帳號:guest(18.117.158.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳則瑋
作者(外文):Chen, Tse-Wei
論文名稱(中文):藍綠光鈣鈦礦量子點與鈣鈦礦記憶元件之研究
論文名稱(外文):Study of Bluish Green Perovskite Quantum Dots and Perovskite Memory Devices
指導教授(中文):林皓武
指導教授(外文):Lin, Hao-Wu
口試委員(中文):陳志平
呂明諺
朱治偉
口試委員(外文):Chen, Chih-Ping
Lu, Ming-Yen
Chu, Chih-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031702
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:109
中文關鍵詞:鈣鈦礦量子點記憶體人工突觸
外文關鍵詞:perovskitequantum dotsmemoryartificial synapses
相關次數:
  • 推薦推薦:0
  • 點閱點閱:304
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文研究主題為鹵化鈣鈦礦材料應用於藍綠光量子點、記憶體以及人工突觸元件上。
第一章節簡介鹵化鈣鈦礦材料,接著簡介量子點、記憶體、人工突觸的發展過程、工作機制以及量測原理。
第二章節,我使用膠體溶液製程法合成鹵化鈣鈦礦量子點,並使用配體輔助再沉澱技術 (ligand-assisted reprecipitation, LARP),在前驅液中加入配體。首先,我調變配體的體積,進而控制合成出之鈣鈦礦量子點放光波長,接著將合成出之量子點進行高轉速離心,藉此將量子點放光光色推向藍綠光。所合成的量子點PLQY最高可達90%,且CIE1931座標位於 (0.106, 0.215) 藍綠光區域。
第三章節,我使用不同蒸鍍源在真空腔體中以共蒸鍍製程製備二維與三維鈣鈦礦記憶體。其中CsPbBr3鹵化鈣鈦礦記憶體具有最佳表現,元件在±0.5 V操作電壓下具有雙極電阻切換行為,且可重複切換高低電阻狀態達100次,開關比率達103以上。
第四章節,我在真空腔體中以共蒸鍍製程製作鈣鈦礦人工突觸元件,並使用不同蒸鍍源製備人工突觸元件,同時改變結構,觀察其鈣鈦礦組成與結構對元件表現的影響,並探討可能導電度改變的機制。其中元件結構為ITO/MoO3/Perovskite/MoO3/Ag的人工突觸元件,在±0.5 V操作電壓下,導電度具有連續性的改變,元件間差異小於15%。且元件具有PPF、STDP、SRDP等神經突觸特性表現。
In this thesis, I focused on the synthesis of halide perovskite quantum dots and the fabrication of halide perovskite resistive random-access memories and artificial synapses.
In the first part of this thesis, I briefly introduced the halide perovskite, followed by the development, operation principles and measurement methodology of quantum dots, resistive random-access memories (RRAMs), and artificial synapses.
In the second part, I used a colloidal solution process to synthesize the halide perovskite quantum dots with ligand-assisted reprecipitation methods (LARP). First, I modulated the amount of ligands, and then tuned the wavelength of the synthesized perovskite quantum dot. Then, the synthesized quantum dots were re-centrifuged at a high speed and tuned the emission colors of quantum dots to bluish-green emission region. The synthesized quantum dots (QDs) PLQY was up to 90%, and the CIE1931 coordinate of the emission was located in the (0.106, 0.215) blue-green region.
In the third part, I used two different evaporation sources to fabricate two-dimensional and three-dimensional perovskite memories in a vacuum chamber by a co-evaporation process. The CsPbBr3 halide perovskite memory showed the best performance, which exhibited a bipolar resistance switching behavior under ±0.5 V operating voltage, and could be repeatedly switched between high and low resistance states for up to 100 times, and the switching ratio was above 103.
In the fourth part, I fabricated perovskite artificial synapses by using a co-evaporation process. Furthermore, I also investigated the effect of various device structures and the material compositions on the performance of the devices, and discussed the mechanism of the conductivity tunability. The artificial synapses with device structure of ITO/MoO3/Perovskite/MoO3/Ag showed a continuous change of the conductivity in a ±0.5 V operating voltage range, and the device to device variation was less than 15%. And the device also emulated important synaptic characteristics, including paired-pulse facilitation (PPF), spike-timing dependent plasticity (STDP), and spike-rate dependent plasticity (SRDP).
摘要 i
Abstract ii
目錄 v
圖目錄 viii
表目錄 xiii
第1章 序論 1
1-1 鹵化鈣鈦礦簡介 1
1-2 量子點發展概述 3
1-3 鈣鈦礦量子點特性與量測原理 5
1-3-1 光致發光頻譜 7
1-3-2 光致發光量子產率量測 7
1-4 記憶體發展概述 10
1-5 記憶體工作原理及量測原理 13
1-5-1 記憶體電阻切換機制 13
1-5-2 記憶體量測 14
1-6 人工突觸發展概述 16
1-7 人工突觸特性及量測原理 19
1-7-1 短期可塑性 19
1-7-2 脈衝速率相關可塑性 20
1-7-3 脈衝時序相關可塑性 20
1-7-4 長期增強/抑制作用 20
1-7-5 人工突觸量測 20
1-7-6 人工突觸元件機制 21
1-8 論文架構 30
第2章 藍綠光鹵化鈣鈦礦量子點 31
2-1 簡介與文獻回顧 31
2-2 鹵化鈣鈦礦量子點的合成 33
2-2-1 實驗製程 33
2-2-2 調變1-辛胺體積 34
2-2-3 調變油酸體積 34
2-2-4 調變離心參數 34
2-3 結論 40
第3章 鹵化鈣鈦礦記憶體 41
3-1 簡介與文獻回顧 41
3-2 可蒸鍍有機分子之二維鹵化鈣鈦礦薄膜特性 43
3-4-1 實驗製程 43
3-4-2 結果與討論 43
3-3 可蒸鍍有機分子之二維鹵化鈣鈦礦記憶體 47
3-4-1 實驗製程 47
3-4-2 結果與討論 47
3-4 CsPbBr3 鹵化鈣鈦礦記憶體 50
3-4-1 實驗製程 50
3-4-2 結果與討論 50
3-5 結論 58
第4章 鹵化鈣鈦礦人工突觸 59
4-1 簡介與文獻回顧 59
4-2 CsPbBr3人工突觸 61
4-2-1 實驗製程 61
4-2-2 結果與討論 61
4-3 CsPbI2Br人工突觸 71
4-3-1 實驗製程 71
4-3-2 結果與討論 71
4-4 使用Ag為電極製作CsPbI2Br人工突觸 82
4-4-1 實驗製程 82
4-4-2 結果與討論 82
4-5 使用Cu為電極製作CsPbI2Br人工突觸 94
4-5-1 實驗製程 94
4-5-2 結果與討論 94
4-6 結論 102
第5章 結論與未來展望 104
參考文獻 106

[1] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Nature Photonics 2015, 9, 679.
[2] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu, Nature Materials 2015, 14, 636.
[3] S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn, K. T. Nam, Nature Energy 2016, 2, 16185.
[4] A. Walsh, The Journal of Physical Chemistry C 2015, 119, 5755.
[5] W.-J. Yin, T. Shi, Y. Yan, Applied Physics Letters 2014, 104, 063903.
[6] A. M. A. Leguy, J. M. Frost, A. P. McMahon, V. G. Sakai, W. Kockelmann, C. Law, X. Li, F. Foglia, A. Walsh, B. C. O’Regan, J. Nelson, J. T. Cabral, P. R. F. Barnes, Nature Communications 2015, 6, 7124.
[7] Z. I. Alferov, Semiconductors 1998, 32, 1.
[8] C. B. Murray, D. J. Norris, M. G. Bawendi, Journal of the American Chemical Society 1993, 115, 8706.
[9] L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto, Journal of the American Chemical Society 2014, 136, 850.
[10] F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533.
[11] H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung, A. L. Rogach, Advanced Science 2015, 2, 1500194.
[12] A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He, Y. Liu, ACS Nano 2016, 10, 7943.
[13] W. Deng, X. Xu, X. Zhang, Y. Zhang, X. Jin, L. Wang, S.-T. Lee, J. Jie, Advanced Functional Materials 2016, 26, 4797.
[14] D. Bimberg, U. W. Pohl, Materials Today 2011, 14, 388.
[15] J. C. de Mello, H. F. Wittmann, R. H. Friend, Advanced Materials 1997, 9, 230.
[16] J. G. Simmons, R. R. Verderber, F. Mott Nevill, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1967, 301, 77.
[17] G. Dearnaley, A. M. Stoneham, D. V. Morgan, Reports on Progress in Physics 1970, 33, 1129.
[18] W. W. Zhuang, W. Pan, B. D. Ulrich, J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S. Liu, N. J. Wu, A. Ignatiev, Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM), Vol. 2002, 2002.
[19] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. Chung, J. T. Moon, in IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., 13-15 Dec. 2004, 2004.
[20] E. J. Yoo, M. Lyu, J.-H. Yun, C. J. Kang, Y. J. Choi, L. Wang, Advanced Materials 2015, 27, 6170.
[21] C. Gu, J.-S. Lee, ACS Nano 2016, 10, 5413.
[22] J. Choi, S. Park, J. Lee, K. Hong, D.-H. Kim, C. W. Moon, G. D. Park, J. Suh, J. Hwang, S. Y. Kim, H. S. Jung, N.-G. Park, S. Han, K. T. Nam, H. W. Jang, Advanced Materials 2016, 28, 6562.
[23] B. Hwang, J.-S. Lee, Advanced Materials 2017, 29, 1701048.
[24] J.-Y. Seo, J. Choi, H.-S. Kim, J. Kim, J.-M. Yang, C. Cuhadar, J. S. Han, S.-J. Kim, D. Lee, H. W. Jang, N.-G. Park, Nanoscale 2017, 9, 15278.
[25] F. Pan, C. Chen, Z.-s. Wang, Y.-c. Yang, J. Yang, F. Zeng, Progress in Natural Science: Materials International 2010, 20, 1.
[26] Y. C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Letters 2009, 9, 1636.
[27] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80.
[28] J. J. Yang, D. B. Strukov, D. R. Stewart, Nature Nanotechnology 2012, 8, 13.
[29] Y. van de Burgt, A. Melianas, S. T. Keene, G. Malliaras, A. Salleo, Nature Electronics 2018, 1, 386.
[30] M. Suri, O. Bichler, D. Querlioz, B. Traoré, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, C. Gamrat, B. DeSalvo, Journal of Applied Physics 2012, 112, 054904.
[31] M. Suri, O. Bichler, Q. Hubert, L. Perniola, V. Sousa, C. Jahan, D. Vuillaume, C. Gamrat, B. DeSalvo, Solid-State Electronics 2013, 79, 227.
[32] S. Ambrogio, N. Ciocchini, M. Laudato, V. Milo, A. Pirovano, P. Fantini, D. Ielmini, Frontiers in Neuroscience 2016, 10, 56.
[33] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, W. Lu, Nano Letters 2010, 10, 1297.
[34] Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H. L. Xin, R. S. Williams, Q. Xia, J. J. Yang, Nature Materials 2016, 16, 101.
[35] Y. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J. Marinella, A. Alec Talin, A. Salleo, Nature Materials 2017, 16, 414.
[36] S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, J. Kim, Nature Materials 2018, 17, 335.
[37] Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nature Materials 2014, 14, 193.
[38] Z. Xiao, J. Huang, Advanced Electronic Materials 2016, 2, 1600100.
[39] W. Xu, H. Cho, Y.-H. Kim, Y.-T. Kim, C. Wolf, C.-G. Park, T.-W. Lee, Advanced Materials 2016, 28, 5916.
[40] R. A. John, N. Yantara, Y. F. Ng, G. Narasimman, E. Mosconi, D. Meggiolaro, M. R. Kulkarni, P. K. Gopalakrishnan, C. A. Nguyen, F. De Angelis, S. G. Mhaisalkar, A. Basu, N. Mathews, Advanced Materials 2018, 30, 1805454.
[41] V. M. Ho, J.-A. Lee, K. C. Martin, Science 2011, 334, 623.
[42] L. F. Abbott, W. G. Regehr, Nature 2004, 431, 796.
[43] Y. Li, Y. Zhong, J. Zhang, L. Xu, Q. Wang, H. Sun, H. Tong, X. Cheng, X. Miao, Scientific Reports 2014, 4, 4906.
[44] B. Linares-Barranco, T. Serrano-Gotarredona, L. Camuñas-Mesa, J. Perez-Carrasco, C. Zamarreño-Ramos, T. Masquelier, Frontiers in Neuroscience 2011, 5, 26.
[45] S.-W. Dai, B.-W. Hsu, C.-Y. Chen, C.-A. Lee, H.-Y. Liu, H.-F. Wang, Y.-C. Huang, T.-L. Wu, A. Manikandan, R.-M. Ho, C.-S. Tsao, C.-H. Cheng, Y.-L. Chueh, H.-W. Lin, Advanced Materials 2018, 30, 1705532.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *