帳號:guest(3.15.206.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳仁欽
作者(外文):Chen, Ren-Chin.
論文名稱(中文):利用快速熱處理製程提升廢料矽於鋰離子電池負極之電化學性能
論文名稱(外文):Enhanced Electrochemical Performance of Waste Silicon via Rapid Thermal Process for Lithium-ion Battery Anode
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
口試委員(中文):蕭立殷
李紫原
口試委員(外文):Hsiao, Li-Yin
Lee, Chi-Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031701
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:95
中文關鍵詞:鋰離子電池矽碳複合負極快速熱處理
外文關鍵詞:Lithium ion batterysilicon/carbon anoderapid thermal process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:149
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
本研究將從太陽能工業所產生之廢料矽純化後,透過簡易的快速熱處理製程,將其轉變為鋰離子電池負極材料。此廢料矽/碳複合負極可透過在快速熱處理製程中將聚丙烯酸/聚乙烯醇交聯黏著劑部分碳化後所製成。這樣的設計改進了廢料矽負極中的導電網絡,避免因矽在充放電過程中劇烈的體積膨脹使整個電極受到損害。除此之外,於電極中的碳層結構可以提供電子導電路徑,因此在此負極設計中無須添加額外之助導材料。電化學測試結果顯示,改良後之負極首圈庫倫效率高達89%,100圈充放電後仍保有1400 mAh g-1可逆電容量,且在C-rate測試中也展現了優異的成果。總結來說,根據低成本、簡易製程,高性能的優勢,此研究提供了一製備高電容量鋰離子電池負極的有利途徑。
The waste silicon particles from photovoltaic industries are turned into the anode material for lithium ion battery through a facile procedure, rapid thermal process. The waste silicon /carbon composite anode is formed by partial carbonization of cross-linked poly(acrylic acid)/poly(vinyl alcohol) binder during rapid thermal process. This design improves conductive framework of waste silicon anode, preventing the electrode from pulverization due to the serious volume expansion of silicon during cycling. Furthermore, the carbon matrix structure in the electrode provides the conductive path for electrons. Thus, no additional conductive agents are required in this novel anode design. The enhanced electrode shows a reversible charge capacity of 1400 mAh g-1 after 100 cycles. Moreover, a high first cycle efficiency around 89%, and superior rate capability are achieved. Overall, on the basis of several advantages, including low cost, facile manufacture, and high performance, this approach provides a feasible pathway to achieve high-capacity anodes for lithium ion batteries.
摘要 I
Abstract II
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivations and Objectives in This Study 2
Chapter 2 Literature Survey 4
2.1 Introduction of Lithium-ion Battery 4
2.1.1 Evolution of Lithium-ion Battery 4
2.1.2 Mechanism of Lithium-ion Battery 10
2.1.3 Evolution of anode material 14
2.2 Si-based Anode 18
2.2.1 Basic Concept of Si-based Anode 18
2.2.2 Particle Size Issue for Si Anode 24
2.2.3 Architecture Designs for Si-based Anode 27
2.2.4 Interfacial Control for Si-based Anode: Binders and Electrolyte Additive 31
2.3 Silicon Waste Recycling 37
2.4 Rapid Thermal Process 42
Chapter 3 Experiment 44
3.1. Material Preparation 44
3.1.1. Waste Silicon Particles from Solar Industry 44
3.1.2. Electrode Fabrication for Normal Electrode 44
3.1.3. Electrode Fabrication for RTP Electrode 45
3.2. Characterization and Analysis 46
3.2.1 Phase Identification 46
3.2.2 Compositional Evaluation 46
3.2.3 Morphological Observation 46
3.3. Electrochemical Analysis 47
3.3.1. Battery Assembly 47
3.3.2. Cyclability and Rate Capability Measurement 47
3.3.3. Cyclic Voltammetry(CV) 48
3.3.4. Electrochemical Impedance Spectroscopy (EIS) 48
Chapter 4 Results and Discussions 51
4.1 Characterization of Waste Silicon Particles 51
4.2 Investigation of Binder and RTP Electrode 56
4.3 Electrochemical Properties of Waste Silicon Electrodes 63
Conclusion 71
Future Perspective 72
Appdenix 74
A.1 The FTIR Result for The PAA/PVA Cross-linked Binder after RTP 74
A.2 Different Parameters for RTP Electrodes 75
A.3 The Capacity of Carbon Matrix 77
A.4 The Electrochemcial Performances for Different Binders 79
A.5 The RTP Treatment for SA Binder 81
References 84

[1] R.A. Marsh, S. Vukson, S. Surampudi, B.V. Ratnakumar, M.C. Smart, M. Manzo, P.J. Dalton, Li ion batteries for aerospace applications, Journal of Power Sources, 97-98 (2001) 25-27.
[2] M.A. Danzer, V. Liebau, F. Maglia, 14 - Aging of lithium-ion batteries for electric vehicles, in: B. Scrosati, J. Garche, W. Tillmetz (Eds.) Advances in Battery Technologies for Electric Vehicles, Woodhead Publishing, 2015, pp. 359-387.
[3] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, Journal of Power Sources, 226 (2013) 272-288.
[4] C.M. Hayner, X. Zhao, H.H. Kung, Materials for Rechargeable Lithium-Ion Batteries, Annual Review of Chemical and Biomolecular Engineering, 3 (2012) 445-471.
[5] K. Kang, H.-S. Lee, D.-W. Han, G.-S. Kim, D. Lee, G. Lee, Y.-M. Kang, M.-H. Jo, Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery, Applied Physics Letters, 96 (2010) 053110.
[6] U. Kasavajjula, C. Wang, A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, Journal of Power Sources, 163 (2007) 1003-1039.
[7] C. Zhang, F. Yang, D. Zhang, X. Zhang, C. Xue, Y. Zuo, C. Li, B. Cheng, Q. Wang, A binder-free Si-based anode for Li-ion batteries, RSC Advances, 5 (2015) 15940-15943.
[8] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18 (2015) 252-264.
[9] X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, Size-Dependent Fracture of Silicon Nanoparticles During Lithiation, ACS Nano, 6 (2012) 1522-1531.
[10] S. Choi, T.-w. Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries, Science, 357 (2017) 279-283.
[11] X. Liu, D. Chao, Q. Zhang, H. Liu, H. Hu, J. Zhao, Y. Li, Y. Huang, J. Lin, Z.X. Shen, The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading, Sci Rep, 5 (2015) 15665.
[12] C. Hwang, S. Joo, N.R. Kang, U. Lee, T.H. Kim, Y. Jeon, J. Kim, Y.J. Kim, J.Y. Kim, S.K. Kwak, H.K. Song, Breathing silicon anodes for durable high-power operations, Sci Rep, 5 (2015) 14433.
[13] J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin, D. Tang, Z. Yu, M. Regula, D. Wang, Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries, Advanced Functional Materials, 24 (2014) 5904-5910.
[14] C.C. Nguyen, T. Yoon, D.M. Seo, P. Guduru, B.L. Lucht, Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation, ACS Appl Mater Interfaces, 8 (2016) 12211-12220.
[15] H. Lord, Thermal and stress analysis of semiconductor wafers in a rapid thermal processing oven, IEEE Transactions on Semiconductor Manufacturing, 1 (1988) 105-114.
[16] V.E. Borisenko, P.J. Hesketh, Rapid thermal processing of semiconductors, Springer Science & Business Media, 2013.
[17] J. Hajek, electrolyte for lightweight electrodes, French Patent, (1949).
[18] C.A. Vincent, Lithium batteries: a 50-year perspective, 1959–2009, Solid State Ionics, 134 (2000) 159-167.
[19] M.S. Whittingham, F.R. Gamble, The lithium intercalates of the transition metal dichalcogenides, Materials Research Bulletin, 10 (1975) 363-371.
[20] D.W. Murphy, P.A. Christian, F.J. DiSalvo, J.V. Waszczak, Lithium incorporation by vanadium pentoxide, Inorganic Chemistry, 18 (1979) 2800-2803.
[21] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0[22] P.W. Tasker, The stability of ionic crystal surfaces, Journal of Physics C: Solid State Physics, 12 (1979) 4977-4984.
[23] J. Livage, A. Pasturel, C. Sanchez, J. Vedel, ESR study of lithium incorporation by V2O5 single crystals, Solid State Ionics, 1 (1980) 491-500.
[24] E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, 126 (1979) 2047-2051.
[25] F. Orsini, A. Du Pasquier, B. Beaudoin, J.M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, P. Notten, In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries, Journal of Power Sources, 76 (1998) 19-29.
[26] D. Aurbach, Y. Ein‐Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, H. Yamin, The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries: II . Graphite Electrodes, Journal of The Electrochemical Society, 142 (1995) 2882-2890.
[27] B.L. Mehdi, A. Stevens, J. Qian, C. Park, W. Xu, W.A. Henderson, J.-G. Zhang, K.T. Mueller, N.D. Browning, The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries, Scientific Reports, 6 (2016) 34267.
[28] R.G. Linford, Electrical and electrochemical properties of ion conducting polymers, in: B. Scrosati (Ed.) Applications of Electroactive Polymers, Springer Netherlands, Dordrecht, 1993, pp. 1-28.
[29] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359.
[30] M. Osiak, H. Geaney, E. Armstrong, C. O'Dwyer, Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance, Journal of Materials Chemistry A, 2 (2014) 9433-9460.
[31] M. Morris, COMPARISON OF RECHARGEABLE BATTERY TECHNOLOGIES, 2012.
[32] H. Xia, Z. Luo, J. Xie, Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries, Progress in Natural Science: Materials International, 22 (2012) 572-584.
[33] J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, 22 (2010) 587-603.
[34] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105 (2016) 52-76.
[35] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
[36] A. Manthiram, A. Vadivel Murugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion, Energy & Environmental Science, 1 (2008) 621-638.
[37] J.-T. Han, Y.-H. Huang, J.B. Goodenough, New Anode Framework for Rechargeable Lithium Batteries, Chemistry of Materials, 23 (2011) 2027-2029.
[38] J. Hassoun, P. Reale, S. Panero, B. Scrosati, M. Wachtler, M. Fleischhammer, M. Kasper, M. Wohlfahrt-Mehrens, Determination of the safety level of an advanced lithium ion battery having a nanostructured Sn–C anode, a high voltage LiNi0.5Mn1.5O4 cathode, and a polyvinylidene fluoride-based gel electrolyte, Electrochimica Acta, 55 (2010) 4194-4200.
[39] N. Loeffler, D. Bresser, S. Passerini, M. Copley, Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities, 2015.
[40] X. Wang, Q. Weng, X. Liu, X. Wang, D.-M. Tang, W. Tian, C. Zhang, W. Yi, D. Liu, Y. Bando, D. Golberg, Atomistic Origins of High Rate Capability and Capacity of N-Doped Graphene for Lithium Storage, Nano Letters, 14 (2014) 1164-1171.
[41] V. Sharova, A. Moretti, G.A. Giffin, D.V. Carvalho, S. Passerini, Evaluation of Carbon-Coated Graphite as a Negative Electrode Material for Li-Ion Batteries, C, 3 (2017) 22.
[42] F. Henry, P. Wellmann, Electrochemical Intercalation of Lithium into Carbon Materials AU - Billaud, Denis, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 245 (1994) 159-164.
[43] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto, SiOx-based anodes for secondary lithium batteries, Solid State Ionics, 152-153 (2002) 125-129.
[44] F. Jeschull, M.J. Lacey, D. Brandell, Functional binders as graphite exfoliation suppressants in aggressive electrolytes for lithium-ion batteries, Electrochimica Acta, 175 (2015) 141-150.
[45] H.H. Lin, H. Yang, C.Y. Wu, S.Y. Hsu, J.-G. Duh, Atmospheric Pressure Plasma Jet Irradiation of N Doped Carbon Decorated on Li4Ti5O12 Electrode as a High Rate Anode Material for Lithium Ion Batteries, Journal of The Electrochemical Society, 166 (2019) A5146-A5152.
[46] Y. Li, L. Li, L. Chen, X. Wang, C. Xu, Preparation and lithium intercalation behavior of TiO2 in aqueous solutions, Materials Research Bulletin, 52 (2014) 103-107.
[47] X. Xu, R. Cao, S. Jeong, J. Cho, Spindle-like Mesoporous α-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries, Nano Letters, 12 (2012) 4988-4991.
[48] G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, H.-M. Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries, Chemistry of Materials, 22 (2010) 5306-5313.
[49] X. Leng, S. Wei, Z. Jiang, J. Lian, G. Wang, Q. Jiang, Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance, Scientific Reports, 5 (2015) 16629.
[50] C.-Y. Wu, W.-E. Chang, Y.-G. Sun, J.-M. Wu, J.-G. Duh, Three-dimensional S-MoS2@α-Fe2O3 nanoparticles composites as lithium-ion battery anodes for enhanced electrochemical performance, Materials Chemistry and Physics, 219 (2018) 311-317.
[51] J. Qiu, C. Lai, E. Gray, S. Li, S. Qiu, E. Strounina, C. Sun, H. Zhao, S. Zhang, Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries, Journal of Materials Chemistry A, 2 (2014) 6353-6358.
[52] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 9 (2016) 1955-1988.
[53] H. Yang, C.-K. Lan, J.-G. Duh, The power of Nb-substituted TiO2 in Li-ion batteries: Morphology transformation induced by high concentration substitution, Journal of Power Sources, 288 (2015) 401-408.
[54] Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries, Chemical Society Reviews, 44 (2015) 5926-5940.
[55] R. Benedek, M.M. Thackeray, Lithium reactions with intermetallic-compound electrodes, Journal of Power Sources, 110 (2002) 406-411.
[56] S. Liu, J. Feng, X. Bian, Y. Qian, J. Liu, H. Xu, Nanoporous germanium as high-capacity lithium-ion battery anode, Nano Energy, 13 (2015) 651-657.
[57] D. Demirocak, S. Srinivasan, E. Stefanakos, A Review on Nanocomposite Materials for Rechargeable Li-ion Batteries, Applied Sciences, 7 (2017) 731.
[58] W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, 196 (2011) 13-24.
[59] S. Fang, L. Shen, G. Xu, P. Nie, J. Wang, H. Dou, X. Zhang, Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries, ACS Appl Mater Interfaces, 6 (2014) 6497-6503.
[60] Y.S. Hu, R. Demir-Cakan, M.M. Titirici, J.O. Muller, R. Schlogl, M. Antonietti, J. Maier, Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries, Angew Chem Int Ed Engl, 47 (2008) 1645-1649.
[61] Y. Cao, J.C. Bennett, R.A. Dunlap, M.N. Obrovac, Li Insertion in Ball Milled Si-Mn Alloys, Journal of The Electrochemical Society, 165 (2018) A1734-A1740.
[62] L. MacEachern, R.A. Dunlap, M.N. Obrovac, A Combinatorial Investigation of Fe-Si-Zn Thin Film Negative Electrodes for Li-Ion Batteries, Journal of The Electrochemical Society, 162 (2015) A229-A234.
[63] K. Nishikawa, K. Dokko, K. Kinoshita, S.-W. Woo, K. Kanamura, Three-dimensionally ordered macroporous Ni-Sn anode for lithium batteries, 2009.
[64] J. Sakabe, N. Ohta, T. Ohnishi, K. Mitsuishi, K. Takada, Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries, Communications Chemistry, 1 (2018) 24.
[65] X. Yang, H. Huang, Z. Li, M. Zhong, G. Zhang, D. Wu, Preparation and lithium-storage performance of carbon/silica composite with a unique porous bicontinuous nanostructure, Carbon, 77 (2014) 275-280.
[66] J. Yang, M. Wachtler, M. Winter, J.O. Besenhard, Sub‐Microcrystalline Sn and Sn ‐ SnSb Powders as Lithium Storage Materials for Lithium‐Ion Batteries, Electrochemical and Solid-State Letters, 2 (1999) 161-163.
[67] H. Kim, M. Seo, M.-H. Park, J. Cho, A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries, Angewandte Chemie International Edition, 49 (2010) 2146-2149.
[68] G.-T. Ye, P.-Y. Chen, J.-G. Duh, Investigation of electrochemical properties of bio-inspired SiOx/PI multilayered thin film anode for lithium ion batteries, Surface and Coatings Technology, 350 (2018) 773-778.
[69] C.-Y. Wu, C.-C. Chang, J.-G. Duh, Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode, Journal of Power Sources, 325 (2016) 64-70.
[70] J.P. Maranchi, A.F. Hepp, P.N. Kumta, High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries, Electrochemical and Solid-State Letters, 6 (2003) A198-A201.
[71] J. Liu, Q. Zhang, Z.-Y. Wu, J.-H. Wu, J.-T. Li, L. Huang, S.-G. Sun, A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery, Chemical Communications, 50 (2014) 6386-6389.
[72] D. Ma, Z. Cao, A. Hu, Si-Based Anode Materials for Li-Ion Batteries: A Mini Review, Nano-Micro Letters, 6 (2014) 347-358.
[73] P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun, S.X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications, Energy Storage Materials, 15 (2018) 422-446.
[74] C.J. Wen, R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system, Journal of Solid State Chemistry, 37 (1981) 271-278.
[75] S.-M. Liang, F. Taubert, A. Kozlov, J. Seidel, F. Mertens, R. Schmid-Fetzer, Thermodynamics of Li-Si and Li-Si-H phase diagrams applied to hydrogen absorption and Li-ion batteries, Intermetallics, 81 (2017) 32-46.
[76] V.L. Chevrier, J.R. Dahn, First Principles Model of Amorphous Silicon Lithiation, Journal of The Electrochemical Society, 156 (2009) A454-A458.
[77] M.N. Obrovac, L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction, Electrochemical and Solid-State Letters, 7 (2004) A93-A96.
[78] M.N. Obrovac, L.J. Krause, Reversible Cycling of Crystalline Silicon Powder, Journal of The Electrochemical Society, 154 (2007) A103-A108.
[79] J.H. Ryu, J.W. Kim, Y.-E. Sung, S.M. Oh, Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries, Electrochemical and Solid-State Letters, 7 (2004) A306-A309.
[80] I. Choi, M.J. Lee, S.M. Oh, J.J. Kim, Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM, Electrochimica Acta, 85 (2012) 369-376.
[81] T. Yoon, C.C. Nguyen, D.M. Seo, B.L. Lucht, Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries, Journal of The Electrochemical Society, 162 (2015) A2325-A2330.
[82] S. Bourderau, T. Brousse, D.M. Schleich, Amorphous silicon as a possible anode material for Li-ion batteries, Journal of Power Sources, 81-82 (1999) 233-236.
[83] J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Highly Reversible Lithium Storage in Nanostructured Silicon, Electrochemical and Solid-State Letters, 6 (2003) A194-A197.
[84] B.-S. Lee, S.-B. Son, K.-M. Park, J.-H. Seo, S.-H. Lee, I.-S. Choi, K.-H. Oh, W.-R. Yu, Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode, Journal of Power Sources, 206 (2012) 267-273.
[85] Y. Jin, S. Li, A. Kushima, X. Zheng, Y. Sun, J. Xie, J. Sun, W. Xue, G. Zhou, J. Wu, F. Shi, R. Zhang, Z. Zhu, K. So, Y. Cui, J. Li, Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%, Energy & Environmental Science, 10 (2017) 580-592.
[86] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, 3 (2007) 31.
[87] C.K. CHAN, H. PENG, G. LIU, K. McILWRATH, X.F. ZHANG, R.A. HUGGINS, Y. CUI, High-performance lithium battery anodes using silicon nanowires, in: Materials for Sustainable Energy, pp. 187-191.
[88] Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life, Nano Letters, 11 (2011) 2949-2954.
[89] N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes, Nature Nanotechnology, 9 (2014) 187.
[90] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature Materials, 9 (2010) 353.
[91] A. Esmanski, G.A. Ozin, Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries, Advanced Functional Materials, 19 (2009) 1999-2010.
[92] N. Liu, K. Huo, M.T. McDowell, J. Zhao, Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Scientific Reports, 3 (2013) 1919.
[93] J. Entwistle, A. Rennie, S. Patwardhan, A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond, Journal of Materials Chemistry A, 6 (2018) 18344-18356.
[94] C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nature Chemistry, 5 (2013) 1042.
[95] J. Lopez, Z. Chen, C. Wang, S.C. Andrews, Y. Cui, Z. Bao, The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes, ACS Applied Materials & Interfaces, 8 (2016) 2318-2324.
[96] Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, Y. Cui, Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes, Nature Energy, 1 (2016) 15029.
[97] J.G. Lee, J. Kim, J.B. Lee, H. Park, H.-S. Kim, J.H. Ryu, D.S. Jung, E.K. Kim, S.M. Oh, Mechanical Damage of Surface Films and Failure of Nano-Sized Silicon Electrodes in Lithium Ion Batteries, Journal of The Electrochemical Society, 164 (2017) A6103-A6109.
[98] E.M. Erickson, E. Markevich, G. Salitra, D. Sharon, D. Hirshberg, E. de la Llave, I. Shterenberg, A. Rozenman, A. Frimer, D. Aurbach, Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions, Journal of The Electrochemical Society, 162 (2015) A2424-A2438.
[99] D. Pritzl, S. Solchenbach, M. Wetjen, H.A. Gasteiger, Analysis of Vinylene Carbonate (VC) as Additive in Graphite/LiNi0.5Mn1.5O4 Cells, Journal of The Electrochemical Society, 164 (2017) A2625-A2635.
[100] E. Markevich, K. Fridman, R. Sharabi, R. Elazari, G. Salitra, H.E. Gottlieb, G. Gershinsky, A. Garsuch, G. Semrau, M.A. Schmidt, D. Aurbach, Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance, Journal of The Electrochemical Society, 160 (2013) A1824-A1833.
[101] L. Chen, K. Wang, X. Xie, J. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, Journal of Power Sources, 174 (2007) 538-543.
[102] A. Bordes, K. Eom, T.F. Fuller, The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si–graphene composite anodes, Journal of Power Sources, 257 (2014) 163-169.
[103] S. Jaiser, M. Müller, M. Baunach, W. Bauer, P. Scharfer, W. Schabel, Investigation of film solidification and binder migration during drying of Li-Ion battery anodes, Journal of Power Sources, 318 (2016) 210-219.
[104] F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, L. Chen, Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries, Journal of The Electrochemical Society, 162 (2015) A2509-A2528.
[105] A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid, ACS Applied Materials & Interfaces, 2 (2010) 3004-3010.
[106] C.R. Hernandez, A. Etiemble, T. Douillard, D. Mazouzi, Z. Karkar, E. Maire, D. Guyomard, B. Lestriez, L. Roué, A Facile and Very Effective Method to Enhance the Mechanical Strength and the Cyclability of Si-Based Electrodes for Li-Ion Batteries, Advanced Energy Materials, 8 (2018) 1701787.
[107] L. Zhang, L. Zhang, L. Chai, P. Xue, W. Hao, H. Zheng, A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries, Journal of Materials Chemistry A, 2 (2014) 19036-19045.
[108] D. Munao, J.W.M. van Erven, M. Valvo, E. Garcia-Tamayo, E.M. Kelder, Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries, Journal of Power Sources, 196 (2011) 6695-6702.
[109] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries, Science, 334 (2011) 75-79.
[110] A. Schechter, D. Aurbach, H. Cohen, X-ray Photoelectron Spectroscopy Study of Surface Films Formed on Li Electrodes Freshly Prepared in Alkyl Carbonate Solutions, Langmuir, 15 (1999) 3334-3342.
[111] D. Sarti, R. Einhaus, Silicon feedstock for the multi-crystalline photovoltaic industry, Solar Energy Materials and Solar Cells, 72 (2002) 27-40.
[112] J. Kong, P. Xing, Y. Liu, J. Wang, X. Jin, Z. Feng, X. Luo, An Economical Approach for the Recycling of High-Purity Silicon from Diamond-Wire Saw Kerf Slurry Waste, Silicon, 11 (2019) 367-376.
[113] M. De Sousa, A. Vardelle, G. Mariaux, M. Vardelle, U. Michon, V. Beudin, Use of a thermal plasma process to recycle silicon kerf loss to solar-grade silicon feedstock, Separation and Purification Technology, 161 (2016) 187-192.
[114] T.Y. Wang, Y.C. Lin, C.Y. Tai, C.C. Fei, M.Y. Tseng, C.W. Lan, Recovery of silicon from kerf loss slurry waste for photovoltaic applications, Progress in Photovoltaics: Research and Applications, 17 (2009) 155-163.
[115] L.-Z. Wang, Experimental Study of a New Hydrocyclone for Multi-Density Particles Separation AU - Wang, Ji-Ming, Separation Science and Technology, 44 (2009) 2915-2927.
[116] W.-H. Lee, C.-W. Hsu, Y.-C. Ding, T.-W. Cheng, A study on recovery of SiC from silicon wafer cutting slurry, Journal of Material Cycles and Waste Management, 20 (2018) 375-385.
[117] S.A. Sergiienko, B.V. Pogorelov, V.B. Daniliuk, Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots, Separation and Purification Technology, 133 (2014) 16-21.
[118] Y.-F. Wu, Y.-M. Chen, Separation of silicon and silicon carbide using an electrical field, Separation and Purification Technology, 68 (2009) 70-74.
[119] Y.-C. Lin, C.Y. Tai, Recovery of silicon powder from kerfs loss slurry using phase-transfer separation method, Separation and Purification Technology, 74 (2010) 170-177.
[120] K. Tomono, H. Furuya, S. Miyamoto, Y. Okamura, M. Sumimoto, Y. Sakata, R. Komatsu, M. Nakayama, Investigations on hydrobromination of silicon in the presence of silicon carbide abrasives as a purification route of kerf loss waste, Separation and Purification Technology, 103 (2013) 109-113.
[121] H.D. Jang, H. Kim, H. Chang, J. Kim, K.M. Roh, J.-H. Choi, B.-G. Cho, E. Park, H. Kim, J. Luo, J. Huang, Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries, Scientific Reports, 5 (2015) 9431.
[122] R. Singh, M. Fakhruddin, K.F. Poole, Role of Rapid Thermal Processing in the Development of Disruptive and Non-disruptive Technologies for Semiconductor Manufacturing in the 21st Century, in: H. Fukuda (Ed.) Rapid Thermal Processing for Future Semiconductor Devices, Elsevier Science, Amsterdam, 2003, pp. 1-8.
[123] F. Radpour, R. Singh, W.L. Krisa, P. Chou, M. Rahmati, C.F. Chen, J. Narayan, Electrical and structural characteristics of thin epitaxial dielectric films formed by in situ rapid isothermal processing, Journal of Vacuum Science & Technology A, 6 (1988) 1363-1366.
[124] Y. Zhang, C. Liao, K. Zong, H. Wang, J. Liu, T. Jiang, J. Han, G. Liu, L. Cui, Q. Ye, H. Yan, W. Lau, Cu2ZnSnSe4 thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu–Zn–Sn precursors, Solar Energy, 94 (2013) 1-7.
[125] https://www.ulvac.co.id/high-temperature-rapid-thermal-annealing-system-ht-rta59hd/.
[126] H.S. Mansur, C.M. Sadahira, A.N. Souza, A.A.P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Materials Science and Engineering: C, 28 (2008) 539-548.
[127] W. Kam, C.-W. Liew, J.Y. Lim, S. Ramesh, Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes, Ionics, 20 (2013) 665-674.
[128] P.K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films, Materials Chemistry and Physics, 96 (2006) 253-277.
[129] T.-H. Ko, Raman spectrum of modified PAN-based carbon fibers during graphitization, Journal of Applied Polymer Science, 59 (1996) 577-580.
[130] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, 458 (2009) 872-876.
[131] M.Y. Bashouti, K. Sardashti, J. Ristein, S. Christiansen, Kinetic study of H-terminated silicon nanowires oxidation in very first stages, Nanoscale Research Letters, 8 (2013) 41-41.
[132] H. Takezawa, K. Iwamoto, S. Ito, H. Yoshizawa, Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries, Journal of Power Sources, 244 (2013) 149-157.
[133] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada, Growth of native oxide on a silicon surface, Journal of Applied Physics, 68 (1990) 1272-1281.
[134] C. Pereira-Nabais, J. Światowska, A. Chagnes, F. Ozanam, A. Gohier, P. Tran-Van, C.-S. Cojocaru, M. Cassir, P. Marcus, Interphase chemistry of Si electrodes used as anodes in Li-ion batteries, Applied Surface Science, 266 (2013) 5-16.
[135] H. Li, C. Lu, B. Zhang, A straightforward approach towards Si@C/graphene nanocomposite and its superior lithium storage performance, Electrochimica Acta, 120 (2014) 96-101.
[136] N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes, Nano Letters, 12 (2012) 3315-3321.
[137] Y.-S. Hu, R. Demir-Cakan, M.-M. Titirici, J.-O. Müller, R. Schlögl, M. Antonietti, J. Maier, Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries, Angewandte Chemie International Edition, 47 (2008) 1645-1649.
[138] C. Wang, F. Luo, H. Lu, X. Rong, B. Liu, G. Chu, Y. Sun, B. Quan, J. Zheng, J. Li, C. Gu, X. Qiu, H. Li, L. Chen, A Well-Defined Silicon Nanocone–Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 9 (2017) 2806-2814.
[139] F. Paloukis, C. Elmasides, F. Farmakis, P. Selinis, S.G. Neophytides, N. Georgoulas, Electrochemical Impedance Spectroscopy study in micro-grain structured amorphous silicon anodes for lithium-ion batteries, Journal of Power Sources, 331 (2016) 285-292.
[140] X.-H. Li, Y.-B. He, C. Miao, X. Qin, W. Lv, H. Du, B. Li, Q.-H. Yang, F. Kang, Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties, Carbon, 81 (2015) 739-747.
[141] W. Alkarmo, A. Aqil, F. Ouhib, J.-M. Thomassin, D. Mazouzi, D. Guyomard, C. Detrembleur, C. Jérôme, Nanostructured 3D porous hybrid network of N-doped carbon, graphene and Si nanoparticles as an anode material for Li-ion batteries, New Journal of Chemistry, 41 (2017) 10555-10560.
[142] C. Lei, F. Han, D. Li, W.-C. Li, Q. Sun, X.-Q. Zhang, A.-H. Lu, Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes, Nanoscale, 5 (2013) 1168-1175.
[143] J. Kong, W.A. Yee, L. Yang, Y. Wei, S.L. Phua, H.G. Ong, J.M. Ang, X. Li, X. Lu, Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes, Chemical Communications, 48 (2012) 10316-10318.
[144] Y. Bie, J. Yang, X. Liu, J. Wang, Y. Nuli, W. Lu, Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries, ACS Applied Materials & Interfaces, 8 (2016) 2899-2904.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *