帳號:guest(18.222.107.27)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴冠傑
作者(外文):Lai, Guan-Jie
論文名稱(中文):液相剝離法二硫化鎢-二硫化鉬之二維異質結構於提升光催化產氫之探討
論文名稱(外文):Improved photocatalytic H2 production of 2D WS2-MoS2 heterostructures via liquid phase exfoliation
指導教授(中文):呂明諺
指導教授(外文):Lu, Ming-Yen
口試委員(中文):張育誠
呂明霈
口試委員(外文):Chang, Yu-Cheng
Lu, Ming-Pei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:105031597
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:異質結構二硫化鎢二硫化鉬光催化產氫液相剝離法
外文關鍵詞:HeterostructuresMolybdenum disulfideTungsten disulfidePhotocatalytic hydrogen productionLiquid phase exfoliation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:408
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
低成本與高效率的光觸媒對光催化產氫的開發在工業的應用性是相當重要的。本研究設計了不包含貴重金屬的WS2-MoS2奈米複合材料作為光觸媒,MoS2與WS2常被作為助催化劑幫助其他催化劑進行反應,但這兩個材料的結合具有優勢,因為相同的晶體結構且晶格常數相近,意味著兩個材料之間晶格不匹配的程度很低,使界面缺陷少。此外,因為恰當的能帶分布,使得此兩半導體異質材料能帶結構為Type-II型態,因而可以有效的分離光致電子電洞對,進而提升產氫效能。
但由於量子效應,少層數的WS2-MoS2異質結構才能有效催化,為了得到少層數WS2-MoS2異質結構,將異質結構塊材置於乙醇水溶液中以液相剝離法(Liquid Phase Exfoliation, LPE)處理後便可得到。後續光催化產氫成果顯示,未經LPE處理之2 % MoS2塊材異質結構效率為7.5 μmol·h-1·g-1,而經LPE處理之異質結構效率則達92.3 mmol·h-1·g-1,相距極大。此外亦發現若少層數WS2-MoS2異質結構含有2 %重量組成的MoS2,其催化能力最佳,分別為純材料WS2和MoS2的2.34倍和7.64倍,顯示異質結構中有較多的光致載子參與反應,達到良好的催化效果。
本研究中以少層數WS2-MoS2異質結構為催化材料,沒有使用貴重金屬可大幅降低產氫光觸媒的成本,提供二維光觸媒材料一個新的製備與應用型式。
For industrial developments, the exploitation of materials for a low-cost and efficient photocatalytic hydrogen evolution is very crucial. Herein, we implemented the study to discuss the photocatalytic hydrogen evolution of the noble-metal-free WS2-MoS2 heterostructures. The MoS2 and WS2 are often used as co-catalysts with other materials. However, it is advantageous to combine these two together. MoS2 and WS2 are with the same crystal structure and have similar lattice parameters, which implies the small lattice mismatch between MoS2 and WS2. Moreover, due to the appropriate bandgap alignments between MoS2 and WS2, the charge separation under light illumination is remarkable, which enhances the hydrogen evolution performances.
Because of the quantum effect, only the few-layered WS2-MoS2 heterostructures can catalyze effectively. To obtain the few-layered heterostructures for photocatalytic hydrogen evolution, we put bulk heterostructures in the ethanol aqueous solution for the liquid phase exfoliation, LPE. The photocatalytic H2 production analysis showed that the efficiency of untreated bulk heterostructures with 2 % of MoS2 is 7.5 μmol·h-1·g-1 and the efficiency of LPE treated heterostructures is 92.3 mmol·h-1·g-1. In addition, we found that the few-layered WS2-MoS2 heterostructures with 2 w.t.%MoS2 has the best efficiency which is 2.34, 7.64 times of pure WS2 and MoS2 respectively. It shows that more photoinduced carriers join the reaction in heterostructures and it enhances the catalytic efficiency.
In the study, we utilize ethanol aqueous solution chosen by Hansen Solubility Parameters theory to obtain the few-layered WS2-MoS2 heterostructures and which suspension solution can directly apply in photocatalytic H2 production and show the high efficiency. It is a new way to design 2D photocatalytic materials for efficient H2 production.
摘要  -----------   I
Abstract----------- II
致謝  -----------   III
目錄  -----------   IV
圖目錄  -----------   VI
表目錄  -----------   VIII
第一章 緒論與文獻回顧  -----------   1
1-1氫能源(Hydrogen Energy)----------- 1
1-2光催化(Photocatalysis) -----------3
1-2-1本多 – 藤嶋效應(Honda – Fujishima effect)----------- 4
1-2-2光催化分解水原理 -----------5
1-2-3犧牲劑(Scavengers)工作原理----------- 6
1-3助催化劑於光催化產氫之發展 -----------7
1-3-1電子電洞對分離(Electron-Hole Pairs Separation)原理-----------8
1-4二維材料(Two Dimensional Materials)----------- 9
1-4-1 MoS2和WS2基本性質 -----------11
1-4-2二維塊材之剝離法與檢測 -----------13
1-4-2-1機械剝離法(Mechanical Exfoliation)----------- 13
1-4-2-2鋰離子剝離法(Lithium-Assisted Exfoliation)----------- 14
1-4-2-3液相剝離法(Liquid Phase Exfoliation, LPE)----------- 15
1-4-2-4層數檢測 -----------17
1-4-3半導體異質材料能帶結構型態----------- 18
1-4-3-1 WS2-MoS2異質結構 -----------20
1-4-4 WS2-MoS2異質結構的製程與性質 -----------21
1-4-4-1化學氣相沉積 (Chemical Vapor Deposition, CVD)----------- 21
1-4-4-2水熱法(Hydrothermal Process) -----------22
1-4-4-3直接硫化法 (Sulfurization Process)----------- 23
1-4-5二維材料在光催化中的發展 -----------24
1-4-5-1提升二維材料產氫效果之方法----------- 26
1-5研究動機 -----------28
第二章 實驗步驟 -----------29
2-1水熱法製備WS2-MoS2異質結構塊材 -----------30
2-2液相剝離法製備少層數二硫化鎢-二硫化鉬異質結構 -----------31
2-3光催化產氫效能量測----------- 32
2-4儀器介紹----------- 33
2-4-1高壓釜 (Autoclave) -----------33
2-4-2液相剝離法 (Liquid Phase Exfoliation, LPE)----------- 34
2-4-3電子顯微鏡 (Scanning Electron Microscope, SEM)----------- 35
2-4-4穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)----------- 36
2-4-5能量色散X-射線光譜儀 (Energy-Dispersive X-Ray Spectroscopy, EDS)----------- 37
2-4-6原子力顯微鏡 (Atomic Force Microscope, AFM) -----------38
2-4-7 X射線繞射分析儀 (X-ray Diffractometer, XRD)-----------39
2-4-8顯微拉曼光譜儀 (Micro-Raman Spectrometer)----------- 40
2-4-9吸收光譜儀 (Ultraviolet-Visible Spectroscopy, UV-VIS)------ 41
2-4-10氣相層析儀 (Gas Chromatography, GC) -----------42
第三章 結果與討論 -----------43
3-1 WS2-MoS2異質結構塊材分析 -----------43
3-1-1掃描式電子顯微鏡(SEM)分析 -----------43
3-1-2穿透式電子顯微鏡(TEM)分析----------- 45
3-1-3能量色散X-射線光譜儀(EDS)分析----------- 47
3-1-4原子力顯微鏡(AFM)分析 -----------48
3-1-5 X射線繞射分析(XRD) -----------50
3-2少層數WS2-MoS2異質結構分析----------- 51
3-2-1原子力顯微鏡(AFM)分析 -----------51
3-2-2拉曼光譜(Raman)分析----------- 53
3-2-3吸收光譜分析 -----------54
3-3光催化產氫效率分析----------- 55
3-3-1液相剝離法於光催化產氫效率之效應----------- 55
3-3-2少層數WS2-MoS2異質結構組成於光催化產氫效率之影響----------- 57
3-3-3與文獻之探討----------- 59
第四章 結論 -----------61
第五章 未來展望 -----------62
參考文獻 -----------63
1 Elam, C. Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies. International Journal of Hydrogen Energy 28, 601-607 (2003).
2 Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).
3 Turner, J. A. A Realizable Renewable Energy Future. Science 285, 687-689 (1999).
4 Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 38, 253-278 (2009).
5 Fujishima, A. & Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37 (1972).
6 N. Serpone and E. Pelizzetti, Photocatalysis, Wiley, New York, 1989.
7 Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 110, 6503-6570 (2010).
8 Hong, S. et al. Earth abundant transition metal-doped few-layered MoS2 nanosheets on CdS nanorods for ultra-efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 20851-20859 (2017).
9 Geim, A. K., et al. The rise of graphene. Nature Materials, 6, 183-191 (2007).
10 Lattuada, M. & Hatton, T. A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 6, 286-308 (2011).
11 Pumera, M. & Loo, A. H. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trends in Analytical Chemistry 61, 49-53 (2014).
12 Wang, S. et al. Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chemistry of Materials 26, 6371-6379 (2014).
13 Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society 134, 6575-6578 (2012).
14 Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology 6, 147 (2011).
15 Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials 13, 1135-1142 (2014).
16 Terrones, H., López-Urías, F. & Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Scientific Reports 3, 1549 (2013).
17 Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angewandte Chemie 50, 11093-11097(2011).
18 Jiang, F. et al. Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. Journal of Materials Chemistry A 4, 5265-5273 (2016).
19 Shen, J. et al. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small 12, 2741-2749 (2016).
20 Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y. & Zhang, H.-L. A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues. Angewandte Chemie 50, 10839-10842, (2011).
21 Jeon, J. et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 7, 1688-1695 (2015).
22 J. Tersoff, “Theory of semiconductor heterojunction: the role of quantum dipoles.” Physical Review B. 30, 4874-4877 (1984).
23 Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials 13, 1135-1142 (2014).
24 Song, J. G. et al. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nature Communications 6, 7817 (2015).
25 Li, H. et al. Novel dual-petal nanostructured WS2@MoS2 with enhanced photocatalytic performance and a comprehensive first-principles investigation. J. Mater. Chem. A 3, 20225-20235 (2015).
26 Iwashina, K., Iwase, A., Ng, Y. H., Amal, R. & Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. Journal of the American Chemical Society 137,604-607 (2015).
27 Singh, A. K., Mathew, K., Zhuang, H. L. & Hennig, R. G. Computational Screening of 2D Materials for Photocatalysis. The Journal Of Physical Chemistry Letters 6, 1087-1098 (2015).
28 Reddy, D. A. et al. Heterostructured WS2 -MoS2 Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solar-Driven Photocatalytic Hydrogen Evolution. ChemSusChem 10, 1563-1570 (2017).
29 Ye, G. et al. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano Letters 16, 1097-1103(2016).
30 Li, H. et al. Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials 15, 364 (2016).
31 Wang, W. et al. MoS2 memristor with photoresistive switching. Scientific Reports 6, 31224 (2016).
32 Reddy, D. A., Park, H., Hong, S., Kumar, D. P. & Kim, T. K. Hydrazine-assisted formation of ultrathin MoS2 nanosheets for enhancing their co-catalytic activity in photocatalytic hydrogen evolution. Journal of Materials Chemistry A 5, 6981-6991 (2017).
33 Muscuso, L., Cravanzola, S., Cesano, F., Scarano, D. & Zecchina, A. Optical, Vibrational, and Structural Properties of MoS2 Nanoparticles Obtained by Exfoliation and Fragmentation via Ultrasound Cavitation in Isopropyl Alcohol. The Journal of Physical Chemistry C 119, 3791-3801 (2015).
34 Zhang, J. et al. Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures. Advanced Materials 28, 1950-1956 (2016).
35 Zhong, Y., Zhao, G., Ma, F., Wu, Y. & Hao, X. Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental 199, 466-472 (2016).
36 He, J. et al. CdS Nanowires Decorated with Ultrathin MoS2 Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution. ChemSusChem 9, 624-630 (2016).
37 Wang, H. et al. Structural distortion in graphitic-C3N4 realizing an efficient photoreactivity. Nanoscale 7, 5152-5156 (2015).
38 Wang, X. et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications 23, 3452-3454 (2009).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *