,並且提出⼀
種簡單且製程成本低的非真空噴霧裂解製程來製備銅鋇錫硫硒太陽能
電池。
然⽽利⽤非真空⽔溶液製程製備CBTSSe的前驅層中會有不均勻性的
問題,肇因於鋇元素和氧元素具有親和⼒並且氯元素會抑制CBTSSe
相⽣成,我們改良噴霧熱裂解時的基板溫度以及在後續增加額外的烘
烤以克服上述等問題,在最後,我們成功使⽤非真空製成製備出效率
達到0.6%的CBTSSe太陽能電池。
Reaching efficiency more than 12.6% in earth-abundant CZTSSe(Copper Zinc
Tin Sulpho-selenide) solar cells is very challenging as Copper-Zinc disorder remains
the biggest barrier in reaching higher open-circuit voltage. Replacing either Zinc or
Copper by another earth-abundant element bigger in size can solve the disordering
issue and subsequently reach a higher open-circuit voltage. In this work, we
replace Zinc with Barium and form a promising trigonal structure earth-abundant
Cu2BaSn(S,Se)4 (CBTSSe) solar cells. Our work presents a simple and inexpensive
solution-based approach to fabricate earth-abundant Copper Barium Tin Sulphoselenide(CBTSSe) solar cells.
To fabricate CBTSSe solar cells by non-vacuum and solution-based process is
challenging as non-uniformity in precursor due to barium affinity towards oxygen
and chlorine refrain the phase formation. To solve this problem we devised a spray
and bake method to form for the first time 0.6% efficient CBTSSe solar cells by
water-based spray pyrolysis process.
Table of Content
Table of Content 4
List of figures 6
List of tables 8
Chapter 1 : Background and motivation 9
Distribution of thesis 15
Chapter 2 : Solar cells 16
2.1 - History of solar cells 16
2.2 - History of thin film solar cells 16
2.3 - Physics of solar cells 17
2.4 - J ( Current density) - V (voltage) curve 18
2.5.1 - Short circuit current density (Jsc) 19
2.5.2 - Open-circuit voltage (Voc) 20
2.5.3 Fill factor (FF) 21
2.5.4 Efficiency 21
2.5.5 - Series resistance (Rs) 22
2.5.6 - Shunt resistance (Rsh) 22
2.5 - Recombination mechanism 23
2.5.1 - Band to Band recombination 24
2.5.1 - Auger recombination 24
2.5.3 - Recombination through intermediate level or a defect state 24
Chapter 3 : CBTSSe solar cells 26
3.1 - Crystal structure 26
3.2 - Defect system 27
3.3 - Phase region 30
3.4 - Overview on the fabrication of CBTSSe thin film 32
3.4.1 - Vacuum processes 32
3.4.1.1 - Co-Sputtering 32
3.4.2 - Non-vacuum processes 32
3.4.2.1 - Chemical spray pyrolysis 33
3.5 - Characterizations 33
3.5.1 - Material analysis 33
3.5.1.1 - Scanning Electron Microscopy (SEM) 33
3.5.1.2 - Energy Dispersive X-ray Spectroscopy (EDX/EDS) 34
3.5.1.3 - Raman Spectroscopy 34
!4
3.5.1.4 - X-ray Diffraction (XRD) 34
3.5.1.5 - Photoluminescence(PL) Spectroscopy 35
3.5.2 - Electrical characterisation 36
3.5.2.1 - Current-Voltage (IV) measurement 36
3.5.2.2 - Capacitance-Voltage (CV) measurement 36
3.5.2.3 - External quantum efficiency (EQE) 37
Chapter 4 : General experimental procedure 38
5.1.1 - Molybdenum (Mo) back contact 39
5.1.2 - CBTSSe absorber 39
5.1.2.1 - Preparation of the solution 40
5.1.2.2 - Fabrication of CBTSSe films 40
5.1.3 - Cadmium Sulphide (CdS) buffer layer 41
5.1.4- Window layer 42
5.1.5 - Silver grid 42
5.1.6 - Characterizations 42
Chapter 5 : Results and discussion 43
5.1 - Phase formation 43
5.1.1 - Overcoming a non-uniform precursor film 43
5.1.2 - Effects of selenium during sulphurisation 50
5.2 - Device performance and characterisation 54
Chapter 6 : Conclusion and outlooks 59
6.1 - Challenges 59
6.2 - Summary 60
6.3 - Future prospects for CBTS solar cells and non-vacuum process 61
References 62
[1] Grama, S. "A Survey of Thin-Film Solar Photovoltaic Industry & Technologies."
Massachusetts Institute of Technology, 2008
[2] M.J. Shiao, “First Solar hits record 22.1% conversion efficiency for CdTe Solar
Cell” Greentech Media. [online]. Available :https://www.greentechmedia.com/
articles/read/first-solar-hits-record-22-1-conversion-efficiency-for-CdTe-Solar-Cell.
[3] Marwede,Max (2013). “Cycling critical absorber materials of CdTe- and CIGSphotovoltaics”(Doctoral thesis). Retrieved from Dissertations and Theses
database. University of Augsburg, Augsburg.
[4] A.Colthorpe,”Solar Frontier’s record efficiency 22.3% CIS cell faces ‘global
market challenge,’” PV-Tech.[Online]. Available : https://www.pv-tech.org/news/
solar-frontiers-record-efficiency-22.3-cis-cell-faces-global-market-challen.
[5] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of
heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,
Phys. Status Solidi – Rapid Res. Lett. 10 (2016) 583–586, http://dx.doi.org/
10.1002/pssr. 201600199.
[6] Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., &
Mitzi, D. B. (2014). Device Characteristics of CZTSSe Thin-Film Solar Cells with
12.6% Efficiency. Advanced Energy Materials, 4(7). doi:ARTN 1301465 10.1002/
aenm.201301465
[7] Gokmen, T., Gunawan, O., Todorov, T. K., & Mitzi, D. B. (2013). Band tailing
and efficiency limitation in kesterite solar cells. Applied Physics Letters, 103(10).
doi:Artn 103506 10.1063/1.4820250 .
!61
[8] Gunawan, O., Todorov, T. K., & Mitzi, D. B. (2010). Loss mechanisms in
hydrazine-processed Cu2ZnSn(Se,S)(4) solar cells. Applied Physics Letters,
97(23). doi:Artn 233506 10.1063/1.3522884
[9] Liu, X. L., Feng, Y., Cui, H. T., Liu, F. Y., Hao, X. J., Conibeer, G., . . . Green, M.
(2016). The current status and future prospects of kesterite solar cells: a brief
review. Progress in Photovoltaics, 24(6), 879-898. doi:10.1002/pip.2741
[10] Scragg, J. J. S., Larsen, J. K., Kumar, M., Persson, C., Sendler, J., Siebentritt,
S., & Bjorkman, C. P. (2016). Cu-Zn disorder and band gap fluctuations in
Cu2ZnSn(S,Se)(4): Theoretical and experimental investigations. Physica Status
Solidi B-Basic Solid State Physics, 253(2), 247-254. doi:10.1002/pssb.
201552530
[11] Rey, G., Redinger, A., Ler, J. S., Weiss, T. P., Thevenin, M., Guennou, M., . . .
Siebentritt, S. (2014). The band gap of Cu2ZnSnSe4: Effect of order-disorder.
Applied Physics Letters, 105(11). doi:Artn 112106 10.1063/1.4896315
[12] Lin, X. Z., Ennaoui, A., Levcenko, S., Dittrich, T., Kavalakkatt, J., Kretzschmar,
S., Lux-Steiner, M. C. (2015). Defect study of Cu2ZnSn(SxSe1-x)(4) thin film
absorbers using photoluminescence and modulated surface photovoltage
spectroscopy. Applied Physics Letters, 106(1). doi: Artn
013903/10.1063/1.4905351
[13] Krammer, C., Huber, C., Zimmermann, C., Lang, M., Schnabel, T., Abzieher, T.,
Hetterich, M. (2014). Reversible order-disorder related band gap changes in
Cu2ZnSn(S,Se)(4) via post-annealing of solar cells measured by
electroreflectance. Applied Physics Letters, 105(26). doi: Artn 262104
10.1063/1.4905351
!62
[14] Gershon, T., Lee, Y. S., Antunez, P., Mankad, R., Singh, S., Bishop, D., . . .
Haight, R. (2016). Photovoltaic Materials and Devices Based on the Alloyed
Kesterite Absorber (AgxCu1-x)(2)ZnSnSe4. Advanced Energy Materials, 6(10).
doi:ARTN 1502468 10.1002/aenm.201502468
[15] R. Sun, D. Zhuang, M. Zhao,b, Q. Gong, M. Scarpulla, Y. Wei, G. Ren Y. Wu, Sol.
Energy Mater. Sol. Cells 2018, 174, 494-498.
[16] D. Shin, T. Zhu, X. Huang, O. Gunawan, V. Blum, and D. B. Mitzi, Adv. Mater.
2017, 29, 1606945
[17] W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
[18] "April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar
Cell". APS News. American Physical Society. 18(4). April 2009.
[19] Tsokos, K. A. (28 January 2010). Physics for the IB Diploma Full Colour.
Cambridge University Press. ISBN 978-0-521-13821-5.
[20] Shin, D.; Saparov, B.; Zhu, T.; Huhn, W. P.; Blum, V.; Mitzi, D. B.
BaCu2Sn(S,Se)4: Earth-Abundant Chalcogenides for Thin-Film Photovoltaics.
Chem. Mater. 2016, 28, 4771−4780.
[21] N. Gupta, G. Alapatt, R. Podila, R. Singh and K. Poole, Int. J. Photoenergy,
2009, 2009, 154059
[22] http://thesolarized.blogspot.com/2011/12/solar-cells-panel-explained.html
[23] Hong, F.; Lin, W.; Meng, W.; Yan, Y. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI =
S, Se) quaternary compounds for earth-abundant photovoltaics. Phys. Chem.
Chem. Phys. 2016, 18, 4828−4834.
[24] Available : http://www.sono-tek.com/vortex/ [Accessed : 05-July-2018]
!63
[25] W. Septina, M. Kurihara, S. Ikeda, Y. Nakajima, T. Hirano, Y. Kawasaki, T.
Harada, and M. Matsumura Cu(In,Ga)(S,Se)2 Thin Film Solar Cell with 10.7%
Conversion Efficiency Obtained by Selenization of the Na-Doped Spray-Pyrolyzed
Sulfide Precursor Film. ACS Appl. Mater. Interfaces 2015, 7, 6472−6479
[26] T-H. Nguyen, T. Harada, S. Nakanishi, S. Ikeda, Cu2ZnSnS4-based thin film
solar cells with more than 8% conversion efficiency obtained by using a spray
pyrolysis technique, in: Proceedings of the 43rd IEEE Photovoltaic Specialists
Conference (PVSC), 5–10 June 2016.
[ 2 7 ] h t t p s : / / w w w . c h e m i s t r y v i e w s . o r g / d e t a i l s / e z i n e
2064331/100th_Anniversary_of_the_Discovery_of_X-ray_Diffraction.html
[28] J. Ge, Y. Yu and Y. Yan. Earth-abundant trigonal BaCu2Sn(SexS1!x)4 (x ¼ 0–
0.55) thin films with tunable band gaps for solar water splitting. J. Mater. Chem.
A, 2016, 4, 18885
[29] T. Gershon, Y. S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop,O. Gunawan,
M. Hopstaken, R. Haight, Adv. Energy Mater. 2016, 6, 1502468
[30] T. Gershon, K. Sardashti, O. Gunawan, R. Mankad, S. Singh, Y. S. Lee, J. A.
Ott, A. Kummel, R. Haight, Adv. Energy Mater. 2016, 6, 1601182
[31] a) V. Alekseenko, A. Alekseenko, J. Geochem. Explor. 2014, 147, 245; b) G.
B. Haxel, J. B. Hedrick, G. J. Orris, P. H. Stauffer, J. W. Hendley, in Fact Sheet
087-02, U.S. Geological Survey 2002
[32] Z. Su, J. M. R. Tan, X. Li, X. Zeng, S. K. Batabyal, L. H. Wong, Adv. Energy
Mater. 2015, 5, 1500682
[33] Y. Cui, R. Deng, G. Wang, D. Pan, J. Mater. Chem. 2012, 22, 23136.
[34] X. Meng, H. Deng, J. He, L. Sun, P. Yang, J. Chu, Mater. Lett. 2015,151, 61.
!64
[35] A. Gillorin, A. Balocchi, X. Marie, P. Dufour, J. Y. Chane-Ching, J. Mater. Chem.
2011, 21, 5615
[36] Prabhakar, T., & Nagaraju, J. (2010). Ultrasonic Spray Pyrolysis of CZTS Solar
Cell Absorber Layers and Characterization Studies. 35th Ieee Photovoltaic
Specialists Conference, 1964-1969. doi:Doi 10.1109/Pvsc.2010.5616709
[37] Neumayer, D. A., Studebaker, D. B., Hinds, B. J., & Marks, T. J. (1994).
Preparation of Volatile Polyether Lewis Base Adducts of Barium 1,1,1,5,5,5
Hexafluoropentane-2,4-Dionato for Use as Mocvd Precursors. Abstracts of Papers
of the American Chemical Society, 207, 190-Inor.
[38] Uhl, A. R., Fuchs, P., Rieger, A., Pianezzi, F., Sutter-Fella, C. M., Kranz,
L.,Tiwari, A. N. (2015). Liquid-Selenium-enhanced grain growth of nanoparticle
precursor layers for CuInSe2 solar cell absorbers. Progress in Photovoltaics, 23(9),
1110-1119. doi:10.1002/pip.2529
[39] Ge, J., Yu, Y., & Yan, Y. F. (2016). Earth-abundant trigonal BaCu2Sn(SexS1-
x)4(x=0-0.55) thin films with tunable band gaps for solar water splitting. Journal
of Materials Chemistry A, 4(48), 18885-18891. doi:10.1039/c6ta06702f
[40] J.C. Viguie and J. Spitz, J. Electrochem. Soc., 122(4), 585 (1975).
[41] Perednis, Dainius, and Ludwig J. Gauckler. "Thin film deposition using spray
pyrolysis." Journal of Electroceramics 15.2 (2005): 103-111.
[42] Liu, X. L., Feng, Y., Cui, H. T., Liu, F. Y., Hao, X. J., Conibeer, G., . . . Green, M.
(2016). The current status and future prospects of kesterite solar cells: a brief
review. Progress in Photovoltaics, 24(6), 879-898. doi:10.1002/pip.2741
!65
[43] Zhu, X. L., Zhou, Z., Wang, Y. M., Zhang, L., Li, A. M., & Huang, F. Q. (2012).
Determining factor of MoSe2 formation in Cu(In,Ga)Se-2 solar Cells. Solar Energy
Materials and Solar Cells, 101, 57-61. doi:10.1016/j.solmat.2012.02.015
[44] Ge, J., Koirala, P., Grice, C. R., Roland, P. J., Yu, Y., Tan, X. X., . . . Yan, Y. F.
(2017). Oxygenated CdS Buffer Layers Enabling High Open-Circuit Voltages in
Earth-Abundant Cu2BaSnS4 Thin-Film Solar Cells. Advanced Energy Materials,
7(6). doi:ARTN 1601803 10.1002/aenm.201601803
[45] Bermudez, V., & Perez-Rodriguez, A. (2018). Understanding the cell-tomodule efficiency gap in Cu(In,Ga) (S,Se)(2) photovoltaics scale-up. Nature
Energy, 3(6), 466-475. doi:10.1038/s41560-018-0177-1
[46] Moss, E. J., Thomas, L. V., Cook, M. W., Walters, D. G., Foster, P. M. D.,
Creasy, D. M., & Gray, T. J. B. (1985). The Role of Metabolism in 2-
Methoxyethanol-Induced Testicular Toxicity. Toxicology and Applied Pharmacology,
79(3), 480-489. doi:Doi 10.1016/0041-008x(85)90145-0
[49] Kaelin, M., Rudmann, D., & Tiwari, A. N. (2004). Low cost processing of CIGS
thin film solar cells. Solar Energy, 77(6), 749-756. doi:10.1016/j.solener.
2004.08.015
[50]Kim, W. T., & Kim, C. D. (1986). Optical-Energy Gaps of Beta-In2s3 Thin-Films
Grown by Spray Pyrolysis. Journal of Applied Physics, 60(7), 2631-2633. doi:Doi
10.1063/1.337137
[51] Adamopoulos, G., Bashir, A., Gillin, W. P., Georgakopoulos, S., Shkunov, M.,
Baklar, M. A., Anthopoulos, T. D. (2011). Structural and Electrical Characterization
of ZnO Films Grown by Spray Pyrolysis and Their Application in Thin-Film
!66
Transistors. Advanced Functional Materials, 21(3), 525-531. doi:10.1002/adfm.
201001089
[52] Chen, Z., Sun,K., Su,Z., Liu, F. Ding Tang, Hanrui Xiao, Shi, L. Jiang, L. Hao,X.
and Lai, Y. (2018) Solution-processed trigonal Cu2BaSnS4 thin film solar cells.
ACS Appl. Energy Mater. Just accepted • DOI: 10.1021/acsaem.8b00514
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *