|
1. Duggal, A.R., et al., Organic light-emitting devices for illumination quality white light. Applied physics letters, 2002. 80(19): p. 3470-3472. 2. Lewis, J., et al., Highly flexible transparent electrodes for organic light-emitting diode-based displays. Applied Physics Letters, 2004. 85(16): p. 3450-3452. 3. Lim, H., et al., Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates. Advanced Materials, 2002. 14(18): p. 1275-1279. 4. Forrest, S.R., The road to high efficiency organic light emitting devices. Organic Electronics, 2003. 4(2-3): p. 45-48. 5. Wan, A., et al., Impact of electrode contamination on the α-NPD/Au hole injection barrier. Organic Electronics, 2005. 6(1): p. 47-54. 6. Koch, N., et al., Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current–voltage characteristics. Applied Physics Letters, 2003. 82(14): p. 2281-2283. 7. Jou, J.-H., et al., Small polymeric nano-dot enhanced pure-white organic light-emitting diode. Organic Electronics, 2008. 9(3): p. 291-295. 8. Jou, J.H., et al., Nanodot‐Enhanced High‐Efficiency Pure‐White Organic Light‐Emitting Diodes with Mixed‐Host Structures. Advanced Functional Materials, 2008. 18(1): p. 121-126. 9. Wu, C.-H., et al., Highly efficient red organic light-emitting devices based on a fluorene-triphenylamine host doped with an Os (II) phosphor. Applied Physics Letters, 2008. 92(23): p. 207. 10. Jou, J.-H., et al., Efficient fluorescent white organic light-emitting diodes with blue-green host of di (4-fluorophenyl) amino-di (styryl) biphenyl. Organic electronics, 2007. 8(1): p. 29-36. 11. Nüesch, F., et al., Doping‐Induced Charge Trapping in Organic Light‐Emitting Devices. Advanced functional materials, 2005. 15(2): p. 323-330. 12. Ikai, M., et al., Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Applied Physics Letters, 2001. 79(2): p. 156-158. 13. Xie, Z., L. Hung, and S. Lee, High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure. Applied Physics Letters, 2001. 79(7): p. 1048-1050. 14. Bernanose, A., M. Comte, and P. Vouaux, Sur un nouveau mode d'émission lumineuse chez certains composés organiques. Journal de Chimie Physique, 1953. 50: p. 64-68. 15. Pope, M., H. Kallmann, and P. Magnante, Electroluminescence in organic crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043. 16. Helfrich, W. and W. Schneider, Recombination radiation in anthracene crystals. Physical Review Letters, 1965. 14(7): p. 229. 17. Helfrich, W. and W. Schneider, Transients of volume‐controlled current and of recombination radiation in anthracene. The Journal of Chemical Physics, 1966. 44(8): p. 2902-2909. 18. Vincett, P., et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin solid films, 1982. 94(2): p. 171-183. 19. Partridge, R., Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride. Polymer, 1983. 24(6): p. 739-747. 20. Tang, C., S. VanSlyke, and C. Chen, Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65(9): p. 3610-3616. 21. Tang, C.W., Organic electroluminescent cell. 1982, Google Patents. 22. Friend, R.H., J.H. Burroughes, and D.D. Bradley, Electroluminescent devices. 1993, Google Patents. 23. Burroughes, J., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539. 24. Burroughes, J.H., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539. 25. Era, M., et al., Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 1991. 178(5-6): p. 488-490. 26. Adachi, C., et al., Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 1988. 27(4A): p. L713. 27. Kido, J., et al., White light‐emitting organic electroluminescent devices using the poly (N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64(7): p. 815-817. 28. Kido, J., M. Kimura, and K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science, 1995. 267(5202): p. 1332-1334. 29. Hung, L., C. Tang, and M. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154. 30. Jabbour, G., et al., Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Applied physics letters, 1998. 73(9): p. 1185-1187. 31. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151. 32. Adachi, C., et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001. 90(10): p. 5048-5051. 33. Blochwitz, J., et al., Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73(6): p. 729-731. 34. Huang, J., et al., Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters, 2002. 80(1): p. 139-141. 35. Matsumoto, T., et al. 27.5 L: Late‐News Paper: Multiphoton Organic EL device having Charge Generation Layer. in SID Symposium Digest of Technical Papers. 2003. Wiley Online Library. 36. Liao, L.-S., et al., Cascaded organic electroluminescent devices with improved voltage stability. 2004, Google Patents. 37. Liao, L., K. Klubek, and C. Tang, High-efficiency tandem organic light-emitting diodes. Applied physics letters, 2004. 84(2): p. 167-169. 38. Shao, Y. and Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method. Applied Physics Letters, 2005. 86(7): p. 073510. 39. Jou, J.-H., et al., Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source. Applied physics letters, 2006. 88(19): p. 193501. 40. Sun, Y. and S.R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature photonics, 2008. 2(8): p. 483. 41. Reineke, S., et al., White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009. 459(7244): p. 234. 42. Wang, Z., et al., Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics, 2011. 5(12): p. 753. 43. Uoyama, H., et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012. 492(7428): p. 234. 44. Jou, J.H., et al., Candle Light‐Style Organic Light‐Emitting Diodes. Advanced Functional Materials, 2013. 23(21): p. 2750-2757. 45. Zhang, Q., et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 2014. 8(4): p. 326. 46. Lin, T.A., et al., Sky‐blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine‐triazine hybrid. Advanced Materials, 2016. 28(32): p. 6976-6983. 47. Méhes, G., et al., Enhanced electroluminescence efficiency in a spiro‐acridine derivative through thermally activated delayed fluorescence. Angewandte Chemie International Edition, 2012. 51(45): p. 11311-11315. 48. Zhao, B., et al., Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host. Scientific reports, 2015. 5: p. 10697. 49. Ly, K.T., et al., Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics, 2017. 11(1): p. 63. 50. Jwo-Huei, J., OLED Introdcution. 2015. 51. Thompson, L.G. and S. Webber, External heavy atom effect on the phosphorescence spectra of some halonaphthalenes. The Journal of Physical Chemistry, 1972. 76(2): p. 221-224. 52. Dodabalapur, A., Organic light emitting diodes. Solid State Communications, 1997. 102(2-3): p. 259-267. 53. Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 1948. 437(1‐2): p. 55-75. 54. Dexter, D.L., A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 1953. 21(5): p. 836-850. 55. Klessinger, M. and J. Michl, Excited states and photochemistry of organic molecules. 1995: Wiley-VCH. 56. Nalwa, H.S., Handbook of nanostructured materials and nanotechnology, five-volume set. 1999: Academic Press. 57. Kim, J.-S., et al., Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics, 1998. 84(12): p. 6859-6870. 58. Mason, M., et al., Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. Journal of Applied Physics, 1999. 86(3): p. 1688-1692. 59. So, S., et al., Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics A: Materials Science & Processing, 1999. 68(4): p. 447-450. 60. Ishii, M., et al., Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface. Journal of Luminescence, 2000. 87: p. 1165-1167. 61. Van Slyke, S.A., C. Chen, and C.W. Tang, Organic electroluminescent devices with improved stability. Applied physics letters, 1996. 69(15): p. 2160-2162. 62. Elschner, A., et al., PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic metals, 2000. 111: p. 139-143. 63. Higginson, K.A., X.-M. Zhang, and F. Papadimitrakopoulos, Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-hydroxyquinoline)(Alq3). Chemistry of Materials, 1998. 10(4): p. 1017-1020. 64. Kido, J., et al., Organic electroluminescent devices based on molecularly doped polymers. Applied physics letters, 1992. 61(7): p. 761-763. 65. Hosokawa, C., H. Higashi, and T. Kusumoto, Novel structure of organic electroluminescence cells with conjugated oligomers. Applied physics letters, 1993. 62(25): p. 3238-3240. 66. Gao, W. and A. Kahn, Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study. Applied Physics Letters, 2001. 79(24): p. 4040-4042. 67. Ganzorig, C., K. Suga, and M. Fujihira, Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Materials Science and Engineering: B, 2001. 85(2-3): p. 140-143. 68. Jou, J.-H., et al., Nearly non-roll-off high efficiency fluorescent yellow organic light-emitting diodes. Journal of Materials Chemistry, 2011. 21(34): p. 12613-12618. 69. Rajamalli, P., et al., A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes. Journal of the American Chemical Society, 2016. 138(2): p. 628-634. 70. Shapira, O., et al., Surface-emitting fiber lasers. Optics Express, 2006. 14(9): p. 3929-3935. 71. Nowy, S., et al., Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency. Journal of Applied Physics, 2008. 104(12): p. 123109. 72. Gu, G., et al., High-external-quantum-efficiency organic light-emitting devices. Optics letters, 1997. 22(6): p. 396-398. 73. Mehta, D.S. and K. Saxena. Light out-coupling strategies in organic light emitting devices. in Proc. ASID. 2006. 74. Qu, Y., et al., Elimination of plasmon losses and enhanced light extraction of top-emitting organic light-emitting devices using a reflective subelectrode grid. ACS Photonics, 2017. 4(2): p. 363-368. 75. Hsu, C., et al., Enhanced light extraction of organic light-emitting diodes using recessed anodes. Applied Surface Science, 2014. 309: p. 33-37. 76. Kim, D., et al., Enhanced light outcoupling of polymer light-emitting diodes with a solution-processed,-flattening photonic-crystal underlayer. Journal of Information Display, 2016. 17(4): p. 143-150. 77. Kremers, J., D. Czop, and B. Link, Rod and S-cone driven ERG signals at high retinal illuminances. Documenta ophthalmologica, 2009. 118(3): p. 205-216.
|