|
1 Elam, C. Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies. International Journal of Hydrogen Energy 28, 601-607 (2003). 2 Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001). 3 Turner, J. A. A Realizable Renewable Energy Future. Science 285, 687-689 (1999). 4 Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 38, 253-278 (2009). 5 Fujishima, A. & Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37 (1972). 6 N. Serpone and E. Pelizzetti, Photocatalysis, Wiley, New York, 1989. 7 Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 110, 6503-6570 (2010). 8 Hong, S. et al. Earth abundant transition metal-doped few-layered MoS2 nanosheets on CdS nanorods for ultra-efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 20851-20859 (2017). 9 Geim, A. K., et al. The rise of graphene. Nature Materials, 6, 183-191 (2007). 10 Lattuada, M. & Hatton, T. A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 6, 286-308 (2011). 11 Pumera, M. & Loo, A. H. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trends in Analytical Chemistry 61, 49-53 (2014). 12 Wang, S. et al. Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chemistry of Materials 26, 6371-6379 (2014). 13 Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society 134, 6575-6578 (2012). 14 Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology 6, 147 (2011). 15 Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials 13, 1135-1142 (2014). 16 Terrones, H., López-Urías, F. & Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Scientific Reports 3, 1549 (2013). 17 Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angewandte Chemie 50, 11093-11097(2011). 18 Jiang, F. et al. Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. Journal of Materials Chemistry A 4, 5265-5273 (2016). 19 Shen, J. et al. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small 12, 2741-2749 (2016). 20 Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y. & Zhang, H.-L. A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues. Angewandte Chemie 50, 10839-10842, (2011). 21 Jeon, J. et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 7, 1688-1695 (2015). 22 J. Tersoff, “Theory of semiconductor heterojunction: the role of quantum dipoles.” Physical Review B. 30, 4874-4877 (1984). 23 Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials 13, 1135-1142 (2014). 24 Song, J. G. et al. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nature Communications 6, 7817 (2015). 25 Li, H. et al. Novel dual-petal nanostructured WS2@MoS2 with enhanced photocatalytic performance and a comprehensive first-principles investigation. J. Mater. Chem. A 3, 20225-20235 (2015). 26 Iwashina, K., Iwase, A., Ng, Y. H., Amal, R. & Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. Journal of the American Chemical Society 137,604-607 (2015). 27 Singh, A. K., Mathew, K., Zhuang, H. L. & Hennig, R. G. Computational Screening of 2D Materials for Photocatalysis. The Journal Of Physical Chemistry Letters 6, 1087-1098 (2015). 28 Reddy, D. A. et al. Heterostructured WS2 -MoS2 Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solar-Driven Photocatalytic Hydrogen Evolution. ChemSusChem 10, 1563-1570 (2017). 29 Ye, G. et al. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano Letters 16, 1097-1103(2016). 30 Li, H. et al. Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials 15, 364 (2016). 31 Wang, W. et al. MoS2 memristor with photoresistive switching. Scientific Reports 6, 31224 (2016). 32 Reddy, D. A., Park, H., Hong, S., Kumar, D. P. & Kim, T. K. Hydrazine-assisted formation of ultrathin MoS2 nanosheets for enhancing their co-catalytic activity in photocatalytic hydrogen evolution. Journal of Materials Chemistry A 5, 6981-6991 (2017). 33 Muscuso, L., Cravanzola, S., Cesano, F., Scarano, D. & Zecchina, A. Optical, Vibrational, and Structural Properties of MoS2 Nanoparticles Obtained by Exfoliation and Fragmentation via Ultrasound Cavitation in Isopropyl Alcohol. The Journal of Physical Chemistry C 119, 3791-3801 (2015). 34 Zhang, J. et al. Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures. Advanced Materials 28, 1950-1956 (2016). 35 Zhong, Y., Zhao, G., Ma, F., Wu, Y. & Hao, X. Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental 199, 466-472 (2016). 36 He, J. et al. CdS Nanowires Decorated with Ultrathin MoS2 Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution. ChemSusChem 9, 624-630 (2016). 37 Wang, H. et al. Structural distortion in graphitic-C3N4 realizing an efficient photoreactivity. Nanoscale 7, 5152-5156 (2015). 38 Wang, X. et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications 23, 3452-3454 (2009).
|