帳號:guest(18.191.210.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉冠霆
作者(外文):Ye, Guan-Ting
論文名稱(中文):仿生氧化矽/聚亞醯安鋰離子電池多層 薄膜負極之電化學性質探討
論文名稱(外文):Electrochemical Properties of Bio-inspired SiOx/PI Multilayered Thin Film Anode for Lithium Ion Batteries
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
口試委員(中文):張守一
陳柏宇
口試委員(外文):Chang, Shou-Yi
Chen, Po-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031603
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:86
中文關鍵詞:鋰離子電池矽負極磁控濺鍍
外文關鍵詞:Lithium ion batteriesSilicon anodeRF sputtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:166
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
此篇研究以仿生概念為發想,學習自然界的生物-鮑魚殼之殼層結構,藉由有機-無機多層複合結構,增進矽基薄膜負極材料之機械性質,並以此增進其作為鋰離子電池負極材料使用之電化學穩定性。本篇研究以複合物理濺鍍系統鍍製氧化矽-聚亞醯安之無機-有機多層薄膜,此濺鍍系統整合脈衝雷射以及磁控濺鍍至單一系統,以此方式可有效鍍製出無機-有機多層複合薄膜結構,此研究以此系統將氧化矽-聚亞醯安多層複合薄膜鍍製於銅箔上並研究其機械性質及電化學性質。實驗以高解析電子微探儀(EPMA)分析其成分組成,並以掃描式電子顯微鏡(SEM)觀察其多層結構。實驗結果顯示特定結構比例之氧化矽-聚亞醯安薄膜在第一圈充放電中具有較高之可逆效率且具有較好的充放電穩定性,以奈米壓痕試驗機(Nano-Indentation)定量薄膜之破裂韌性,結果顯示多層結構之薄膜材料具有較高之破裂韌性,使其具有較佳之充放電穩定性。
A new idea of bio-mimic organic-inorganic multilayer thin film has been introduced as a strategy to improve the mechanical and electrochemical performance of silicon-based anode materials. The organic-inorganic multilayer thin film composed of SiOx (nonstoichiometric silicon suboxides) and PI (polyimide) has been synthesized by a hybrid sputtering system combining reactive RF sputtering and pulsed laser deposition. SiOx/PI thin films were deposited on a copper foil to investigate its electrochemical properties. The chemical composition of as-deposited SiOx/PI coatings were measured by a FE-EPMA. The overall multilayered structure was observed by a Scanning Electron Microscopy. The SiOx/PI multilayer thin film anode with proper architecture control exhibits higher columbic efficiency during 1st charge/discharge cycle and better capacity retention as compared to pure SiOx thin film anode. The fracture toughness of SiOx/PI multilayer thin film anode was measured via nanoindentation as compared to the pure SiOx thin film anode. The results show that the multilayer structure reveals a higher
fracture toughness, leading to a better structure stability during the charge/discharge cycling.
Abstract………1
Chapter 1 Introduction………2
1.1 Background………2
1.2 Improvement Strategy………3
1.3 Learning from Mother Nature………3
1.4 Motivation and Objectives………4
Chapter 2 Literature Review………5
2.1 Introduction of Bio-Materials………5
2.1.1 Inspiration from Biological Materials………5
2.1.2 Abalone shells………7
2.2 Sputtering Technique………22
2.2.2 Reactive Magnetron Deposition………23
2.3 Pulsed Laser Deposition………26
2.3.1 Typical PLD System………26
2.3.2 Deposition of polymer films………27
2.4 Review of Multilayer Coatings………31
2.4.1 Strengthening Mechanisms………31
2.5 Mechanical Properties Evaluations and Characterizations………37
2.6 Fracture Toughness Evaluation………40
2.6.1 Nano-indentation Method………41
Chapter 3 Experimental Section………45
3.1 Hybrid Sputtering and PLD System………45
3.2 Deposition by the Hybrid PVD System………45
3.3 Material Characterization………46
Chapter 4 Results and Discussion………50
4.1 Phase Identification and Microstructure Analysis of SiOx-PI Multilayer Thin Film………50
4.2 Electrochemical Properties of SiOx-PI Multilayer Thin Film………54
4.3 Fracture Toughness of Multilayer Coatings………63
4.4 Dependence between Mechanical Properties and Thickness Ratio of Organic-Inorganic Layer………65
4.5 Strengthening Mechanisms of Multilayer Thin Film………66
Chapter 5 Conclusions………80
References………81

[1] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy
Environ. Sci. 4 (2011) 3243

[2] U. Kasavajjula, C. Wang, A. John Appleby, J. Power Sources 163 (2007) 1003

[3] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto,Solid State Ionics 152–
153 (2002) 125.

[4] M. Miyachi, H.Yamamoto, H. Kawai,T. Ohta, and M. Shirakata, J. Electrochem. Soc. 152
(2005) A20089

[5] H. Takezawa, K. Iwamoto, S. Ito, H. Yoshizawa, J. Power Sources 244
(2013) 149

[6] X. Li, W.C. Chang, Y.J. Chao, R. Wang, M. Chang, Nano letters, vol. 4, no. 4, 613-617,
2004

[7] A. Y. M. Lin, M.A. Meyers, K.S. Vecchio, Mater Sci Eng C 26 (2006) 1380

[8] H. D. Espinosa, J. E. Rim, F. Barthelat, and M. J. Buehler, "Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials," Progress in Materials
Science, vol. 54, pp.1059-1100, 11// 2009.

[9] R. O. Ritchie, "The conflicts between strength and toughness," Nat Mater, vol. 10, pp. 817-
822, 11//print 2011.

[10] X. D. Li, W. C. Chang, Y. J. Chao, R. Z. Wang, and M. Chang, "Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone,"
Nano Letters, vol. 4, pp. 613-617, Apr 2004.

[11] X. D. Li, W. C. Chang, Y. J. Chao, R. Z. Wang, and M. Chang, "Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone,"
Nano Letters, vol. 4, pp. 613-617, Apr 2004.

[12] J. D. Currey and J. D. Taylor, "The mechanical behaviour of some molluscan hard tissues,"
Journal of Zoology, vol. 173, pp. 395-406, 1974.

[13] M. A. Meyers, P. Y. Chen, A. Y. M. Lin, and Y. Seki, "Biological materials: Structure and
mechanical properties," Progress in Materials Science, vol. 53, pp. 1-206, Jan 2008.

[14] F. Barthelat, C. M. Li, C. Comi, and H. D. Espinosa, "Mechanical properties of nacre constituents and their impact on mechanical performance," Journal of Materials Research, vol.
21, pp. 1977-1986, 2006.

[15] F. Song, A. K. Soh, and Y. L. Bai, "Structural and mechanical properties of the organic
matrix layers of nacre," Biomaterials, vol. 24, pp. 3623-3631, Sep 2003.

[16] B. J. F. Bruet, H. J. Qi, M. C. Boyce, R. Panas, K. Tai, L. Frick, et al., "Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus
niloticus," Journal of Materials Research, vol. 20, pp. 2400-2419, Sep 2005.

[17] A. P. Jackson, J. F. V. Vincent, and R. M. Turner, "Comparison of Nacre with Other Ceramic Composites," Journal of Materials Science, vol. 25, pp. 3173-3178, Jul 1990.

[18] A. P. Jackson, J. F. V. Vincent, and R. M. Turner, "Comparison of Nacre with Other Ceramic Composites," Journal of Materials Science, vol. 25, pp. 3173-3178, Jul 1990.

[19] A. Lin and M. A. Meyers, "Growth and structure in abalone shell," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 390, pp. 27-
41, 2005.

[20] A. Y. M. Lin, M. A. Meyers, and K. S. Vecchio, "Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study," Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 26, pp.
1380-1389, Sep 2006.

[21] F. Tuba, L. Oláh, and P. Nagy, "Characterization of the fracture properties of aragonite- and calcite-filled poly(ε-caprolactone) by the essential work of fracture method," Journal of
Applied Polymer Science, vol. 120, pp. 2587-2595, 2011.

[22] H. Kakisawa and T. Sumitomo, "The toughening mechanism of nacre and structural materials inspired by nacre," Science and Technology of Advanced Materials, vol. 12, 2011 1.
[23] R. O. Ritchie, "The conflicts between strength and toughness," Nature Materials, vol. 10,
pp. 817-822, Nov 2011.

[24] R. Chen, C.-a. Wang, Y. Huang, and H. Le, "An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure," Materials Science and Engineering: C, vol. 28,
pp. 218-222, 3/10/ 2008.

[25] Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, "Toughening through Nature-Adapted Nanoscale Design," Nano Letters, vol. 9, pp. 4103-4108, Dec 2009.

[26] O. Kolednik, J. Predan, F. D. Fischer, and P. Fratzl, "Bioinspired Design Criteria for Damage-Resistant Materials with Periodically Varying Microstructure," Advanced Functional
Materials, vol. 21, pp.3634-3641, 2011.

[27] R. A. Pethrick, "Advanced surface coatings Edited by D. S. Rickerby and A. Matthews
Blackie & Son Ltd, Glasgow, 1991. pp. 368.

[28] P. Sigmund, "Sputtering by ion bombardment theoretical concepts," in Sputtering by Particle Bombardment I. vol. 47, R. Behrisch, Ed., ed: Springer Berlin Heidelberg, 1981, pp.
9-71.

[29] P. D. Townsend, Ion implantation, sputtering and their applications /by P. D. Townsend, J.
C. Kelly, N. E. W. Hartley. London; New York: Academic Press, 1976.

[30] M. Ohring, Materials Science of Thin Films, 2 ed.: Academic Press,2001.

[31] E. Hollands and D. S. Campbell, "The Mechanism of Reactive Sputtering," Journal of
Materials Science, vol. 3, pp. 544-552, Sep 1968.

[32] D. H. Lowndes, D. B. Geohegan, A. A. Puretzky, D. P. Norton, and C.M. Rouleau, "Synthesis of novel thin-film materials by pulsed laser deposition," Science, vol. 273, pp. 898-
903, Aug 16 1996.

[33] M. N. R. Ashfold, F. Claeyssens, G. M. Fuge, and S. J. Henley, "Pulsed laser ablation and
deposition of thin films," Chemical Society Reviews, vol. 33, pp. 23-31, Jan 10 2004.

[34] H. M. Christen and G. Eres, "Recent advances in pulsed-laser deposition of complex
oxides," Journal of Physics-Condensed Matter, vol. 20, Jul 2 2008.

[35] S. G. Hansen and T. E. Robitaille, "Formation of Polymer-Films by Pulsed Laser
Evaporation," Applied Physics Letters, vol. 52, pp. 81-83, Jan 4 1988.

[36] Y. Tsuboi, H. Adachi, E. Yamamoto, and A. Itaya, "Pulsed laser deposition of poly(tetrafluoroethylene), poly(methylmethacrylate), and polycarbonate utilizing anthracene-photosensitized ablation," Japanese Journal of Applied Physics Part 1-Regular Papers Short
Notes & Review Papers, vol. 41, pp. 885-890, Feb 2002.

[37] M. Karlik, "Atomic structure of grown-in antiphase boundaries (APB2) in the Fe-28Al-5Cr (at.%) alloy," Materials Science and Engineering: A, vol. 234–236, pp. 212-215, 1997.

[38] M. F. T. Okamoto, K. Takizawa, Corros. Eng., vol. 45, p. 425, 1996.

[39] J.-Y. Chen, G.-P. Yu, and J.-H. Huang, "Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel," Materials Chemistry and Physics, vol. 65, pp. 310-315, 2000.

[40] J. B. Kim, B. S. Jun, and S. M. Lee, "Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries," Electrochimica Acta, vol. 50,
pp. 3390-3394, May 30 2005.

[41] J. P. Chu and Y. C. Wang, "Sputter-deposited Cu/Cu(O) multilayers
exhibiting enhanced strength and tunable modulus," Acta Materialia, vol. 58, pp. 6371-6378,
Nov 2010.

[42] S. A. Barnett and A. Madan, "Hardness and stability of metal-nitride nanoscale
multilayers," Scripta Materialia, vol. 50, pp. 739-744, Mar 2004.

[43] W. D. Sproul, "Reactive sputter deposition of polycrystalline nitride and oxide superlattice
coatings," Surface & Coatings Technology, vol. 86, pp. 170-176, 1996.

[44] M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, and C. Ziebert, "Concepts for the design of advanced nanoscale PVD multilayer protective thin films," Journal of Alloys and
Compounds, vol. 483, pp.321-333, Aug 26 2009.

[45] D.-G. Kim, T.-Y. Seong, and Y.-J. Baik, "Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted
deposition," Surface and Coatings Technology, vol. 153, pp. 79-83, 4/1/ 2002.

[46] Y.-Z. Tsai and J.-G. Duh, "Thermal stability and microstructure characterization of CrN/WN multilayer coatings fabricated by ion-beam assisted deposition," Surface and
Coatings Technology, vol. 200, pp. 1683-1689, 11/21/ 2005.

[47] P. C. Yashar and W. D. Sproul, "Nanometer scale multilayered hard coatings," Vacuum,
vol. 55, pp. 179-190, Dec 1999.

[48] H. Holleck and V. Schier, "Multilayer PVD coatings for wear protection," Surface and
Coatings Technology, vol. 76–77, Part 1, pp.328-336, 11// 1995.

[49] J. S. Koehler, "Attempt to Design a Strong Solid," Physical Review B, vol. 2, pp. 547-551,
1970.

[50] S. L. Lehoczky, "Strength enhancement in thin-layered Al-Cu laminates," Journal of
Applied Physics, vol. 49, pp. 5479-5485, 1978.

[51] S. L. Lehoczky, "Retardation of dislocation generation and motion in thin-layered metal
laminates," Physical Review Letters, vol. 41, pp.1814-1818, 1978.

[52] W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments," Journal of
Materials Research, vol. 7, pp. 1564-1583, Jun 1992.

[53] C.-M. Cheng and Y.-T. Cheng, "On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile," Applied Physics Letters,
vol. 71, pp. 2623-2625, 1997.

[54] G. Dieter, Mechanical Metallurgy, 3 ed.: McGraw-Hill Education,1986.

[55] E. W. Wong, P. E. Sheehan, and C. M. Lieber, "Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes," Science, vol. 277, pp. 1971-1975, Sep 26 1997.

[56] H. Hosokawa, A. V. Desai, and M. A. Haque, "Plane stress fracture toughness of freestanding nanoscale thin films," Thin Solid Films, vol. 516, pp. 6444-6447, Jul 31 2008.

[57] X. Li, B. Bhushan, Thin Solid Films 315 (1998) 214

[58] J. D. Toonder, J. Malzbender, G. D. With, R. Balkenende, J. Mater.
Res., Vol. 17, No. 1, 224-233, 2002

[59] J. Malzbender, G. de With, Surf. Coat. Technol. 135 (1) (2000) 60.

[60] I. Karamancheva, V. Stefov, B. Soptrajanov, G. Danev, E. Spasova, J. Assa, Vib.
Spectrosc.19 (1999) 369.

[61] J. H. Ryu, J. W. Kim, Y.E. Sung, S. M. Oh, Electrochem. Solid-State Lett.
7 (10) (2004) A306–A309.

[62] A. Viehbeck, M. Goldberg, C. Kovac, J. Electrochem. Soc. 137 (5) (1990) 1460.

[63] B.N. Wilkes, Z.L. Brown, L.J. Krause, M. Triemert, M.N. Obrovac, J. Electrochem. Soc.
163 (3) (2016) A364–A372.

[64] T. Zheng, W.R. McKinnon, J.R. Dahn, J. Electrochem. Soc. 143 (7) (1994).

[65] M.S. Balogun, Y. Minghao, C. Li, T. Zhai, L. Yi, L. X. Y. Tong, J. Mater. Chem. A 2
(2014) 10825.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *