帳號:guest(3.144.243.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐楚翔
作者(外文):Hsu, Chu-Hsiang
論文名稱(中文):根基於外出光提取技術之高效率有機發光二極體
論文名稱(外文):High efficiency organic light emitting diode based on external light extraction system
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):岑尚仁
王欽戊
魏茂國
蔡永誠
口試委員(外文):Chen, Sun-Zen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031705
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:有機發光二極體高效率
外文關鍵詞:organic light emitting diodehigh efficiency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:797
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
有機發光二極體 (Organic Light Emitting Diode, OLED) 具有自發光性、廣視角、高對比、高反應速率、全彩化、製程簡單等優點,被譽為終極的顯示技術;而其低耗電、平面光源、高光質、光綫柔和等特性,亦使它成爲新時代最具潛力的照明技術;高效率之元件可以達到節能的目的,對於環境而言,節約能源可減少溫室氣體排出到大氣層,維護地球生態平衡;對於工業和商業用戶而言,高效率元件可以提高能源使用效率,使其利潤得以最大化;對於個人而言,則能降低能源成本,提高生活品質;目前市面上常見之照明光源中,螢光燈(Compact Fluorescent Lamp, CFL)以及發光二極體(Light Emitting Diode, LED)雖具有較高的效率,但因其高藍光放射以及尖銳光綫,不適合用於一般家庭照明;而屬於低藍光放射的白熾燈泡,因發光效率差,只有10 lm/W,作爲照明燈具不夠節能,逐漸被眾多國家禁用;據此,我們使用 OLED 技術,並從(1)元件結構及(2)外出光提取技術兩個面向作探討,以研製出一高效率OLED;從節能的角度看,在亮度 100 cd/m2 下,此元件能量效率達到92 lm/W,為白熾燈泡的 8倍、蠟燭的600倍;此元件之高效率可歸因於:(1)階梯式元件結構之設計;(2)外出光提取技術之應用;其中,搭配外出光提取技術之微透鏡薄膜陣列,使能量效率增益18%。
Organic light emitting diode (OLED) has the advantages of self-luminous, wide viewing angle, high contrast, high reaction rate, full color, simple process, etc. It is known as the ultimate display technology. Besides, its low power consumption, flat light source, high light quality, soft light and other characteristics make it the most potential lighting technology in the new era. High efficiency devices can achieve energy-saving. For the environment, saving energy can reduce greenhouse gas emission to the atmosphere and maintain the earth's ecological balance. For industrial and commercial users, high efficiency devices can improve energy efficiency and increase profit. For individuals, it can reduce energy costs and improve the quality of life. Among the commonly used lighting sources on the market, compact fluorescent lamp (CFL) and light emitting diode (LED) have high efficiency, but are not suitable for general home lighting due to their blue light emission and glaring light. On the other hand, incandescent bulb without blue light emission has the lowest efficiency, which is only 10 lm/W. As a light source, incandescent bulb is not energy efficient and gradually banned in many countries.
In this research, we use OLED technology and explore from the two aspects of (1) device structure and (2) external light extraction system to develop a high efficiency OLED device. From the perspective of energy-saving, the power efficacy of this device is 92 lm/W at 100 cd/m2, which is 8 times that of incandescent bulbs and 600 times that of candles. With the use of micro-lens, the power efficacy is increased by 18%.
摘要 1
Abstract 2
誌謝 4
目錄 8
表目錄 11
圖目錄 12
一、緒論 16
二、文獻回顧 19
2-1、OLED之發展歷史 19
2-2、OLED之基本結構 38
2-3、OLED的發光原理與能量轉移機制 39
2-4、OLED材料之發展 45
2-4-1、陽極材料 45
2-4-2、電洞注入材料 45
2-4-3、電洞傳輸材料 46
2-4-4、發光層材料 47
2-4-5、電子傳輸材料 48
2-4-6、電子注入材料 48
2-4-7、陰極材料 49
2-5、高效率OLED的製作技術 49
2-6、高效率OLED的發展 55
2-7、出光提取技術的發展 57
2-7-1、内出光提取技術 58
2-7-2、外出光提取技術 60
三、理論計算 63
3-1、元件效率之計算 63
3-2、光通量的定義 63
3-3、發光强度的定義 64
四、實驗方式 65
4-1、元件結構與使用材料 65
4-2、元件設計與製備 67
4-2-1、元件電路設計 67
4-2-2、基材清洗 68
4-2-3、發光層之製備 68
4-2-4、熱蒸鍍製程 69
4-2-5、蒸鍍速率之測定 70
4-2-6、有機層與無機層之製備 70
4-3、元件特性之量測 71
五、結果與討論 72
5-1、高效率元件之效率表現 72
5-1-1、綠光染料濃度對於效率之影響 75
5-1-2、階梯式結構 80
5-1-3、電洞、電子傳輸層厚度對元件效率之影響 83
5-2、外出光提取技術之應用 86
5-3、内出光提取基板之嘗試 93
六、結論 96
七、參考資料 97
1. Duggal, A.R., et al., Organic light-emitting devices for illumination quality white light. Applied physics letters, 2002. 80(19): p. 3470-3472.
2. Lewis, J., et al., Highly flexible transparent electrodes for organic light-emitting diode-based displays. Applied Physics Letters, 2004. 85(16): p. 3450-3452.
3. Lim, H., et al., Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates. Advanced Materials, 2002. 14(18): p. 1275-1279.
4. Forrest, S.R., The road to high efficiency organic light emitting devices. Organic Electronics, 2003. 4(2-3): p. 45-48.
5. Wan, A., et al., Impact of electrode contamination on the α-NPD/Au hole injection barrier. Organic Electronics, 2005. 6(1): p. 47-54.
6. Koch, N., et al., Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current–voltage characteristics. Applied Physics Letters, 2003. 82(14): p. 2281-2283.
7. Jou, J.-H., et al., Small polymeric nano-dot enhanced pure-white organic light-emitting diode. Organic Electronics, 2008. 9(3): p. 291-295.
8. Jou, J.H., et al., Nanodot‐Enhanced High‐Efficiency Pure‐White Organic Light‐Emitting Diodes with Mixed‐Host Structures. Advanced Functional Materials, 2008. 18(1): p. 121-126.
9. Wu, C.-H., et al., Highly efficient red organic light-emitting devices based on a fluorene-triphenylamine host doped with an Os (II) phosphor. Applied Physics Letters, 2008. 92(23): p. 207.
10. Jou, J.-H., et al., Efficient fluorescent white organic light-emitting diodes with blue-green host of di (4-fluorophenyl) amino-di (styryl) biphenyl. Organic electronics, 2007. 8(1): p. 29-36.
11. Nüesch, F., et al., Doping‐Induced Charge Trapping in Organic Light‐Emitting Devices. Advanced functional materials, 2005. 15(2): p. 323-330.
12. Ikai, M., et al., Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Applied Physics Letters, 2001. 79(2): p. 156-158.
13. Xie, Z., L. Hung, and S. Lee, High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure. Applied Physics Letters, 2001. 79(7): p. 1048-1050.
14. Bernanose, A., M. Comte, and P. Vouaux, Sur un nouveau mode d'émission lumineuse chez certains composés organiques. Journal de Chimie Physique, 1953. 50: p. 64-68.
15. Pope, M., H. Kallmann, and P. Magnante, Electroluminescence in organic crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
16. Helfrich, W. and W. Schneider, Recombination radiation in anthracene crystals. Physical Review Letters, 1965. 14(7): p. 229.
17. Helfrich, W. and W. Schneider, Transients of volume‐controlled current and of recombination radiation in anthracene. The Journal of Chemical Physics, 1966. 44(8): p. 2902-2909.
18. Vincett, P., et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin solid films, 1982. 94(2): p. 171-183.
19. Partridge, R., Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride. Polymer, 1983. 24(6): p. 739-747.
20. Tang, C., S. VanSlyke, and C. Chen, Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65(9): p. 3610-3616.
21. Tang, C.W., Organic electroluminescent cell. 1982, Google Patents.
22. Friend, R.H., J.H. Burroughes, and D.D. Bradley, Electroluminescent devices. 1993, Google Patents.
23. Burroughes, J., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539.
24. Burroughes, J.H., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539.
25. Era, M., et al., Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 1991. 178(5-6): p. 488-490.
26. Adachi, C., et al., Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 1988. 27(4A): p. L713.
27. Kido, J., et al., White light‐emitting organic electroluminescent devices using the poly (N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64(7): p. 815-817.
28. Kido, J., M. Kimura, and K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science, 1995. 267(5202): p. 1332-1334.
29. Hung, L., C. Tang, and M. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154.
30. Jabbour, G., et al., Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Applied physics letters, 1998. 73(9): p. 1185-1187.
31. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151.
32. Adachi, C., et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001. 90(10): p. 5048-5051.
33. Blochwitz, J., et al., Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73(6): p. 729-731.
34. Huang, J., et al., Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters, 2002. 80(1): p. 139-141.
35. Matsumoto, T., et al. 27.5 L: Late‐News Paper: Multiphoton Organic EL device having Charge Generation Layer. in SID Symposium Digest of Technical Papers. 2003. Wiley Online Library.
36. Liao, L.-S., et al., Cascaded organic electroluminescent devices with improved voltage stability. 2004, Google Patents.
37. Liao, L., K. Klubek, and C. Tang, High-efficiency tandem organic light-emitting diodes. Applied physics letters, 2004. 84(2): p. 167-169.
38. Shao, Y. and Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method. Applied Physics Letters, 2005. 86(7): p. 073510.
39. Jou, J.-H., et al., Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source. Applied physics letters, 2006. 88(19): p. 193501.
40. Sun, Y. and S.R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature photonics, 2008. 2(8): p. 483.
41. Reineke, S., et al., White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009. 459(7244): p. 234.
42. Wang, Z., et al., Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics, 2011. 5(12): p. 753.
43. Uoyama, H., et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012. 492(7428): p. 234.
44. Jou, J.H., et al., Candle Light‐Style Organic Light‐Emitting Diodes. Advanced Functional Materials, 2013. 23(21): p. 2750-2757.
45. Zhang, Q., et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 2014. 8(4): p. 326.
46. Lin, T.A., et al., Sky‐blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine‐triazine hybrid. Advanced Materials, 2016. 28(32): p. 6976-6983.
47. Méhes, G., et al., Enhanced electroluminescence efficiency in a spiro‐acridine derivative through thermally activated delayed fluorescence. Angewandte Chemie International Edition, 2012. 51(45): p. 11311-11315.
48. Zhao, B., et al., Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host. Scientific reports, 2015. 5: p. 10697.
49. Ly, K.T., et al., Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics, 2017. 11(1): p. 63.
50. Jwo-Huei, J., OLED Introdcution. 2015.
51. Thompson, L.G. and S. Webber, External heavy atom effect on the phosphorescence spectra of some halonaphthalenes. The Journal of Physical Chemistry, 1972. 76(2): p. 221-224.
52. Dodabalapur, A., Organic light emitting diodes. Solid State Communications, 1997. 102(2-3): p. 259-267.
53. Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 1948. 437(1‐2): p. 55-75.
54. Dexter, D.L., A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 1953. 21(5): p. 836-850.
55. Klessinger, M. and J. Michl, Excited states and photochemistry of organic molecules. 1995: Wiley-VCH.
56. Nalwa, H.S., Handbook of nanostructured materials and nanotechnology, five-volume set. 1999: Academic Press.
57. Kim, J.-S., et al., Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics, 1998. 84(12): p. 6859-6870.
58. Mason, M., et al., Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. Journal of Applied Physics, 1999. 86(3): p. 1688-1692.
59. So, S., et al., Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics A: Materials Science & Processing, 1999. 68(4): p. 447-450.
60. Ishii, M., et al., Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface. Journal of Luminescence, 2000. 87: p. 1165-1167.
61. Van Slyke, S.A., C. Chen, and C.W. Tang, Organic electroluminescent devices with improved stability. Applied physics letters, 1996. 69(15): p. 2160-2162.
62. Elschner, A., et al., PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic metals, 2000. 111: p. 139-143.
63. Higginson, K.A., X.-M. Zhang, and F. Papadimitrakopoulos, Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-hydroxyquinoline)(Alq3). Chemistry of Materials, 1998. 10(4): p. 1017-1020.
64. Kido, J., et al., Organic electroluminescent devices based on molecularly doped polymers. Applied physics letters, 1992. 61(7): p. 761-763.
65. Hosokawa, C., H. Higashi, and T. Kusumoto, Novel structure of organic electroluminescence cells with conjugated oligomers. Applied physics letters, 1993. 62(25): p. 3238-3240.
66. Gao, W. and A. Kahn, Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study. Applied Physics Letters, 2001. 79(24): p. 4040-4042.
67. Ganzorig, C., K. Suga, and M. Fujihira, Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Materials Science and Engineering: B, 2001. 85(2-3): p. 140-143.
68. Jou, J.-H., et al., Nearly non-roll-off high efficiency fluorescent yellow organic light-emitting diodes. Journal of Materials Chemistry, 2011. 21(34): p. 12613-12618.
69. Rajamalli, P., et al., A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes. Journal of the American Chemical Society, 2016. 138(2): p. 628-634.
70. Shapira, O., et al., Surface-emitting fiber lasers. Optics Express, 2006. 14(9): p. 3929-3935.
71. Nowy, S., et al., Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency. Journal of Applied Physics, 2008. 104(12): p. 123109.
72. Gu, G., et al., High-external-quantum-efficiency organic light-emitting devices. Optics letters, 1997. 22(6): p. 396-398.
73. Mehta, D.S. and K. Saxena. Light out-coupling strategies in organic light emitting devices. in Proc. ASID. 2006.
74. Qu, Y., et al., Elimination of plasmon losses and enhanced light extraction of top-emitting organic light-emitting devices using a reflective subelectrode grid. ACS Photonics, 2017. 4(2): p. 363-368.
75. Hsu, C., et al., Enhanced light extraction of organic light-emitting diodes using recessed anodes. Applied Surface Science, 2014. 309: p. 33-37.
76. Kim, D., et al., Enhanced light outcoupling of polymer light-emitting diodes with a solution-processed,-flattening photonic-crystal underlayer. Journal of Information Display, 2016. 17(4): p. 143-150.
77. Kremers, J., D. Czop, and B. Link, Rod and S-cone driven ERG signals at high retinal illuminances. Documenta ophthalmologica, 2009. 118(3): p. 205-216.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *